Implement reverb effects

This commit is contained in:
Jack Andersen 2016-05-12 15:46:41 -10:00
parent 1d726ed179
commit 3d3869e30d
11 changed files with 615 additions and 104 deletions

View File

@ -13,8 +13,7 @@ set(SOURCES
lib/Voice.cpp
lib/Submix.cpp
lib/EffectBase.cpp
lib/EffectReverbHi.cpp
lib/EffectReverbStd.cpp
lib/EffectReverb.cpp
lib/EffectChorus.cpp
lib/EffectDelay.cpp
lib/SurroundProfiles.cpp
@ -39,8 +38,7 @@ set(HEADERS
include/amuse/IBackendVoice.hpp
include/amuse/IBackendVoiceAllocator.hpp
include/amuse/EffectBase.hpp
include/amuse/EffectReverbHi.hpp
include/amuse/EffectReverbStd.hpp
include/amuse/EffectReverb.hpp
include/amuse/EffectChorus.hpp
include/amuse/EffectDelay.hpp
include/amuse/SurroundProfiles.hpp

View File

@ -0,0 +1,114 @@
#ifndef __AMUSE_EFFECTREVERB_HPP__
#define __AMUSE_EFFECTREVERB_HPP__
#include "EffectBase.hpp"
#include "amuse/Common.hpp"
#include <memory>
namespace amuse
{
/** Delay state for one 'tap' of the reverb effect */
struct ReverbDelayLine
{
int32_t x0_inPoint = 0;
int32_t x4_outPoint = 0;
int32_t x8_length = 0;
std::unique_ptr<float[]> xc_inputs;
float x10_lastInput = 0.f;
void allocate(int32_t delay);
void setdelay(int32_t delay);
};
/** Reverb effect with configurable reflection filtering */
template <typename T, size_t AP, size_t C>
class EffectReverb : public EffectBase<T>
{
protected:
ReverbDelayLine x0_x0_AP[8][AP] = {}; /**< All-pass delay lines */
ReverbDelayLine x78_xb4_C[8][C] = {}; /**< Comb delay lines */
float xf0_x168_allPassCoef = 0.f; /**< All-pass mix coefficient */
float xf4_x16c_combCoef[8][C] = {}; /**< Comb mix coefficients */
float x10c_x190_lpLastout[8] = {}; /**< Last low-pass results */
float x118_x19c_level = 0.f; /**< Internal wet/dry mix factor */
float x11c_x1a0_damping = 0.f; /**< Low-pass damping */
int32_t x120_x1a4_preDelayTime = 0; /**< Sample count of pre-delay */
std::unique_ptr<float[]> x124_x1ac_preDelayLine[8]; /**< Dedicated pre-delay buffers */
float* x130_x1b8_preDelayPtr[8] = {}; /**< Current pre-delay pointers */
float x140_x1c8_coloration; /**< [0.0, 1.0] influences filter coefficients to define surface characteristics of a room */
float x144_x1cc_mix; /**< [0.0, 1.0] dry/wet mix factor of reverb effect */
float x148_x1d0_time; /**< [0.01, 10.0] time in seconds for reflection decay */
float x14c_x1d4_damping; /**< [0.0, 1.0] damping factor influencing low-pass filter of reflections */
float x150_x1d8_preDelay; /**< [0.0, 0.1] time in seconds before initial reflection heard */
double m_sampleRate; /**< copy of sample rate */
bool m_dirty = true; /**< needs update of internal parameter data */
void _update();
public:
EffectReverb(float coloration, float mix, float time,
float damping, float preDelay, double sampleRate);
void applyEffect(T* audio, size_t frameCount, const ChannelMap& chanMap);
void setColoration(float coloration)
{
x140_x1c8_coloration = clamp(0.f, coloration, 1.f);
m_dirty = true;
}
void setMix(float mix)
{
x144_x1cc_mix = clamp(0.f, mix, 1.f);
m_dirty = true;
}
void setTime(float time)
{
x148_x1d0_time = clamp(0.01f, time, 10.f);
m_dirty = true;
}
void setDamping(float damping)
{
x14c_x1d4_damping = clamp(0.f, damping, 1.f);
m_dirty = true;
}
void setPreDelay(float preDelay)
{
x150_x1d8_preDelay = clamp(0.f, preDelay, 0.1f);
m_dirty = true;
}
};
/** Standard-quality 2-tap reverb */
template <typename T>
class EffectReverbStd : public EffectReverb<T, 2, 2>
{
public:
EffectReverbStd(float coloration, float mix, float time,
float damping, float preDelay, double sampleRate);
};
/** High-quality 3-tap reverb */
template <typename T>
class EffectReverbHi : public EffectReverb<T, 2, 3>
{
ReverbDelayLine x78_LP[8] = {}; /**< Per-channel low-pass delay-lines */
float x1a8_internalCrosstalk;
float x1dc_crosstalk; /**< [0.0, 1.0] factor defining how much reflections are allowed to bleed to other channels */
void _update();
void _handleReverb(T* audio, int chanIdx, int chanCount, int sampleCount);
void _doCrosstalk(T* audio, float wet, float dry, int chanCount, int sampleCount);
public:
EffectReverbHi(float coloration, float mix, float time,
float damping, float preDelay, float crosstalk, double sampleRate);
void applyEffect(T* audio, size_t frameCount, const ChannelMap& chanMap);
void setCrosstalk(float crosstalk)
{
x1dc_crosstalk = clamp(0.f, crosstalk, 1.f);
EffectReverb<T, 2, 3>::m_dirty = true;
}
};
}
#endif // __AMUSE_EFFECTREVERB_HPP__

View File

@ -1,32 +0,0 @@
#ifndef __AMUSE_EFFECTREVERBHI_HPP__
#define __AMUSE_EFFECTREVERBHI_HPP__
#include "EffectBase.hpp"
namespace amuse
{
/** Reverb effect with configurable reflection filtering and channel-crosstalk */
template <typename T>
class EffectReverbHi : public EffectBase<T>
{
float m_coloration; /**< [0.0, 1.0] influences filter coefficients to define surface characteristics of a room */
float m_mix; /**< [0.0, 1.0] dry/wet mix factor of reverb effect */
float m_time; /**< [0.01, 10.0] time in seconds for reflection decay */
float m_damping; /**< [0.0, 1.0] damping factor influencing low-pass filter of reflections */
float m_preDelay; /**< [0.0, 0.1] time in seconds before initial reflection heard */
float m_crosstalk; /**< [0.0, 100.0] factor defining how much reflections are allowed to bleed to other channels */
public:
EffectReverbHi(float coloration, float mix, float time,
float damping, float preDelay, float crosstalk);
void applyEffect(int16_t* audio, size_t frameCount,
const ChannelMap& chanMap, double sampleRate);
void applyEffect(int32_t* audio, size_t frameCount,
const ChannelMap& chanMap, double sampleRate);
void applyEffect(float* audio, size_t frameCount,
const ChannelMap& chanMap, double sampleRate);
};
}
#endif // __AMUSE_EFFECTREVERBHI_HPP__

View File

@ -1,31 +0,0 @@
#ifndef __AMUSE_EFFECTREVERBSTD_HPP__
#define __AMUSE_EFFECTREVERBSTD_HPP__
#include "EffectBase.hpp"
namespace amuse
{
/** Reverb effect with configurable reflection filtering */
template <typename T>
class EffectReverbStd : public EffectBase<T>
{
float m_coloration; /**< [0.0, 1.0] influences filter coefficients to define surface characteristics of a room */
float m_mix; /**< [0.0, 1.0] dry/wet mix factor of reverb effect */
float m_time; /**< [0.01, 10.0] time in seconds for reflection decay */
float m_damping; /**< [0.0, 1.0] damping factor influencing low-pass filter of reflections */
float m_preDelay; /**< [0.0, 0.1] time in seconds before initial reflection heard */
public:
EffectReverbStd(float coloration, float mix, float time,
float damping, float preDelay);
void applyEffect(int16_t* audio, size_t frameCount,
const ChannelMap& chanMap, double sampleRate);
void applyEffect(int32_t* audio, size_t frameCount,
const ChannelMap& chanMap, double sampleRate);
void applyEffect(float* audio, size_t frameCount,
const ChannelMap& chanMap, double sampleRate);
};
}
#endif // __AMUSE_EFFECTREVERBSTD_HPP__

View File

@ -8,8 +8,7 @@
#include "AudioGroupSampleDirectory.hpp"
#include "EffectChorus.hpp"
#include "EffectDelay.hpp"
#include "EffectReverbStd.hpp"
#include "EffectReverbHi.hpp"
#include "EffectReverb.hpp"
#include "Emitter.hpp"
#include "Engine.hpp"
#include "Envelope.hpp"

View File

@ -14,9 +14,6 @@ static inline int16_t DSPSampClamp(int32_t val)
return val;
}
unsigned DSPDecompressFrameRanged(int16_t* out, const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned firstSample, unsigned lastSample);
unsigned DSPDecompressFrame(int16_t* out, const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned lastSample);
@ -27,6 +24,14 @@ unsigned DSPDecompressFrameStereoDupe(int16_t* out, const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned lastSample);
unsigned DSPDecompressFrameRanged(int16_t* out, const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned firstSample, unsigned lastSample);
unsigned DSPDecompressFrameStateOnly(const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned lastSample);
#ifdef __cplusplus
}
#endif

414
lib/EffectReverb.cpp Normal file
View File

@ -0,0 +1,414 @@
#include "amuse/EffectReverb.hpp"
#include "amuse/IBackendVoice.hpp"
#include <cmath>
#include <string.h>
namespace amuse
{
/* Comb-filter delays */
static const size_t CTapDelays[] =
{
1789,
1999,
2333
};
/* All-pass-filter delays */
static const size_t APTapDelays[] =
{
433,
149
};
/* Per-channel low-pass delays (Hi-quality reverb only) */
static const size_t LPTapDelays[] =
{
47,
73,
67,
57,
43,
57,
83,
73
};
void ReverbDelayLine::allocate(int32_t delay)
{
delay += 2;
x8_length = delay * sizeof(float);
xc_inputs.reset(new float[delay]);
memset(xc_inputs.get(), 0, x8_length);
x10_lastInput = 0.f;
setdelay(delay / 2);
x0_inPoint = 0;
x4_outPoint = 0;
}
void ReverbDelayLine::setdelay(int32_t delay)
{
x4_outPoint = x0_inPoint - delay * sizeof(float);
while (x4_outPoint < 0)
x4_outPoint += x8_length;
}
template <typename T, size_t AP, size_t C>
EffectReverb<T, AP, C>::EffectReverb(float coloration, float mix, float time,
float damping, float preDelay, double sampleRate)
: x140_x1c8_coloration(clamp(0.f, coloration, 1.f)),
x144_x1cc_mix(clamp(0.f, mix, 1.f)),
x148_x1d0_time(clamp(0.01f, time, 10.f)),
x14c_x1d4_damping(clamp(0.f, damping, 1.f)),
x150_x1d8_preDelay(clamp(0.f, preDelay, 0.1f)),
m_sampleRate(sampleRate)
{}
template <typename T, size_t AP, size_t C>
void EffectReverb<T, AP, C>::_update()
{
float timeSamples = x148_x1d0_time * m_sampleRate;
for (int c=0 ; c<8 ; ++c)
{
for (int t=0 ; t<C ; ++t)
{
ReverbDelayLine& combLine = x78_xb4_C[c][t];
size_t tapDelay = CTapDelays[t] * m_sampleRate / 32000.0;
combLine.allocate(tapDelay);
combLine.setdelay(tapDelay);
xf4_x16c_combCoef[c][t] = std::pow(10.f, tapDelay * -3 / timeSamples);
}
for (int t=0 ; t<AP ; ++t)
{
ReverbDelayLine& allPassLine = x0_x0_AP[c][t];
size_t tapDelay = APTapDelays[t] * m_sampleRate / 32000.0;
allPassLine.allocate(tapDelay);
allPassLine.setdelay(tapDelay);
}
}
xf0_x168_allPassCoef = x140_x1c8_coloration;
x118_x19c_level = x144_x1cc_mix;
x11c_x1a0_damping = x14c_x1d4_damping;
if (x11c_x1a0_damping < 0.05f)
x11c_x1a0_damping = 0.05f;
x11c_x1a0_damping = 1.f - (x11c_x1a0_damping * 0.8f + 0.05);
if (x150_x1d8_preDelay != 0.f)
{
x120_x1a4_preDelayTime = m_sampleRate * x150_x1d8_preDelay;
for (int i=0 ; i<8 ; ++i)
{
x124_x1ac_preDelayLine[i].reset(new float[x120_x1a4_preDelayTime]);
memset(x124_x1ac_preDelayLine[i].get(), 0, x120_x1a4_preDelayTime * sizeof(float));
x130_x1b8_preDelayPtr[i] = x124_x1ac_preDelayLine[i].get();
}
}
else
{
x120_x1a4_preDelayTime = 0;
for (int i=0 ; i<8 ; ++i)
{
x124_x1ac_preDelayLine[i] = nullptr;
x130_x1b8_preDelayPtr[i] = nullptr;
}
}
m_dirty = false;
}
template <typename T, size_t AP, size_t C>
void EffectReverb<T, AP, C>::applyEffect(T* audio, size_t frameCount, const ChannelMap& chanMap)
{
if (m_dirty)
_update();
float dampWet = x118_x19c_level * 0.6f;
float dampDry = 0.6f - dampWet;
for (size_t f=0 ; f<frameCount ;)
{
for (int c=0 ; c<chanMap.m_channelCount ; ++c)
{
float* combCoefs = xf4_x16c_combCoef[c];
float& lpLastOut = x10c_x190_lpLastout[c];
float* preDelayLine = x124_x1ac_preDelayLine[c].get();
float* preDelayPtr = x130_x1b8_preDelayPtr[c];
float* lastPreDelaySamp = &preDelayLine[x120_x1a4_preDelayTime - 1];
ReverbDelayLine* linesC = x78_xb4_C[c];
ReverbDelayLine* linesAP = x0_x0_AP[c];
float sample = audio[c];
for (int s=1 ; s<160 && f<frameCount ; ++s, ++f)
{
/* Pre-delay stage */
float sample2 = sample;
if (x120_x1a4_preDelayTime != 0)
{
sample2 = *preDelayPtr;
*preDelayPtr = sample;
preDelayPtr += 4;
if (preDelayPtr == lastPreDelaySamp)
preDelayPtr = preDelayLine;
}
/* Comb filter stage */
linesC[0].xc_inputs[linesC[0].x0_inPoint] = combCoefs[0] * linesC[0].x10_lastInput + sample2;
linesC[0].x0_inPoint += 4;
linesC[1].xc_inputs[linesC[1].x0_inPoint] = combCoefs[1] * linesC[1].x10_lastInput + sample2;
linesC[1].x0_inPoint += 4;
linesC[0].x10_lastInput = linesC[0].xc_inputs[linesC[0].x4_outPoint];
linesC[0].x4_outPoint += 4;
linesC[1].x10_lastInput = linesC[1].xc_inputs[linesC[1].x4_outPoint];
linesC[1].x4_outPoint += 4;
if (linesC[0].x0_inPoint == linesC[0].x8_length)
linesC[0].x0_inPoint = 0;
if (linesC[1].x0_inPoint == linesC[1].x8_length)
linesC[1].x0_inPoint = 0;
if (linesC[0].x4_outPoint == linesC[0].x8_length)
linesC[0].x4_outPoint = 0;
if (linesC[1].x4_outPoint == linesC[1].x8_length)
linesC[1].x4_outPoint = 0;
/* All-pass filter stage */
linesAP[0].xc_inputs[linesAP[0].x0_inPoint] =
xf0_x168_allPassCoef * linesAP[0].x10_lastInput + linesC[0].x10_lastInput + linesC[1].x10_lastInput;
float lowPass = -(xf0_x168_allPassCoef * linesAP[0].xc_inputs[linesAP[0].x0_inPoint] -
linesAP[0].x10_lastInput);
linesAP[0].x0_inPoint += 4;
linesAP[0].x10_lastInput = linesAP[0].xc_inputs[linesAP[0].x4_outPoint];
linesAP[0].x4_outPoint += 4;
if (linesAP[0].x0_inPoint == linesAP[0].x8_length)
linesAP[0].x0_inPoint = 0;
if (linesAP[0].x4_outPoint == linesAP[0].x8_length)
linesAP[0].x4_outPoint = 0;
lpLastOut = x11c_x1a0_damping * lpLastOut + lowPass * 0.3f;
linesAP[1].xc_inputs[linesAP[1].x0_inPoint] = xf0_x168_allPassCoef * linesAP[1].x10_lastInput + lpLastOut;
float allPass = -(xf0_x168_allPassCoef * linesAP[1].xc_inputs[linesAP[1].x0_inPoint] -
linesAP[1].x10_lastInput);
linesAP[1].x0_inPoint += 4;
linesAP[1].x10_lastInput = linesAP[1].xc_inputs[linesAP[1].x4_outPoint];
linesAP[1].x4_outPoint += 4;
if (linesAP[1].x0_inPoint == linesAP[1].x8_length)
linesAP[1].x0_inPoint = 0;
if (linesAP[1].x4_outPoint == linesAP[1].x8_length)
linesAP[1].x4_outPoint = 0;
/* Mix out */
audio[(s-1) * chanMap.m_channelCount + c] = ClampFull<T>(dampWet * allPass + dampDry * sample);
sample = audio[s * chanMap.m_channelCount + c];
}
x130_x1b8_preDelayPtr[c] = preDelayPtr;
}
audio += chanMap.m_channelCount * 160;
}
}
template <typename T>
EffectReverbStd<T>::EffectReverbStd(float coloration, float mix, float time,
float damping, float preDelay, double sampleRate)
: EffectReverb<T, 2, 2>(coloration, mix, time, damping, preDelay, sampleRate)
{
EffectReverb<T, 2, 2>::_update();
}
template <typename T>
void EffectReverbHi<T>::_update()
{
EffectReverb<T, 2, 3>::_update();
for (int c=0 ; c<8 ; ++c)
{
ReverbDelayLine& hpLine = x78_LP[c];
size_t tapDelay = LPTapDelays[c] * EffectReverb<T, 2, 3>::m_sampleRate / 32000.0;
hpLine.allocate(tapDelay);
hpLine.setdelay(tapDelay);
}
}
template <typename T>
void EffectReverbHi<T>::_handleReverb(T* audio, int c, int chanCount, int sampleCount)
{
float dampWet = EffectReverb<T, 2, 3>::x118_x19c_level * 0.6f;
float dampDry = 0.6f - dampWet;
float* combCoefs = EffectReverb<T, 2, 3>::xf4_x16c_combCoef[c];
float& lpLastOut = EffectReverb<T, 2, 3>::x10c_x190_lpLastout[c];
float* preDelayLine = EffectReverb<T, 2, 3>::x124_x1ac_preDelayLine[c].get();
float* preDelayPtr = EffectReverb<T, 2, 3>::x130_x1b8_preDelayPtr[c];
float* lastPreDelaySamp = &preDelayLine[EffectReverb<T, 2, 3>::x120_x1a4_preDelayTime - 1];
ReverbDelayLine* linesC = EffectReverb<T, 2, 3>::x78_xb4_C[c];
ReverbDelayLine* linesAP = EffectReverb<T, 2, 3>::x0_x0_AP[c];
ReverbDelayLine& lineHP = x78_LP[c];
float allPassCoef = EffectReverb<T, 2, 3>::xf0_x168_allPassCoef;
float damping = EffectReverb<T, 2, 3>::x11c_x1a0_damping;
int32_t preDelayTime = EffectReverb<T, 2, 3>::x120_x1a4_preDelayTime;
float sample = audio[c];
for (int s=1 ; s<sampleCount ; ++s)
{
/* Pre-delay stage */
float sample2 = sample;
if (preDelayTime != 0)
{
sample2 = *preDelayPtr;
*preDelayPtr = sample;
preDelayPtr += 4;
if (preDelayPtr == lastPreDelaySamp)
preDelayPtr = preDelayLine;
}
/* Comb filter stage */
linesC[0].xc_inputs[linesC[0].x0_inPoint] = combCoefs[0] * linesC[0].x10_lastInput + sample2;
linesC[0].x0_inPoint += 4;
linesC[1].xc_inputs[linesC[1].x0_inPoint] = combCoefs[1] * linesC[1].x10_lastInput + sample2;
linesC[1].x0_inPoint += 4;
linesC[0].x10_lastInput = linesC[0].xc_inputs[linesC[0].x4_outPoint];
linesC[0].x4_outPoint += 4;
linesC[1].x10_lastInput = linesC[1].xc_inputs[linesC[1].x4_outPoint];
linesC[1].x4_outPoint += 4;
if (linesC[0].x0_inPoint == linesC[0].x8_length)
linesC[0].x0_inPoint = 0;
if (linesC[1].x0_inPoint == linesC[1].x8_length)
linesC[1].x0_inPoint = 0;
if (linesC[0].x4_outPoint == linesC[0].x8_length)
linesC[0].x4_outPoint = 0;
if (linesC[1].x4_outPoint == linesC[1].x8_length)
linesC[1].x4_outPoint = 0;
/* All-pass filter stage */
linesAP[0].xc_inputs[linesAP[0].x0_inPoint] =
allPassCoef * linesAP[0].x10_lastInput + linesC[0].x10_lastInput + linesC[1].x10_lastInput;
linesAP[1].xc_inputs[linesAP[1].x0_inPoint] =
allPassCoef * linesAP[1].x10_lastInput -
(allPassCoef * linesAP[0].xc_inputs[linesAP[0].x0_inPoint] - linesAP[0].x10_lastInput);
float lowPass = -(allPassCoef * linesAP[1].xc_inputs[linesAP[1].x0_inPoint] - linesAP[1].x10_lastInput);
linesAP[0].x0_inPoint += 4;
linesAP[1].x0_inPoint += 4;
if (linesAP[0].x0_inPoint == linesAP[0].x8_length)
linesAP[0].x0_inPoint = 0;
if (linesAP[1].x0_inPoint == linesAP[1].x8_length)
linesAP[1].x0_inPoint = 0;
linesAP[0].x10_lastInput = linesAP[0].xc_inputs[linesAP[0].x4_outPoint];
linesAP[0].x4_outPoint += 4;
linesAP[1].x10_lastInput = linesAP[1].xc_inputs[linesAP[1].x4_outPoint];
linesAP[1].x4_outPoint += 4;
if (linesAP[0].x4_outPoint == linesAP[0].x8_length)
linesAP[0].x4_outPoint = 0;
if (linesAP[1].x4_outPoint == linesAP[1].x8_length)
linesAP[1].x4_outPoint = 0;
lpLastOut = damping * lpLastOut + lowPass * 0.3f;
lineHP.xc_inputs[lineHP.x0_inPoint] = allPassCoef * lineHP.x10_lastInput + lpLastOut;
float allPass = -(allPassCoef * lineHP.xc_inputs[lineHP.x0_inPoint] - lineHP.x10_lastInput);
lineHP.x0_inPoint += 4;
lineHP.x10_lastInput = lineHP.xc_inputs[lineHP.x4_outPoint];
lineHP.x4_outPoint += 4;
if (lineHP.x0_inPoint == lineHP.x8_length)
lineHP.x0_inPoint = 0;
if (lineHP.x4_outPoint == lineHP.x8_length)
lineHP.x4_outPoint = 0;
/* Mix out */
audio[(s-1) * chanCount + c] = ClampFull<T>(dampWet * allPass + dampDry * sample);
sample = audio[s * chanCount + c];
}
EffectReverb<T, 2, 3>::x130_x1b8_preDelayPtr[c] = preDelayPtr;
}
template <typename T>
void EffectReverbHi<T>::_doCrosstalk(T* audio, float wet, float dry, int chanCount, int sampleCount)
{
for (int i=0 ; i<sampleCount ; ++i)
{
T* base = &audio[chanCount*i];
float allWet = 0;
for (int c=0 ; c<chanCount ; ++c)
{
allWet += base[c] * wet;
base[c] *= dry;
}
for (int c=0 ; c<chanCount ; ++c)
base[c] = ClampFull<T>(base[c] + allWet);
}
}
template <typename T>
void EffectReverbHi<T>::applyEffect(T* audio, size_t frameCount, const ChannelMap& chanMap)
{
if (EffectReverb<T, 2, 3>::m_dirty)
_update();
for (size_t f=0 ; f<frameCount ; f+=160)
{
size_t blockSamples = std::min(size_t(160), frameCount - f);
for (int i=0 ; i<chanMap.m_channelCount ; ++i)
{
if (i == 0 && x1a8_internalCrosstalk != 0.f)
{
float crossWet = x1a8_internalCrosstalk * 0.5;
_doCrosstalk(audio, crossWet, 1.f - crossWet, chanMap.m_channelCount, blockSamples);
}
_handleReverb(audio, i, chanMap.m_channelCount, blockSamples);
}
audio += chanMap.m_channelCount * 160;
}
}
template <typename T>
EffectReverbHi<T>::EffectReverbHi(float coloration, float mix, float time,
float damping, float preDelay, float crosstalk,
double sampleRate)
: EffectReverb<T, 2, 3>(coloration, mix, time, damping, preDelay, sampleRate),
x1dc_crosstalk(clamp(0.f, crosstalk, 1.f))
{
_update();
}
template class EffectReverbStd<int16_t>;
template class EffectReverbStd<int32_t>;
template class EffectReverbStd<float>;
template class EffectReverbHi<int16_t>;
template class EffectReverbHi<int32_t>;
template class EffectReverbHi<float>;
}

View File

View File

@ -366,6 +366,21 @@ void Voice::startSample(int16_t sampId, int32_t offset)
m_lastSamplePos = m_curSample->first.m_loopLengthSamples ?
(m_curSample->first.m_loopStartSample + m_curSample->first.m_loopLengthSamples) :
m_curSample->first.m_numSamples;
_checkSamplePos();
/* Seek DSPADPCM state if needed */
if (m_curSamplePos)
{
uint32_t block = m_curSamplePos / 14;
uint32_t rem = m_curSamplePos % 14;
for (uint32_t b = 0 ; b < block ; ++b)
DSPDecompressFrameStateOnly(m_curSampleData + 8 * b, m_curSample->second.m_coefs,
&m_prev1, &m_prev2, 14);
if (rem)
DSPDecompressFrameStateOnly(m_curSampleData + 8 * block, m_curSample->second.m_coefs,
&m_prev1, &m_prev2, rem);
}
}
}

View File

@ -2,36 +2,6 @@
static const int32_t NibbleToInt[16] = {0,1,2,3,4,5,6,7,-8,-7,-6,-5,-4,-3,-2,-1};
unsigned DSPDecompressFrameRanged(int16_t* out, const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned firstSample, unsigned lastSample)
{
uint8_t cIdx = (in[0]>>4) & 0xf;
int32_t factor1 = coefs[cIdx][0];
int32_t factor2 = coefs[cIdx][1];
uint8_t exp = in[0] & 0xf;
unsigned ret = 0;
for (int s=firstSample ; s<14 && s<lastSample ; ++s)
{
int32_t sampleData = (s&1)?
NibbleToInt[(in[s/2+1])&0xf]:
NibbleToInt[(in[s/2+1]>>4)&0xf];
sampleData <<= exp;
sampleData <<= 11;
sampleData += 1024;
sampleData +=
factor1 * ((int32_t)(*prev1)) +
factor2 * ((int32_t)(*prev2));
sampleData >>= 11;
sampleData = DSPSampClamp(sampleData);
*out++ = sampleData;
*prev2 = *prev1;
*prev1 = sampleData;
++ret;
}
return ret;
}
unsigned DSPDecompressFrame(int16_t* out, const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned lastSample)
@ -73,7 +43,7 @@ unsigned DSPDecompressFrameStereoStride(int16_t* out, const uint8_t* in,
unsigned ret = 0;
for (int s=0 ; s<14 && s<lastSample ; ++s)
{
int sampleData = (s&1)?
int32_t sampleData = (s&1)?
NibbleToInt[(in[s/2+1])&0xf]:
NibbleToInt[(in[s/2+1]>>4)&0xf];
sampleData <<= exp;
@ -103,7 +73,7 @@ unsigned DSPDecompressFrameStereoDupe(int16_t* out, const uint8_t* in,
unsigned ret = 0;
for (int s=0 ; s<14 && s<lastSample ; ++s)
{
int sampleData = (s&1)?
int32_t sampleData = (s&1)?
NibbleToInt[(in[s/2+1])&0xf]:
NibbleToInt[(in[s/2+1]>>4)&0xf];
sampleData <<= exp;
@ -122,3 +92,62 @@ unsigned DSPDecompressFrameStereoDupe(int16_t* out, const uint8_t* in,
}
return ret;
}
unsigned DSPDecompressFrameRanged(int16_t* out, const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned firstSample, unsigned lastSample)
{
uint8_t cIdx = (in[0]>>4) & 0xf;
int32_t factor1 = coefs[cIdx][0];
int32_t factor2 = coefs[cIdx][1];
uint8_t exp = in[0] & 0xf;
unsigned ret = 0;
for (int s=firstSample ; s<14 && s<lastSample ; ++s)
{
int32_t sampleData = (s&1)?
NibbleToInt[(in[s/2+1])&0xf]:
NibbleToInt[(in[s/2+1]>>4)&0xf];
sampleData <<= exp;
sampleData <<= 11;
sampleData += 1024;
sampleData +=
factor1 * ((int32_t)(*prev1)) +
factor2 * ((int32_t)(*prev2));
sampleData >>= 11;
sampleData = DSPSampClamp(sampleData);
*out++ = sampleData;
*prev2 = *prev1;
*prev1 = sampleData;
++ret;
}
return ret;
}
unsigned DSPDecompressFrameStateOnly(const uint8_t* in,
const int16_t coefs[8][2], int16_t* prev1, int16_t* prev2,
unsigned lastSample)
{
uint8_t cIdx = (in[0]>>4) & 0xf;
int32_t factor1 = coefs[cIdx][0];
int32_t factor2 = coefs[cIdx][1];
uint8_t exp = in[0] & 0xf;
unsigned ret = 0;
for (int s=0 ; s<14 && s<lastSample ; ++s)
{
int32_t sampleData = (s&1)?
NibbleToInt[(in[s/2+1])&0xf]:
NibbleToInt[(in[s/2+1]>>4)&0xf];
sampleData <<= exp;
sampleData <<= 11;
sampleData += 1024;
sampleData +=
factor1 * ((int32_t)(*prev1)) +
factor2 * ((int32_t)(*prev2));
sampleData >>= 11;
sampleData = DSPSampClamp(sampleData);
*prev2 = *prev1;
*prev1 = sampleData;
++ret;
}
return ret;
}