amuse/lib/SoundMacroState.cpp

1374 lines
42 KiB
C++

#include "amuse/SoundMacroState.hpp"
#include "amuse/Voice.hpp"
#include "amuse/Engine.hpp"
#include "amuse/Common.hpp"
#include "amuse/AudioGroup.hpp"
#include "amuse/AudioGroupPool.hpp"
#include <string.h>
namespace amuse
{
void SoundMacroState::Header::swapBig()
{
m_size = SBig(m_size);
}
void SoundMacroState::Command::swapBig()
{
uint32_t* words = reinterpret_cast<uint32_t*>(this);
words[0] = SBig(words[0]);
words[1] = SBig(words[1]);
}
void SoundMacroState::LFOSel::addComponent(uint8_t midiCtrl, float scale,
Combine combine, VarType varType)
{
m_comps.push_back({midiCtrl, scale, combine, varType});
}
float SoundMacroState::LFOSel::evaluate(Voice& vox, const SoundMacroState& st)
{
float value = 0.f;
/* Iterate each component */
for (auto it=m_comps.cbegin() ; it != m_comps.cend() ; ++it)
{
const Component& comp = *it;
float thisValue = 0.f;
/* Load selected data */
if (comp.m_varType == VarType::Ctrl)
{
switch (comp.m_midiCtrl)
{
case 128:
/* Pitchbend */
thisValue = vox.getPitchWheel();
break;
case 129:
/* Aftertouch */
thisValue = vox.getAftertouch();
break;
case 130:
/* LFO1 */
if (st.m_lfoPeriods[0])
thisValue = std::sin(st.m_execTime / st.m_lfoPeriods[0] * 2.f * M_PIF);
break;
case 131:
/* LFO2 */
if (st.m_lfoPeriods[1])
thisValue = std::sin(st.m_execTime / st.m_lfoPeriods[1] * 2.f * M_PIF);
break;
case 132:
/* Surround panning */
thisValue = st.m_curSpan * 64.f + 64.f;
break;
case 133:
/* Macro-starting key */
thisValue = st.m_initKey;
break;
case 134:
/* Macro-starting velocity */
thisValue = st.m_initVel;
break;
case 135:
/* Time since macro-start (ms) */
thisValue = st.m_execTime * 1000.f;
break;
default:
thisValue = vox.getCtrlValue(comp.m_midiCtrl);
break;
}
}
else if (comp.m_varType == VarType::Var)
thisValue = st.m_variables[std::max(0, std::min(255, int(comp.m_midiCtrl)))];
/* Apply scale */
thisValue *= comp.m_scale;
/* Combine */
if (it != m_comps.cbegin())
{
switch (comp.m_combine)
{
case Combine::Add:
value += thisValue;
break;
case Combine::Mult:
value *= thisValue;
break;
default:
value = thisValue;
break;
}
}
else
value = thisValue;
}
return value;
}
void SoundMacroState::initialize(const unsigned char* ptr)
{
initialize(ptr, 1000.f, 0, 0, 0);
}
void SoundMacroState::initialize(const unsigned char* ptr, float ticksPerSec,
uint8_t midiKey, uint8_t midiVel, uint8_t midiMod)
{
m_curVol = 1.f;
m_volDirty = true;
m_curPan = 0.f;
m_panDirty = true;
m_curSpan = 0.f;
m_spanDirty = true;
m_ticksPerSec = ticksPerSec;
m_initKey = 0;
m_initVel = 0;
m_initMod = 0;
m_curVel = 0;
m_curMod = 0;
m_curKey = 0;
m_pitchSweep1 = 0;
m_pitchSweep1Times = 0;
m_pitchSweep2 = 0;
m_pitchSweep2Times = 0;
m_pitchDirty = true;
m_pc.clear();
m_pc.push_back({ptr, 0});
m_execTime = 0.f;
m_keyoff = false;
m_sampleEnd = false;
m_envelopeTime = -1.f;
m_panningTime = -1.f;
m_loopCountdown = -1;
m_lastPlayMacroVid = -1;
m_useAdsrControllers = false;
m_portamentoMode = 0;
m_vibratoLevel = 0;
m_vibratoModLevel = 0;
m_vibratoPeriod = 0.f;
m_tremoloScale = 0.f;
m_tremoloModScale = 0.f;
m_lfoPeriods[0] = 0.f;
m_lfoPeriods[1] = 0.f;
m_header = *reinterpret_cast<const Header*>(ptr);
m_header.swapBig();
}
bool SoundMacroState::advance(Voice& vox, float dt)
{
/* Nothing if uninitialized or finished */
if (m_pc.empty() || m_pc.back().first == nullptr || m_pc.back().second == -1)
return true;
/* Process active envelope */
if (m_envelopeTime >= 0.f)
{
m_envelopeTime += dt;
float start = m_envelopeStart / 127.f;
float end = m_envelopeEnd / 127.f;
float t = std::max(0.f, std::min(1.f, m_envelopeTime / m_envelopeDur));
if (m_envelopeCurve)
t = (*m_envelopeCurve)[int(t*127.f)] / 127.f;
m_curVol = (start * (1.0f - t)) + (end * t);
m_volDirty = true;
/* Done with envelope */
if (m_envelopeTime > m_envelopeDur)
m_envelopeTime = -1.f;
}
/* Apply tremolo */
float totalVol = m_curVol;
if (m_tremoloSel && (m_tremoloScale || m_tremoloModScale))
{
float t = m_tremoloSel.evaluate(vox, *this);
if (m_tremoloScale && m_tremoloModScale)
{
float fac = (1.0f - t) + (m_tremoloScale * t);
float modT = vox.getModWheel() / 127.f;
float modFac = (1.0f - modT) + (m_tremoloModScale * modT);
totalVol *= fac * modFac;
}
else if (m_tremoloScale)
{
float fac = (1.0f - t) + (m_tremoloScale * t);
totalVol *= fac;
}
else if (m_tremoloModScale)
{
float modT = vox.getModWheel() / 127.f;
float modFac = (1.0f - modT) + (m_tremoloModScale * modT);
totalVol *= modFac;
}
m_volDirty = true;
}
/* Apply total volume */
if (m_volDirty)
{
vox.setVolume(totalVol);
m_volDirty = false;
}
/* Process active pan-sweep */
if (m_panningTime >= 0.f)
{
m_panningTime += dt;
float start = (m_panPos - 64) / 64.f;
float end = (m_panPos + m_panWidth - 64) / 64.f;
float t = std::max(0.f, std::min(1.f, m_panningTime / m_panningDur));
vox.setPanning((start * (1.0f - t)) + (end * t));
/* Done with panning */
if (m_panningTime > m_panningDur)
m_panningTime = -1.f;
}
/* Process active span-sweep */
if (m_spanningTime >= 0.f)
{
m_spanningTime += dt;
float start = (m_spanPos - 64) / 64.f;
float end = (m_spanPos + m_spanWidth - 64) / 64.f;
float t = std::max(0.f, std::min(1.f, m_spanningTime / m_spanningDur));
vox.setSurroundPanning((start * (1.0f - t)) + (end * t));
/* Done with spanning */
if (m_spanningTime > m_spanningDur)
m_spanningTime = -1.f;
}
/* Process pitch sweep 1 */
if (m_pitchSweep1Times)
{
m_pitchSweep1 += m_pitchSweep1Add;
--m_pitchSweep1Times;
m_pitchDirty = true;
}
/* Process pitch sweep 2 */
if (m_pitchSweep2Times)
{
m_pitchSweep2 += m_pitchSweep2Add;
--m_pitchSweep2Times;
m_pitchDirty = true;
}
/* Apply total pitch */
if (m_pitchDirty)
{
vox.setPitchKey(m_curKey + m_pitchSweep1 + m_pitchSweep2);
m_pitchDirty = false;
}
/* Loop through as many commands as we can for this time period */
while (true)
{
/* Advance wait timer if active, returning if waiting */
if (m_inWait)
{
m_waitCountdown -= dt;
if (m_waitCountdown < 0.f)
m_inWait = false;
else
{
m_execTime += dt;
return false;
}
}
/* Load next command based on counter */
const Command* commands = reinterpret_cast<const Command*>(m_pc.back().first + sizeof(Header));
Command cmd = commands[m_pc.back().second++];
cmd.swapBig();
/* Perform function of command */
switch (cmd.m_op)
{
case Op::End:
case Op::Stop:
m_pc.clear();
return true;
case Op::SplitKey:
{
uint8_t keyNumber = cmd.m_data[0];
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
if (m_initKey >= keyNumber)
{
/* Do Branch */
if (macroId == m_header.m_macroId)
m_pc.back().second = macroStep;
else
vox.loadSoundMacro(macroId, macroStep);
}
break;
}
case Op::SplitVel:
{
uint8_t velocity = cmd.m_data[0];
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
if (m_curVel >= velocity)
{
/* Do Branch */
if (macroId == m_header.m_macroId)
m_pc.back().second = macroStep;
else
vox.loadSoundMacro(macroId, macroStep);
}
break;
}
case Op::WaitTicks:
{
bool keyRelease = cmd.m_data[0];
bool random = cmd.m_data[1];
bool sampleEnd = cmd.m_data[2];
bool absolute = cmd.m_data[3];
bool ms = cmd.m_data[4];
int16_t time = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
/* Set wait state */
float q = ms ? 1000.f : m_ticksPerSec;
float secTime = time / q;
if (absolute)
{
if (secTime <= m_execTime)
break;
m_waitCountdown = secTime - m_execTime;
}
else
m_waitCountdown = secTime;
/* Randomize at the proper resolution */
if (random)
secTime = std::fmod(vox.getEngine().nextRandom() / q, secTime);
m_inWait = true;
m_keyoffWait = keyRelease;
m_sampleEndWait = sampleEnd;
break;
}
case Op::Loop:
{
bool keyRelease = cmd.m_data[0];
bool random = cmd.m_data[1];
bool sampleEnd = cmd.m_data[2];
int16_t step = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
int16_t times = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
if ((keyRelease && m_keyoff) || (sampleEnd && m_sampleEnd))
{
/* Break out of loop */
m_loopCountdown = -1;
break;
}
if (random)
times = vox.getEngine().nextRandom() % times;
if (m_loopCountdown == -1 && times != -1)
m_loopCountdown = times;
if (m_loopCountdown > 0)
{
/* Loop back to step */
--m_loopCountdown;
m_pc.back().second = step;
}
else /* Break out of loop */
m_loopCountdown = -1;
break;
}
case Op::Goto:
{
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
/* Do Branch */
if (macroId == m_header.m_macroId)
m_pc.back().second = macroStep;
else
vox.loadSoundMacro(macroId, macroStep);
break;
}
case Op::WaitMs:
{
bool keyRelease = cmd.m_data[0];
bool random = cmd.m_data[1];
bool sampleEnd = cmd.m_data[2];
bool absolute = cmd.m_data[3];
int16_t time = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
/* Set wait state */
float secTime = time / 1000.f;
if (absolute)
{
if (secTime <= m_execTime)
break;
m_waitCountdown = secTime - m_execTime;
}
else
m_waitCountdown = secTime;
/* Randomize at the proper resolution */
if (random)
secTime = std::fmod(vox.getEngine().nextRandom() / 1000.f, secTime);
m_inWait = true;
m_keyoffWait = keyRelease;
m_sampleEndWait = sampleEnd;
break;
}
case Op::PlayMacro:
{
int8_t addNote = cmd.m_data[0];
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
//int8_t priority = cmd.m_data[5];
//int8_t maxVoices = cmd.m_data[6];
Voice* sibVox = vox.startSiblingMacro(addNote, macroId, macroStep);
if (sibVox)
m_lastPlayMacroVid = sibVox->vid();
break;
}
case Op::SendKeyOff:
{
uint8_t vid = cmd.m_data[0];
bool lastStarted = cmd.m_data[1];
if (lastStarted)
{
if (m_lastPlayMacroVid != -1)
{
Voice* otherVox = vox.getEngine().findVoice(m_lastPlayMacroVid);
if (otherVox)
otherVox->keyOff();
}
}
else
{
Voice* otherVox = vox.getEngine().findVoice(m_variables[vid]);
if (otherVox)
otherVox->keyOff();
}
break;
}
case Op::SplitMod:
{
uint8_t mod = cmd.m_data[0];
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
if (m_curMod >= mod)
{
/* Do Branch */
if (macroId == m_header.m_macroId)
m_pc.back().second = macroStep;
else
vox.loadSoundMacro(macroId, macroStep);
}
break;
}
case Op::PianoPan:
{
int8_t scale = cmd.m_data[0];
int8_t cenKey = cmd.m_data[1];
int8_t cenPan = cmd.m_data[2];
int32_t pan = int32_t(m_initKey - cenKey) * scale / 127 + cenPan;
pan = std::max(-127, std::min(127, pan));
vox.setPanning(pan / 127.f);
break;
}
case Op::SetAdsr:
{
ObjectId tableId = *reinterpret_cast<ObjectId*>(&cmd.m_data[0]);
vox.setAdsr(tableId);
break;
}
case Op::ScaleVolume:
{
int8_t scale = cmd.m_data[0];
int8_t add = cmd.m_data[1];
ObjectId curve = *reinterpret_cast<ObjectId*>(&cmd.m_data[2]);
bool orgVel = cmd.m_data[4];
int32_t eval = int32_t(orgVel ? m_initVel : m_curVel) * scale / 127 + add;
eval = std::max(0, std::min(127, eval));
if (curve.id != 0)
{
const Curve* curveData = vox.getAudioGroup().getPool().tableAsCurves(curve);
if (curveData)
{
m_curVol = (*curveData)[eval] / 127.f;
m_volDirty = true;
break;
}
}
m_curVol = eval / 127.f;
m_volDirty = true;
break;
}
case Op::Panning:
{
int8_t panPos = cmd.m_data[0];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
int8_t width = cmd.m_data[3];
m_panningTime = 0.f;
m_panningDur = timeMs / 1000.f;
m_panPos = panPos;
m_panWidth = width;
break;
}
case Op::Envelope:
{
int8_t scale = cmd.m_data[0];
int8_t add = cmd.m_data[1];
ObjectId curve = *reinterpret_cast<ObjectId*>(&cmd.m_data[2]);
bool ms = cmd.m_data[4];
int16_t fadeTime = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
float q = ms ? 1000.f : m_ticksPerSec;
float secTime = fadeTime / q;
int32_t eval = int32_t(m_curVel) * scale / 127 + add;
eval = std::max(0, std::min(127, eval));
m_envelopeTime = 0.f;
m_envelopeDur = secTime;
m_envelopeStart = m_curVel;
m_envelopeEnd = eval;
if (curve.id != 0)
m_envelopeCurve = vox.getAudioGroup().getPool().tableAsCurves(curve);
else
m_envelopeCurve = nullptr;
break;
}
case Op::StartSample:
{
int16_t smpId = *reinterpret_cast<int16_t*>(&cmd.m_data[0]);
int8_t mode = cmd.m_data[2];
int32_t offset = *reinterpret_cast<int32_t*>(&cmd.m_data[3]);
switch (mode)
{
case 1:
offset = offset * (127 - m_curVel) / 127;
break;
case 2:
offset = offset * m_curVel / 127;
break;
default:
break;
}
vox.startSample(smpId, offset);
break;
}
case Op::StopSample:
{
vox.stopSample();
break;
}
case Op::KeyOff:
{
vox.keyOff();
break;
}
case Op::SplitRnd:
{
uint8_t rndVal = cmd.m_data[0];
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
if (rndVal <= vox.getEngine().nextRandom() % 256)
{
/* Do branch */
if (macroId == m_header.m_macroId)
m_pc.back().second = macroStep;
else
vox.loadSoundMacro(macroId, macroStep);
}
break;
}
case Op::FadeIn:
{
int8_t scale = cmd.m_data[0];
int8_t add = cmd.m_data[1];
ObjectId curve = *reinterpret_cast<ObjectId*>(&cmd.m_data[2]);
bool ms = cmd.m_data[4];
int16_t fadeTime = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
float q = ms ? 1000.f : m_ticksPerSec;
float secTime = fadeTime / q;
int32_t eval = int32_t(m_curVel) * scale / 127 + add;
eval = std::max(0, std::min(127, eval));
m_envelopeTime = 0.f;
m_envelopeDur = secTime;
m_envelopeStart = 0.f;
m_envelopeEnd = eval;
if (curve.id != 0)
m_envelopeCurve = vox.getAudioGroup().getPool().tableAsCurves(curve);
else
m_envelopeCurve = nullptr;
break;
}
case Op::Spanning:
{
int8_t panPos = cmd.m_data[0];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
int8_t width = cmd.m_data[3];
m_spanningTime = 0.f;
m_spanningDur = timeMs / 1000.f;
m_spanPos = panPos;
m_spanWidth = width;
break;
}
case Op::SetAdsrCtrl:
{
m_useAdsrControllers = true;
m_midiAttack = cmd.m_data[0];
m_midiDecay = cmd.m_data[1];
m_midiSustain = cmd.m_data[2];
m_midiRelease = cmd.m_data[3];
break;
}
case Op::RndNote:
{
int32_t noteLo = int32_t(cmd.m_data[0]);
int8_t detune = cmd.m_data[1];
int32_t noteHi = int32_t(cmd.m_data[2]);
int8_t free = cmd.m_data[3];
int8_t rel = cmd.m_data[4];
if (rel)
{
noteLo = m_initKey - noteLo;
noteHi = noteLo + noteHi;
}
noteLo *= 100;
noteHi *= 100;
m_curKey = vox.getEngine().nextRandom() % (noteHi - noteLo) + noteLo;
if (!free)
m_curKey = m_curKey / 100 * 100 + detune;
m_pitchDirty = true;
break;
}
case Op::AddNote:
{
int32_t add = int32_t(cmd.m_data[0]);
int8_t detune = cmd.m_data[1];
int8_t orgKey = cmd.m_data[2];
int8_t ms = cmd.m_data[4];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
m_curKey = (orgKey ? m_initKey : m_curKey) + add * 100 + detune;
/* Set wait state */
if (timeMs)
{
float q = ms ? 1000.f : m_ticksPerSec;
float secTime = timeMs / q;
m_waitCountdown = secTime;
m_inWait = true;
}
m_pitchDirty = true;
break;
}
case Op::SetNote:
{
int32_t key = int32_t(cmd.m_data[0]);
int8_t detune = cmd.m_data[1];
int8_t ms = cmd.m_data[4];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
m_curKey = key * 100 + detune;
/* Set wait state */
if (timeMs)
{
float q = ms ? 1000.f : m_ticksPerSec;
float secTime = timeMs / q;
m_waitCountdown = secTime;
m_inWait = true;
}
m_pitchDirty = true;
break;
}
case Op::LastNote:
{
int32_t add = int32_t(cmd.m_data[0]);
int8_t detune = cmd.m_data[1];
int8_t ms = cmd.m_data[4];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
m_curKey = (add + vox.getLastNote()) * 100 + detune;
/* Set wait state */
if (timeMs)
{
float q = ms ? 1000.f : m_ticksPerSec;
float secTime = timeMs / q;
m_waitCountdown = secTime;
m_inWait = true;
}
m_pitchDirty = true;
break;
}
case Op::Portamento:
{
m_portamentoMode = cmd.m_data[0];
m_portamentoType = cmd.m_data[1];
int8_t ms = cmd.m_data[4];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
float q = ms ? 1000.f : m_ticksPerSec;
m_portamentoTime = timeMs / q;
break;
}
case Op::Vibrato:
{
m_vibratoModLevel = m_vibratoLevel = cmd.m_data[0] * 100 + cmd.m_data[1];
m_vibratoModWheel = cmd.m_data[2];
int8_t ms = cmd.m_data[4];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
float q = ms ? 1000.f : m_ticksPerSec;
m_vibratoPeriod = timeMs / q;
break;
}
case Op::PitchSweep1:
{
m_pitchSweep1 = 0;
m_pitchSweep1Times = int32_t(cmd.m_data[0]);
m_pitchSweep1Add = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
int8_t ms = cmd.m_data[4];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
/* Set wait state */
if (timeMs)
{
float q = ms ? 1000.f : m_ticksPerSec;
float secTime = timeMs / q;
m_waitCountdown = secTime;
m_inWait = true;
}
break;
}
case Op::PitchSweep2:
{
m_pitchSweep2 = 0;
m_pitchSweep2Times = int32_t(cmd.m_data[0]);
m_pitchSweep2Add = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
int8_t ms = cmd.m_data[4];
int16_t timeMs = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
/* Set wait state */
if (timeMs)
{
float q = ms ? 1000.f : m_ticksPerSec;
float secTime = timeMs / q;
m_waitCountdown = secTime;
m_inWait = true;
}
break;
}
case Op::SetPitch:
{
uint32_t hz = *reinterpret_cast<uint32_t*>(&cmd.m_data[0]) >> 8;
uint16_t fine = *reinterpret_cast<uint16_t*>(&cmd.m_data[3]);
vox.setPitchFrequency(hz, fine);
break;
}
case Op::SetPitchAdsr:
{
ObjectId adsr = *reinterpret_cast<ObjectId*>(&cmd.m_data[0]);
int8_t keys = cmd.m_data[3];
int8_t cents = cmd.m_data[4];
vox.setPitchAdsr(adsr, keys * 100 + cents);
break;
}
case Op::ScaleVolumeDLS:
{
int16_t scale = *reinterpret_cast<int16_t*>(&cmd.m_data[0]);
bool orgVel = cmd.m_data[2];
m_curVol = int32_t(orgVel ? m_initVel : m_curVel) * scale / 4096.f / 127.f;
m_volDirty = true;
break;
}
case Op::Mod2Vibrange:
{
int8_t keys = cmd.m_data[0];
int8_t cents = cmd.m_data[1];
m_vibratoModLevel = keys * 100 + cents;
break;
}
case Op::SetupTremolo:
{
int16_t scale = *reinterpret_cast<int16_t*>(&cmd.m_data[0]);
int16_t modScale = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
m_tremoloScale = scale / 4096.f;
m_tremoloModScale = modScale / 4096.f;
break;
}
case Op::Return:
{
if (m_pc.size() > 1)
{
m_pc.pop_back();
m_header = *reinterpret_cast<const Header*>(m_pc.back().first);
m_header.swapBig();
vox.m_objectId = m_header.m_macroId;
}
break;
}
case Op::GoSub:
{
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
if (macroId == m_header.m_macroId)
m_pc.push_back({m_pc.back().first, macroStep});
else
vox.loadSoundMacro(macroId, macroStep, true);
m_header = *reinterpret_cast<const Header*>(m_pc.back().first);
m_header.swapBig();
vox.m_objectId = m_header.m_macroId;
break;
}
case Op::TrapEvent:
{
uint8_t event = cmd.m_data[0];
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[3]);
switch (event)
{
case 0:
m_keyoffTrap.macroId = macroId;
m_keyoffTrap.macroStep = macroStep;
break;
case 1:
m_sampleEndTrap.macroId = macroId;
m_sampleEndTrap.macroStep = macroStep;
break;
case 2:
m_messageTrap.macroId = macroId;
m_messageTrap.macroStep = macroStep;
break;
default: break;
}
break;
}
case Op::UntrapEvent:
{
uint8_t event = cmd.m_data[0];
switch (event)
{
case 0:
m_keyoffTrap.macroId = ObjectId();
m_keyoffTrap.macroStep = -1;
break;
case 1:
m_sampleEndTrap.macroId = ObjectId();
m_sampleEndTrap.macroStep = -1;
break;
case 2:
m_messageTrap.macroId = ObjectId();
m_messageTrap.macroStep = -1;
break;
default: break;
}
break;
}
case Op::SendMessage:
{
bool isVar = cmd.m_data[0];
ObjectId macroId = *reinterpret_cast<ObjectId*>(&cmd.m_data[1]);
uint8_t vid = cmd.m_data[3];
uint8_t val = cmd.m_data[4];
if (isVar)
{
Voice* findVox = vox.getEngine().findVoice(m_variables[vid]);
if (findVox)
findVox->message(val);
}
else
vox.getEngine().sendMacroMessage(macroId, val);
break;
}
case Op::GetMessage:
{
uint8_t vid = cmd.m_data[0];
if (m_messageQueue.size())
{
m_variables[vid] = m_messageQueue.front();
m_messageQueue.pop_front();
}
else
m_variables[vid] = 0;
break;
}
case Op::GetVid:
{
uint8_t vid = cmd.m_data[0];
bool lastPlayMacro = cmd.m_data[1];
m_variables[vid] = lastPlayMacro ? m_lastPlayMacroVid : vox.vid();
break;
}
case Op::SendFlag:
{
int8_t id = cmd.m_data[0];
int8_t val = cmd.m_data[1];
break; /* TODO: figure out a good API */
}
case Op::PitchWheelR:
{
int8_t up = cmd.m_data[0];
int8_t down = cmd.m_data[1];
vox.setPitchWheelRange(up, down);
break;
}
case Op::VolSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_volumeSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::PanSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_panSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::PitchWheelSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_pitchWheelSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::ModWheelSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_modWheelSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::PedalSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_pedalSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::PortamentoSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_portamentoSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::ReverbSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_reverbSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::SpanSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_spanSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::DopplerSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_dopplerSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::TremoloSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_tremoloSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::PreASelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_preAuxASel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::PreBSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_preAuxBSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::PostBSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_postAuxB.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::AuxAFXSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_auxAFxSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::AuxBFXSelect:
{
uint8_t ctrl = cmd.m_data[0];
int16_t perc = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
LFOSel::Combine combine = LFOSel::Combine(cmd.m_data[3]);
LFOSel::VarType vtype = LFOSel::VarType(cmd.m_data[4]);
uint8_t fine = cmd.m_data[5];
m_auxBFxSel.addComponent(ctrl, (perc + fine / 100.f) / 100.f, combine, vtype);
break;
}
case Op::SetupLFO:
{
uint8_t number = cmd.m_data[0];
int16_t period = *reinterpret_cast<int16_t*>(&cmd.m_data[1]);
if (number <= 1)
m_lfoPeriods[number] = period / 1000.f;
break;
}
case Op::SetKeygroup:
{
uint8_t id = cmd.m_data[0];
uint8_t flag = cmd.m_data[1];
vox.setKeygroup(0);
if (id)
{
vox.getEngine().killKeygroup(id, flag);
vox.setKeygroup(id);
}
break;
}
case Op::AddVars:
{
bool aCtrl = cmd.m_data[0];
int8_t a = cmd.m_data[1];
bool bCtrl = cmd.m_data[2];
int8_t b = cmd.m_data[3];
bool cCtrl = cmd.m_data[4];
int8_t c = cmd.m_data[5];
if (bCtrl)
b = vox.getCtrlValue(b);
else
b = m_variables[b];
if (cCtrl)
c = vox.getCtrlValue(c);
else
c = m_variables[c];
if (aCtrl)
vox.setCtrlValue(a, b + c);
else
m_variables[a] = b + c;
break;
}
case Op::SubVars:
{
bool aCtrl = cmd.m_data[0];
int8_t a = cmd.m_data[1];
bool bCtrl = cmd.m_data[2];
int8_t b = cmd.m_data[3];
bool cCtrl = cmd.m_data[4];
int8_t c = cmd.m_data[5];
if (bCtrl)
b = vox.getCtrlValue(b);
else
b = m_variables[b];
if (cCtrl)
c = vox.getCtrlValue(c);
else
c = m_variables[c];
if (aCtrl)
vox.setCtrlValue(a, b - c);
else
m_variables[a] = b - c;
break;
}
case Op::MulVars:
{
bool aCtrl = cmd.m_data[0];
int8_t a = cmd.m_data[1];
bool bCtrl = cmd.m_data[2];
int8_t b = cmd.m_data[3];
bool cCtrl = cmd.m_data[4];
int8_t c = cmd.m_data[5];
if (bCtrl)
b = vox.getCtrlValue(b);
else
b = m_variables[b];
if (cCtrl)
c = vox.getCtrlValue(c);
else
c = m_variables[c];
if (aCtrl)
vox.setCtrlValue(a, b * c);
else
m_variables[a] = b * c;
break;
}
case Op::DivVars:
{
bool aCtrl = cmd.m_data[0];
int8_t a = cmd.m_data[1];
bool bCtrl = cmd.m_data[2];
int8_t b = cmd.m_data[3];
bool cCtrl = cmd.m_data[4];
int8_t c = cmd.m_data[5];
if (bCtrl)
b = vox.getCtrlValue(b);
else
b = m_variables[b];
if (cCtrl)
c = vox.getCtrlValue(c);
else
c = m_variables[c];
if (aCtrl)
vox.setCtrlValue(a, b / c);
else
m_variables[a] = b / c;
break;
}
case Op::AddIVars:
{
bool aCtrl = cmd.m_data[0];
int8_t a = cmd.m_data[1];
bool bCtrl = cmd.m_data[2];
int8_t b = cmd.m_data[3];
int16_t imm = *reinterpret_cast<int16_t*>(&cmd.m_data[4]);
if (bCtrl)
b = vox.getCtrlValue(b);
else
b = m_variables[b];
if (aCtrl)
vox.setCtrlValue(a, b + imm);
else
m_variables[a] = b + imm;
break;
}
case Op::IfEqual:
{
bool aCtrl = cmd.m_data[0];
int8_t a = cmd.m_data[1];
bool bCtrl = cmd.m_data[2];
int8_t b = cmd.m_data[3];
bool lnot = cmd.m_data[4];
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
if (aCtrl)
a = vox.getCtrlValue(a);
else
a = m_variables[a];
if (bCtrl)
b = vox.getCtrlValue(b);
else
b = m_variables[b];
if ((a == b) ^ lnot)
m_pc.back().second = macroStep;
break;
}
case Op::IfLess:
{
bool aCtrl = cmd.m_data[0];
int8_t a = cmd.m_data[1];
bool bCtrl = cmd.m_data[2];
int8_t b = cmd.m_data[3];
bool lnot = cmd.m_data[4];
int16_t macroStep = *reinterpret_cast<int16_t*>(&cmd.m_data[5]);
if (aCtrl)
a = vox.getCtrlValue(a);
else
a = m_variables[a];
if (bCtrl)
b = vox.getCtrlValue(b);
else
b = m_variables[b];
if ((a < b) ^ lnot)
m_pc.back().second = macroStep;
break;
}
default:
break;
}
}
m_execTime += dt;
return false;
}
void SoundMacroState::keyoffNotify(Voice& vox)
{
m_keyoff = true;
if (m_inWait && m_keyoffWait)
m_inWait = false;
if (m_keyoffTrap.macroId.id != 0xff)
{
if (m_keyoffTrap.macroId == m_header.m_macroId)
m_pc.back().second = m_keyoffTrap.macroStep;
else
vox.loadSoundMacro(m_keyoffTrap.macroId, m_keyoffTrap.macroStep);
}
}
void SoundMacroState::sampleEndNotify(Voice& vox)
{
m_sampleEnd = true;
if (m_inWait && m_sampleEndWait)
m_inWait = false;
if (m_sampleEndTrap.macroId.id != 0xff)
{
if (m_sampleEndTrap.macroId == m_header.m_macroId)
m_pc.back().second = m_sampleEndTrap.macroStep;
else
vox.loadSoundMacro(m_sampleEndTrap.macroId, m_sampleEndTrap.macroStep);
}
}
void SoundMacroState::messageNotify(Voice& vox, int32_t val)
{
m_messageQueue.push_back(val);
if (m_messageTrap.macroId.id != 0xff)
{
if (m_messageTrap.macroId == m_header.m_macroId)
m_pc.back().second = m_messageTrap.macroStep;
else
vox.loadSoundMacro(m_messageTrap.macroId, m_messageTrap.macroStep);
}
}
}