amuse/lib/Voice.cpp

1336 lines
39 KiB
C++

#include "amuse/Voice.hpp"
#include "amuse/Submix.hpp"
#include "amuse/IBackendVoice.hpp"
#include "amuse/IBackendVoiceAllocator.hpp"
#include "amuse/AudioGroup.hpp"
#include "amuse/Common.hpp"
#include "amuse/Engine.hpp"
#include "amuse/DSPCodec.h"
#include "amuse/N64MusyXCodec.h"
#include <cmath>
#include <string.h>
namespace amuse
{
void Voice::_destroy()
{
Entity::_destroy();
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->_destroy();
}
Voice::~Voice()
{
// fprintf(stderr, "DEALLOC %d\n", m_vid);
}
Voice::Voice(Engine& engine, const AudioGroup& group, int groupId, int vid, bool emitter, std::weak_ptr<Studio> studio)
: Entity(engine, group, groupId), m_vid(vid), m_emitter(emitter), m_studio(studio)
{
// fprintf(stderr, "ALLOC %d\n", m_vid);
}
Voice::Voice(Engine& engine, const AudioGroup& group, int groupId, ObjectId oid, int vid, bool emitter,
std::weak_ptr<Studio> studio)
: Entity(engine, group, groupId, oid), m_vid(vid), m_emitter(emitter), m_studio(studio)
{
// fprintf(stderr, "ALLOC %d\n", m_vid);
}
void Voice::_macroSampleEnd()
{
if (m_sampleEndTrap.macroId != 0xffff)
{
if (m_sampleEndTrap.macroId == m_state.m_header.m_macroId)
{
m_state.m_pc.back().second = SoundMacroState::_assertPC(m_sampleEndTrap.macroStep,
m_state.m_header.m_size);
m_state.m_inWait = false;
}
else
loadSoundObject(m_sampleEndTrap.macroId, m_sampleEndTrap.macroStep, m_state.m_ticksPerSec,
m_state.m_initKey, m_state.m_initVel, m_state.m_initMod);
}
else
m_state.sampleEndNotify(*this);
}
bool Voice::_checkSamplePos(bool& looped)
{
looped = false;
if (!m_curSample)
return true;
if (m_curSamplePos >= m_lastSamplePos)
{
if (m_curSample->first.m_loopLengthSamples)
{
/* Turn over looped sample */
m_curSamplePos = m_curSample->first.m_loopStartSample;
if (m_curFormat == SampleFormat::DSP)
{
m_prev1 = m_curSample->second.dsp.m_hist1;
m_prev2 = m_curSample->second.dsp.m_hist2;
}
looped = true;
}
else
{
/* Notify sample end */
_macroSampleEnd();
m_curSample = nullptr;
return true;
}
}
/* Looped samples issue sample end when ADSR envelope complete */
if (m_volAdsr.isComplete())
{
_macroSampleEnd();
m_curSample = nullptr;
return true;
}
return false;
}
void Voice::_doKeyOff()
{
if (m_state.m_inWait && m_state.m_keyoffWait)
{
if (m_volAdsr.isAdsrSet() || m_state.m_useAdsrControllers)
m_volAdsr.keyOff(*this);
if (m_pitchAdsr.isAdsrSet())
m_pitchAdsr.keyOff();
}
else
{
m_volAdsr.keyOff(*this);
m_pitchAdsr.keyOff();
}
m_state.keyoffNotify(*this);
}
void Voice::_setTotalPitch(int32_t cents, bool slew)
{
// fprintf(stderr, "PITCH %d %d \n", cents, slew);
int32_t interval = cents - m_curSample->first.m_pitch * 100;
double ratio = std::exp2(interval / 1200.0) * m_dopplerRatio;
m_sampleRate = m_curSample->first.m_sampleRate * ratio;
m_backendVoice->setPitchRatio(ratio, slew);
}
bool Voice::_isRecursivelyDead()
{
if (m_voxState != VoiceState::Dead)
return false;
for (std::shared_ptr<Voice>& vox : m_childVoices)
if (!vox->_isRecursivelyDead())
return false;
return true;
}
void Voice::_bringOutYourDead()
{
for (auto it = m_childVoices.begin(); it != m_childVoices.end();)
{
Voice* vox = it->get();
vox->_bringOutYourDead();
if (vox->_isRecursivelyDead())
{
it = _destroyVoice(it);
continue;
}
++it;
}
}
std::shared_ptr<Voice> Voice::_findVoice(int vid, std::weak_ptr<Voice> thisPtr)
{
if (m_vid == vid)
return thisPtr.lock();
for (std::shared_ptr<Voice>& vox : m_childVoices)
{
std::shared_ptr<Voice> ret = vox->_findVoice(vid, vox);
if (ret)
return ret;
}
return {};
}
std::unique_ptr<int8_t[]>& Voice::_ensureCtrlVals()
{
if (m_ctrlValsSelf)
return m_ctrlValsSelf;
m_ctrlValsSelf.reset(new int8_t[128]);
memset(m_ctrlValsSelf.get(), 0, 128);
return m_ctrlValsSelf;
}
std::list<std::shared_ptr<Voice>>::iterator Voice::_allocateVoice(double sampleRate, bool dynamicPitch)
{
auto it = m_childVoices.emplace(
m_childVoices.end(), new Voice(m_engine, m_audioGroup, m_groupId, m_engine.m_nextVid++, m_emitter, m_studio));
m_childVoices.back()->m_backendVoice =
m_engine.getBackend().allocateVoice(*m_childVoices.back(), sampleRate, dynamicPitch);
return it;
}
std::list<std::shared_ptr<Voice>>::iterator Voice::_destroyVoice(std::list<std::shared_ptr<Voice>>::iterator it)
{
if ((*it)->m_destroyed)
return m_childVoices.begin();
(*it)->_destroy();
return m_childVoices.erase(it);
}
template <typename T>
static T ApplyVolume(float vol, T samp)
{
return samp * vol;
}
void Voice::_procSamplePre(int16_t& samp)
{
double dt;
/* Block linearized will use a larger `dt` for amplitude sampling;
* significantly reducing the processing expense */
switch (m_engine.m_ampMode)
{
case AmplitudeMode::PerSample:
m_voiceSamples += 1;
dt = 1.0 / m_sampleRate;
break;
case AmplitudeMode::BlockLinearized:
{
uint32_t rem = m_voiceSamples % 160;
m_voiceSamples += 1;
dt = m_sampleRate * 160;
if (rem != 0)
{
/* Lerp within 160-sample block */
float t = rem / 160.f;
float l = clamp(0.f, m_lastLevel * (1.f - t) + m_nextLevel * t, 1.f);
/* Apply total volume to sample using decibel scale */
samp = ApplyVolume(l * m_engine.m_masterVolume, samp);
return;
}
dt = 160.0 / m_sampleRate;
break;
}
}
m_voiceTime += dt;
/* Process active envelope */
if (m_envelopeTime >= 0.0)
{
m_envelopeTime += dt;
float start = m_envelopeStart;
float end = m_envelopeEnd;
float t = clamp(0.f, float(m_envelopeTime / m_envelopeDur), 1.f);
if (m_envelopeCurve)
t = (*m_envelopeCurve)[int(t * 127.f)] / 127.f;
m_curVol = clamp(0.f, (start * (1.0f - t)) + (end * t), 1.f);
// printf("%d %f\n", m_vid, m_curVol);
/* Done with envelope */
if (m_envelopeTime > m_envelopeDur)
m_envelopeTime = -1.f;
}
/* Dynamically evaluate per-sample SoundMacro parameters */
/* Process user volume slew */
if (m_engine.m_ampMode == AmplitudeMode::PerSample)
{
if (m_targetUserVol != m_curUserVol)
{
float samplesPer5Ms = m_sampleRate * 5.f / 1000.f;
if (samplesPer5Ms > 1.f)
{
float adjRate = 1.f / samplesPer5Ms;
if (m_targetUserVol < m_curUserVol)
{
m_curUserVol -= adjRate;
if (m_targetUserVol > m_curUserVol)
m_curUserVol = m_targetUserVol;
}
else
{
m_curUserVol += adjRate;
if (m_targetUserVol < m_curUserVol)
m_curUserVol = m_targetUserVol;
}
}
else
m_curUserVol = m_targetUserVol;
}
}
else
m_curUserVol = m_targetUserVol;
/* Factor in ADSR envelope state */
float adsr = m_volAdsr.advance(dt, *this);
m_lastLevel = m_nextLevel;
m_nextLevel = m_curUserVol * m_curVol * adsr * (m_state.m_curVel / 127.f);
/* Apply tremolo */
if (m_state.m_tremoloSel && (m_tremoloScale || m_tremoloModScale))
{
float t = m_state.m_tremoloSel.evaluate(m_voiceTime, *this, m_state) / 2.f;
if (m_tremoloScale && m_tremoloModScale)
{
float fac = (1.0f - t) + (m_tremoloScale * t);
float modT = m_state.m_modWheelSel ? (m_state.m_modWheelSel.evaluate(m_voiceTime, *this, m_state) / 2.f)
: (getCtrlValue(1) / 127.f);
float modFac = (1.0f - modT) + (m_tremoloModScale * modT);
m_nextLevel *= fac * modFac;
}
else if (m_tremoloScale)
{
float fac = (1.0f - t) + (m_tremoloScale * t);
m_nextLevel *= fac;
}
else if (m_tremoloModScale)
{
float modT = m_state.m_modWheelSel ? (m_state.m_modWheelSel.evaluate(m_voiceTime, *this, m_state) / 2.f)
: (getCtrlValue(1) / 127.f);
float modFac = (1.0f - modT) + (m_tremoloModScale * modT);
m_nextLevel *= modFac;
}
}
m_nextLevel = clamp(0.f, m_nextLevel, 1.f);
/* Apply total volume to sample using decibel scale */
samp = ApplyVolume(m_nextLevel * m_engine.m_masterVolume, samp);
}
template <typename T>
T Voice::_procSampleMaster(double time, T samp)
{
float evalVol = m_state.m_volumeSel ? (m_state.m_volumeSel.evaluate(time, *this, m_state) / 2.f) : 1.f;
return ApplyVolume(clamp(0.f, evalVol, 1.f), samp);
}
template <typename T>
T Voice::_procSampleAuxA(double time, T samp)
{
float evalVol = m_state.m_volumeSel ? (m_state.m_volumeSel.evaluate(time, *this, m_state) / 2.f) : 1.f;
evalVol *= m_state.m_reverbSel ? (m_state.m_reverbSel.evaluate(time, *this, m_state) / 2.f) : m_curReverbVol;
evalVol += m_state.m_preAuxASel ? (m_state.m_preAuxASel.evaluate(time, *this, m_state) / 2.f) : 0.f;
return ApplyVolume(clamp(0.f, evalVol, 1.f), samp);
}
template <typename T>
T Voice::_procSampleAuxB(double time, T samp)
{
float evalVol = m_state.m_volumeSel ? (m_state.m_volumeSel.evaluate(time, *this, m_state) / 2.f) : 1.f;
evalVol *= m_state.m_postAuxB ? (m_state.m_postAuxB.evaluate(time, *this, m_state) / 2.f) : m_curAuxBVol;
evalVol += m_state.m_preAuxBSel ? (m_state.m_preAuxBSel.evaluate(time, *this, m_state) / 2.f) : 0.f;
return ApplyVolume(clamp(0.f, evalVol, 1.f), samp);
}
uint32_t Voice::_GetBlockSampleCount(SampleFormat fmt)
{
switch (fmt)
{
default:
return 1;
case Voice::SampleFormat::DSP:
return 14;
case Voice::SampleFormat::N64:
return 64;
}
}
void Voice::preSupplyAudio(double dt)
{
/* Process SoundMacro; bootstrapping sample if needed */
bool dead = m_state.advance(*this, dt);
/* Process per-block evaluators here */
if (m_state.m_pedalSel)
{
bool pedal = m_state.m_pedalSel.evaluate(m_voiceTime, *this, m_state) >= 1.f;
if (pedal != m_sustained)
setPedal(pedal);
}
bool panDirty = false;
if (m_state.m_panSel)
{
float evalPan = m_state.m_panSel.evaluate(m_voiceTime, *this, m_state);
if (evalPan != m_curPan)
{
m_curPan = evalPan;
panDirty = true;
}
}
if (m_state.m_spanSel)
{
float evalSpan = m_state.m_spanSel.evaluate(m_voiceTime, *this, m_state);
if (evalSpan != m_curSpan)
{
m_curSpan = evalSpan;
panDirty = true;
}
}
if (panDirty)
_setPan(m_curPan);
if (m_state.m_pitchWheelSel)
_setPitchWheel(m_state.m_pitchWheelSel.evaluate(m_voiceTime, *this, m_state));
/* Process active pan-sweep */
bool refresh = false;
if (m_panningTime >= 0.f)
{
m_panningTime += dt;
float start = (m_panPos - 64) / 64.f;
float end = (m_panPos + m_panWidth - 64) / 64.f;
float t = clamp(0.f, m_panningTime / m_panningDur, 1.f);
_setPan((start * (1.0f - t)) + (end * t));
refresh = true;
/* Done with panning */
if (m_panningTime > m_panningDur)
m_panningTime = -1.f;
}
/* Process active span-sweep */
if (m_spanningTime >= 0.f)
{
m_spanningTime += dt;
float start = (m_spanPos - 64) / 64.f;
float end = (m_spanPos + m_spanWidth - 64) / 64.f;
float t = clamp(0.f, m_spanningTime / m_spanningDur, 1.f);
_setSurroundPan((start * (1.0f - t)) + (end * t));
refresh = true;
/* Done with spanning */
if (m_spanningTime > m_spanningDur)
m_spanningTime = -1.f;
}
/* Calculate total pitch */
int32_t newPitch = m_curPitch;
refresh |= m_pitchDirty;
m_pitchDirty = false;
if (m_portamentoTime >= 0.f)
{
m_portamentoTime += dt;
float t = clamp(0.f, m_portamentoTime / m_state.m_portamentoTime, 1.f);
newPitch = (m_curPitch * (1.0f - t)) + (m_portamentoTarget * t);
refresh = true;
/* Done with portamento */
if (m_portamentoTime > m_state.m_portamentoTime)
{
m_portamentoTime = -1.f;
m_curPitch = m_portamentoTarget;
}
}
if (m_pitchEnv)
{
newPitch *= m_pitchAdsr.advance(dt);
refresh = true;
}
/* Process pitch sweep 1 */
if (m_pitchSweep1It < m_pitchSweep1Times)
{
++m_pitchSweep1It;
m_pitchSweep1 = m_pitchSweep1Add * m_pitchSweep1It / m_pitchSweep1Times;
refresh = true;
}
/* Process pitch sweep 2 */
if (m_pitchSweep2It < m_pitchSweep2Times)
{
++m_pitchSweep2It;
m_pitchSweep2 = m_pitchSweep2Add * m_pitchSweep2It / m_pitchSweep2Times;
refresh = true;
}
if (m_curSample && refresh)
{
_setTotalPitch(newPitch + m_pitchSweep1 + m_pitchSweep2 + m_pitchWheelVal, m_needsSlew);
m_needsSlew = true;
}
if (dead && (!m_curSample || m_voxState == VoiceState::KeyOff) && m_sampleEndTrap.macroId == 0xffff &&
m_messageTrap.macroId == 0xffff && (!m_curSample || (m_curSample && m_volAdsr.isComplete())))
{
m_voxState = VoiceState::Dead;
m_backendVoice->stop();
}
}
size_t Voice::supplyAudio(size_t samples, int16_t* data)
{
uint32_t samplesRem = samples;
if (m_curSample)
{
uint32_t blockSampleCount = _GetBlockSampleCount(m_curFormat);
uint32_t block;
bool looped = true;
while (looped && samplesRem)
{
block = m_curSamplePos / blockSampleCount;
uint32_t rem = m_curSamplePos % blockSampleCount;
if (rem)
{
uint32_t remCount = std::min(samplesRem, m_lastSamplePos - block * blockSampleCount);
uint32_t decSamples;
switch (m_curFormat)
{
case SampleFormat::DSP:
{
decSamples =
DSPDecompressFrameRanged(data, m_curSampleData + 8 * block, m_curSample->second.dsp.m_coefs,
&m_prev1, &m_prev2, rem, remCount);
break;
}
case SampleFormat::N64:
{
decSamples = N64MusyXDecompressFrameRanged(data, m_curSampleData + 256 + 40 * block,
m_curSample->second.vadpcm.m_coefs, rem, remCount);
break;
}
case SampleFormat::PCM:
{
const int16_t* pcm = reinterpret_cast<const int16_t*>(m_curSampleData);
remCount = std::min(samplesRem, m_lastSamplePos - m_curSamplePos);
for (uint32_t i = 0; i < remCount; ++i)
data[i] = SBig(pcm[m_curSamplePos + i]);
decSamples = remCount;
break;
}
case SampleFormat::PCM_PC:
{
const int16_t* pcm = reinterpret_cast<const int16_t*>(m_curSampleData);
remCount = std::min(samplesRem, m_lastSamplePos - m_curSamplePos);
memmove(data, pcm + m_curSamplePos, remCount * sizeof(int16_t));
decSamples = remCount;
break;
}
default:
memset(data, 0, sizeof(int16_t) * samples);
return samples;
}
/* Per-sample processing */
for (uint32_t i = 0; i < decSamples; ++i)
{
++m_curSamplePos;
_procSamplePre(data[i]);
}
samplesRem -= decSamples;
data += decSamples;
}
if (_checkSamplePos(looped))
{
if (samplesRem)
memset(data, 0, sizeof(int16_t) * samplesRem);
return samples;
}
if (looped)
continue;
while (samplesRem)
{
block = m_curSamplePos / blockSampleCount;
uint32_t remCount = std::min(samplesRem, m_lastSamplePos - block * blockSampleCount);
uint32_t decSamples;
switch (m_curFormat)
{
case SampleFormat::DSP:
{
decSamples = DSPDecompressFrame(data, m_curSampleData + 8 * block, m_curSample->second.dsp.m_coefs,
&m_prev1, &m_prev2, remCount);
break;
}
case SampleFormat::N64:
{
decSamples = N64MusyXDecompressFrame(data, m_curSampleData + 256 + 40 * block,
m_curSample->second.vadpcm.m_coefs, remCount);
break;
}
case SampleFormat::PCM:
{
const int16_t* pcm = reinterpret_cast<const int16_t*>(m_curSampleData);
remCount = std::min(samplesRem, m_lastSamplePos - m_curSamplePos);
for (uint32_t i = 0; i < remCount; ++i)
data[i] = SBig(pcm[m_curSamplePos + i]);
decSamples = remCount;
break;
}
case SampleFormat::PCM_PC:
{
const int16_t* pcm = reinterpret_cast<const int16_t*>(m_curSampleData);
remCount = std::min(samplesRem, m_lastSamplePos - m_curSamplePos);
memmove(data, pcm + m_curSamplePos, remCount * sizeof(int16_t));
decSamples = remCount;
break;
}
default:
memset(data, 0, sizeof(int16_t) * samples);
return samples;
}
/* Per-sample processing */
for (uint32_t i = 0; i < decSamples; ++i)
{
++m_curSamplePos;
_procSamplePre(data[i]);
}
samplesRem -= decSamples;
data += decSamples;
if (_checkSamplePos(looped))
{
if (samplesRem)
memset(data, 0, sizeof(int16_t) * samplesRem);
return samples;
}
if (looped)
break;
}
}
}
else
memset(data, 0, sizeof(int16_t) * samples);
if (m_voxState == VoiceState::Dead)
m_curSample = nullptr;
return samples;
}
void Voice::routeAudio(size_t frames, double dt, int busId, int16_t* in, int16_t* out)
{
dt /= double(frames);
switch (busId)
{
case 0:
default:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleMaster(dt * i + m_voiceTime, in[i]);
break;
}
case 1:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleAuxA(dt * i + m_voiceTime, in[i]);
break;
}
case 2:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleAuxB(dt * i + m_voiceTime, in[i]);
break;
}
}
}
void Voice::routeAudio(size_t frames, double dt, int busId, int32_t* in, int32_t* out)
{
dt /= double(frames);
switch (busId)
{
case 0:
default:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleMaster(dt * i + m_voiceTime, in[i]);
break;
}
case 1:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleAuxA(dt * i + m_voiceTime, in[i]);
break;
}
case 2:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleAuxB(dt * i + m_voiceTime, in[i]);
break;
}
}
}
void Voice::routeAudio(size_t frames, double dt, int busId, float* in, float* out)
{
dt /= double(frames);
switch (busId)
{
case 0:
default:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleMaster(dt * i + m_voiceTime, in[i]);
break;
}
case 1:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleAuxA(dt * i + m_voiceTime, in[i]);
break;
}
case 2:
{
for (uint32_t i = 0; i < frames; ++i)
out[i] = _procSampleAuxB(dt * i + m_voiceTime, in[i]);
break;
}
}
}
int Voice::maxVid() const
{
int maxVid = m_vid;
for (const std::shared_ptr<Voice>& vox : m_childVoices)
maxVid = std::max(maxVid, vox->maxVid());
return maxVid;
}
std::shared_ptr<Voice> Voice::_startChildMacro(ObjectId macroId, int macroStep, double ticksPerSec, uint8_t midiKey,
uint8_t midiVel, uint8_t midiMod, bool pushPc)
{
std::list<std::shared_ptr<Voice>>::iterator vox = _allocateVoice(NativeSampleRate, true);
if (!(*vox)->loadSoundObject(macroId, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc))
{
_destroyVoice(vox);
return {};
}
(*vox)->setVolume(m_targetUserVol);
(*vox)->setPan(m_userPan);
(*vox)->setSurroundPan(m_userSpan);
return *vox;
}
std::shared_ptr<Voice> Voice::startChildMacro(int8_t addNote, ObjectId macroId, int macroStep)
{
return _startChildMacro(macroId, macroStep, 1000.0, m_state.m_initKey + addNote, m_state.m_initVel,
m_state.m_initMod);
}
bool Voice::_loadSoundMacro(const unsigned char* macroData, int macroStep, double ticksPerSec, uint8_t midiKey,
uint8_t midiVel, uint8_t midiMod, bool pushPc)
{
if (m_state.m_pc.empty())
m_state.initialize(macroData, macroStep, ticksPerSec, midiKey, midiVel, midiMod,
m_audioGroup.getDataFormat() != DataFormat::PC);
else
{
if (!pushPc)
m_state.m_pc.clear();
const SoundMacroState::Header& header = reinterpret_cast<const SoundMacroState::Header&>(macroData);
const bool swapData = m_audioGroup.getDataFormat() != DataFormat::PC;
m_state.m_pc.push_back({macroData, SoundMacroState::_assertPC(macroStep, header.m_size, swapData)});
m_state.m_header = header;
if (swapData)
m_state.m_header.swapBig();
}
m_voxState = VoiceState::Playing;
m_backendVoice->start();
return true;
}
bool Voice::_loadKeymap(const Keymap* keymap, int macroStep, double ticksPerSec, uint8_t midiKey, uint8_t midiVel,
uint8_t midiMod, bool pushPc)
{
const Keymap& km = keymap[midiKey];
ObjectId oid = (m_audioGroup.getDataFormat() == DataFormat::PC) ? km.objectId : SBig(km.objectId);
midiKey += km.transpose;
bool ret = loadSoundObject(oid, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc);
m_curVol = 1.f;
_setPan((km.pan - 64) / 64.f);
_setSurroundPan(-1.f);
return ret;
}
bool Voice::_loadLayer(const std::vector<const LayerMapping*>& layer, int macroStep, double ticksPerSec,
uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc)
{
bool ret = false;
for (const LayerMapping* mapping : layer)
{
if (midiKey >= mapping->keyLo && midiKey <= mapping->keyHi)
{
ObjectId oid =
(m_audioGroup.getDataFormat() == DataFormat::PC) ? mapping->objectId : SBig(mapping->objectId);
uint8_t mappingKey = midiKey + mapping->transpose;
if (m_voxState != VoiceState::Playing)
{
ret |= loadSoundObject(oid, macroStep, ticksPerSec, mappingKey, midiVel, midiMod, pushPc);
m_curVol = mapping->volume / 127.f;
_setPan((mapping->pan - 64) / 64.f);
_setSurroundPan((mapping->span - 64) / 64.f);
}
else
{
std::shared_ptr<Voice> vox =
_startChildMacro(oid, macroStep, ticksPerSec, mappingKey, midiVel, midiMod, pushPc);
if (vox)
{
vox->m_curVol = mapping->volume / 127.f;
vox->_setPan((mapping->pan - 64) / 64.f);
vox->_setSurroundPan((mapping->span - 64) / 64.f);
ret = true;
}
}
}
}
return ret;
}
bool Voice::loadSoundObject(ObjectId objectId, int macroStep, double ticksPerSec, uint8_t midiKey, uint8_t midiVel,
uint8_t midiMod, bool pushPc)
{
const unsigned char* macroData = m_audioGroup.getPool().soundMacro(objectId);
if (macroData)
return _loadSoundMacro(macroData, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc);
const Keymap* keymap = m_audioGroup.getPool().keymap(objectId);
if (keymap)
return _loadKeymap(keymap, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc);
const std::vector<const LayerMapping*>* layer = m_audioGroup.getPool().layer(objectId);
if (layer)
return _loadLayer(*layer, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc);
return false;
}
void Voice::_macroKeyOff()
{
if (m_voxState == VoiceState::Playing)
{
if (m_sustained)
m_sustainKeyOff = true;
else
_doKeyOff();
m_voxState = VoiceState::KeyOff;
}
}
void Voice::keyOff()
{
if (m_keyoffTrap.macroId != 0xffff)
{
if (m_keyoffTrap.macroId == m_state.m_header.m_macroId)
{
m_state.m_pc.back().second = SoundMacroState::_assertPC(m_keyoffTrap.macroStep,
m_state.m_header.m_size);
m_state.m_inWait = false;
}
else
loadSoundObject(m_keyoffTrap.macroId, m_keyoffTrap.macroStep, m_state.m_ticksPerSec, m_state.m_initKey,
m_state.m_initVel, m_state.m_initMod);
}
else
_macroKeyOff();
for (const std::shared_ptr<Voice>& vox : m_childVoices)
vox->keyOff();
}
void Voice::message(int32_t val)
{
m_messageQueue.push_back(val);
if (m_messageTrap.macroId != 0xffff)
{
if (m_messageTrap.macroId == m_state.m_header.m_macroId)
m_state.m_pc.back().second = SoundMacroState::_assertPC(m_messageTrap.macroStep,
m_state.m_header.m_size);
else
loadSoundObject(m_messageTrap.macroId, m_messageTrap.macroStep, m_state.m_ticksPerSec, m_state.m_initKey,
m_state.m_initVel, m_state.m_initMod);
}
}
void Voice::startSample(int16_t sampId, int32_t offset)
{
m_curSample = m_audioGroup.getSample(sampId);
if (m_curSample)
{
m_sampleRate = m_curSample->first.m_sampleRate;
m_curPitch = m_curSample->first.m_pitch;
m_pitchDirty = true;
_setPitchWheel(m_curPitchWheel);
m_backendVoice->resetSampleRate(m_curSample->first.m_sampleRate);
m_needsSlew = false;
int32_t numSamples = m_curSample->first.m_numSamples & 0xffffff;
if (offset)
{
if (m_curSample->first.m_loopLengthSamples)
{
if (offset > int32_t(m_curSample->first.m_loopStartSample))
offset =
((offset - m_curSample->first.m_loopStartSample) % m_curSample->first.m_loopLengthSamples) +
m_curSample->first.m_loopStartSample;
}
else
offset = clamp(0, offset, numSamples);
}
m_curSamplePos = offset;
m_curSampleData = m_audioGroup.getSampleData(m_curSample->first.m_sampleOff);
m_prev1 = 0;
m_prev2 = 0;
if (m_audioGroup.getDataFormat() == DataFormat::PC)
m_curFormat = SampleFormat::PCM_PC;
else
m_curFormat = SampleFormat(m_curSample->first.m_numSamples >> 24);
if (m_curFormat == SampleFormat::DSP_DRUM)
m_curFormat = SampleFormat::DSP;
m_lastSamplePos = m_curSample->first.m_loopLengthSamples
? (m_curSample->first.m_loopStartSample + m_curSample->first.m_loopLengthSamples)
: numSamples;
bool looped;
_checkSamplePos(looped);
/* Seek DSPADPCM state if needed */
if (m_curSample && m_curSamplePos && m_curFormat == SampleFormat::DSP)
{
uint32_t block = m_curSamplePos / 14;
uint32_t rem = m_curSamplePos % 14;
for (uint32_t b = 0; b < block; ++b)
DSPDecompressFrameStateOnly(m_curSampleData + 8 * b, m_curSample->second.dsp.m_coefs, &m_prev1,
&m_prev2, 14);
if (rem)
DSPDecompressFrameStateOnly(m_curSampleData + 8 * block, m_curSample->second.dsp.m_coefs, &m_prev1,
&m_prev2, rem);
}
}
}
void Voice::stopSample() { m_curSample = nullptr; }
void Voice::setVolume(float vol)
{
m_targetUserVol = clamp(0.f, vol, 1.f);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setVolume(vol);
}
void Voice::_panLaw(float coefs[8], float frontPan, float backPan, float totalSpan) const
{
/* -3dB panning law for various channel configs */
switch (m_engine.m_channelSet)
{
case AudioChannelSet::Stereo:
default:
/* Left */
coefs[0] = -frontPan * 0.5f + 0.5f;
/* Right */
coefs[1] = frontPan * 0.5f + 0.5f;
break;
case AudioChannelSet::Quad:
/* Left */
coefs[0] = -frontPan * 0.5f + 0.5f;
coefs[0] *= -totalSpan * 0.5f + 0.5f;
/* Right */
coefs[1] = frontPan * 0.5f + 0.5f;
coefs[1] *= -totalSpan * 0.5f + 0.5f;
/* Back Left */
coefs[2] = -backPan * 0.5f + 0.5f;
coefs[2] *= totalSpan * 0.5f + 0.5f;
/* Back Right */
coefs[3] = backPan * 0.5f + 0.5f;
coefs[3] *= totalSpan * 0.5f + 0.5f;
break;
case AudioChannelSet::Surround51:
/* Left */
coefs[0] = (frontPan <= 0.f) ? -frontPan : 0.f;
coefs[0] *= -totalSpan * 0.5f + 0.5f;
/* Right */
coefs[1] = (frontPan >= 0.f) ? frontPan : 0.f;
coefs[1] *= -totalSpan * 0.5f + 0.5f;
/* Back Left */
coefs[2] = -backPan * 0.5f + 0.5f;
coefs[2] *= totalSpan * 0.5f + 0.5f;
/* Back Right */
coefs[3] = backPan * 0.5f + 0.5f;
coefs[3] *= totalSpan * 0.5f + 0.5f;
/* Center */
coefs[4] = 1.f - std::fabs(frontPan);
coefs[4] *= -totalSpan * 0.5f + 0.5f;
/* LFE */
coefs[5] = 0.35f;
break;
case AudioChannelSet::Surround71:
/* Left */
coefs[0] = (frontPan <= 0.f) ? -frontPan : 0.f;
coefs[0] *= (totalSpan <= 0.f) ? -totalSpan : 0.f;
/* Right */
coefs[1] = (frontPan >= 0.f) ? frontPan : 0.f;
coefs[1] *= (totalSpan <= 0.f) ? -totalSpan : 0.f;
/* Back Left */
coefs[2] = -backPan * 0.5f + 0.5f;
coefs[2] *= (totalSpan >= 0.f) ? totalSpan : 0.f;
/* Back Right */
coefs[3] = backPan * 0.5f + 0.5f;
coefs[3] *= (totalSpan >= 0.f) ? totalSpan : 0.f;
/* Center */
coefs[4] = 1.f - std::fabs(frontPan);
coefs[4] *= (totalSpan <= 0.f) ? -totalSpan : 0.f;
/* LFE */
coefs[5] = 0.35f;
/* Side Left */
coefs[6] = (backPan <= 0.f) ? -backPan : 0.f;
coefs[6] *= 1.f - std::fabs(totalSpan);
/* Side Right */
coefs[7] = (backPan >= 0.f) ? backPan : 0.f;
coefs[7] *= 1.f - std::fabs(totalSpan);
break;
}
}
void Voice::_setPan(float pan)
{
if (m_emitter)
return;
m_curPan = clamp(-1.f, pan, 1.f);
float totalPan = clamp(-1.f, m_curPan + m_userPan, 1.f);
float totalSpan = clamp(-1.f, m_curSpan + m_userSpan, 1.f);
float coefs[8] = {};
_panLaw(coefs, totalPan, totalPan, totalSpan);
_setChannelCoefs(coefs);
}
void Voice::setPan(float pan)
{
m_userPan = pan;
_setPan(m_curPan);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setPan(pan);
}
void Voice::_setSurroundPan(float span)
{
m_curSpan = clamp(-1.f, span, 1.f);
_setPan(m_curPan);
}
void Voice::setSurroundPan(float span)
{
m_userSpan = span;
_setSurroundPan(m_curSpan);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setSurroundPan(span);
}
void Voice::_setChannelCoefs(const float coefs[8])
{
m_backendVoice->setChannelLevels(m_studio->getMaster().m_backendSubmix.get(), coefs, true);
m_backendVoice->setChannelLevels(m_studio->getAuxA().m_backendSubmix.get(), coefs, true);
m_backendVoice->setChannelLevels(m_studio->getAuxB().m_backendSubmix.get(), coefs, true);
}
void Voice::setChannelCoefs(const float coefs[8])
{
_setChannelCoefs(coefs);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setChannelCoefs(coefs);
}
void Voice::startEnvelope(double dur, float vol, const Curve* envCurve)
{
m_envelopeTime = 0.f;
m_envelopeDur = dur;
m_envelopeStart = clamp(0.f, m_curVol, 1.f);
m_envelopeEnd = clamp(0.f, vol, 1.f);
m_envelopeCurve = envCurve;
}
void Voice::startFadeIn(double dur, float vol, const Curve* envCurve)
{
m_envelopeTime = 0.f;
m_envelopeDur = dur;
m_envelopeStart = 0.f;
m_envelopeEnd = clamp(0.f, vol, 1.f);
m_envelopeCurve = envCurve;
}
void Voice::startPanning(double dur, uint8_t panPos, int8_t panWidth)
{
m_panningTime = 0.f;
m_panningDur = dur;
m_panPos = panPos;
m_panWidth = panWidth;
}
void Voice::startSpanning(double dur, uint8_t spanPos, int8_t spanWidth)
{
m_spanningTime = 0.f;
m_spanningDur = dur;
m_spanPos = spanPos;
m_spanWidth = spanWidth;
}
void Voice::setPitchKey(int32_t cents)
{
m_curPitch = cents;
m_pitchDirty = true;
}
void Voice::setPedal(bool pedal)
{
if (m_sustained && !pedal && m_sustainKeyOff)
{
m_sustainKeyOff = false;
_doKeyOff();
}
m_sustained = pedal;
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setPedal(pedal);
}
void Voice::setDoppler(float) {}
void Voice::setVibrato(int32_t level, int32_t modLevel, float period)
{
m_vibratoLevel = level;
m_vibratoModLevel = modLevel;
m_vibratoPeriod = period;
}
void Voice::setMod2VibratoRange(int32_t modLevel) { m_vibratoModLevel = modLevel; }
void Voice::setTremolo(float tremoloScale, float tremoloModScale)
{
m_tremoloScale = tremoloScale;
m_tremoloModScale = tremoloModScale;
}
void Voice::setPitchSweep1(uint8_t times, int16_t add)
{
m_pitchSweep1 = 0;
m_pitchSweep1It = 0;
m_pitchSweep1Times = times;
m_pitchSweep1Add = add;
}
void Voice::setPitchSweep2(uint8_t times, int16_t add)
{
m_pitchSweep2 = 0;
m_pitchSweep2It = 0;
m_pitchSweep2Times = times;
m_pitchSweep2Add = add;
}
void Voice::setReverbVol(float rvol)
{
m_curReverbVol = clamp(0.f, rvol, 1.f);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setReverbVol(rvol);
}
void Voice::setAuxBVol(float bvol)
{
m_curAuxBVol = clamp(0.f, bvol, 1.f);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setAuxBVol(bvol);
}
void Voice::setAdsr(ObjectId adsrId, bool dls)
{
if (dls)
{
const ADSRDLS* adsr = m_audioGroup.getPool().tableAsAdsrDLS(adsrId);
if (adsr)
{
m_volAdsr.reset(adsr, m_state.m_initKey, m_state.m_initVel);
if (m_voxState == VoiceState::KeyOff)
m_volAdsr.keyOff(*this);
}
}
else
{
const ADSR* adsr = m_audioGroup.getPool().tableAsAdsr(adsrId);
if (adsr)
{
m_volAdsr.reset(adsr);
if (m_voxState == VoiceState::KeyOff)
m_volAdsr.keyOff(*this);
}
}
}
void Voice::setPitchFrequency(uint32_t hz, uint16_t fine)
{
m_sampleRate = hz + fine / 65536.0;
m_backendVoice->setPitchRatio(1.0, false);
m_backendVoice->resetSampleRate(m_sampleRate);
}
void Voice::setPitchAdsr(ObjectId adsrId, int32_t cents)
{
const ADSRDLS* adsr = m_audioGroup.getPool().tableAsAdsrDLS(adsrId);
if (adsr)
{
m_pitchAdsr.reset(adsr, m_state.m_initKey, m_state.m_initVel);
m_pitchEnvRange = cents;
m_pitchEnv = true;
}
}
void Voice::_setPitchWheel(float pitchWheel)
{
if (pitchWheel > 0.f)
m_pitchWheelVal = m_pitchWheelUp * m_curPitchWheel;
else if (pitchWheel < 0.f)
m_pitchWheelVal = m_pitchWheelDown * m_curPitchWheel;
else
m_pitchWheelVal = 0;
m_pitchDirty = true;
}
void Voice::setPitchWheel(float pitchWheel)
{
m_curPitchWheel = amuse::clamp(-1.f, pitchWheel, 1.f);
_setPitchWheel(m_curPitchWheel);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setPitchWheel(pitchWheel);
}
void Voice::setPitchWheelRange(int8_t up, int8_t down)
{
m_pitchWheelUp = up * 100;
m_pitchWheelDown = down * 100;
_setPitchWheel(m_curPitchWheel);
}
void Voice::setAftertouch(uint8_t aftertouch)
{
m_curAftertouch = aftertouch;
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setAftertouch(aftertouch);
}
bool Voice::doPortamento(uint8_t newNote)
{
bool pState;
switch (m_state.m_portamentoMode)
{
case 0:
default:
pState = false;
break;
case 1:
pState = true;
break;
case 2:
pState = m_state.m_portamentoSel ? (m_state.m_portamentoSel.evaluate(m_voiceTime, *this, m_state) >= 1.f)
: (getCtrlValue(65) >= 64);
break;
}
if (!pState)
return false;
m_portamentoTime = 0.f;
m_portamentoTarget = newNote * 100;
m_state.m_initKey = newNote;
return true;
}
void Voice::_notifyCtrlChange(uint8_t ctrl, int8_t val)
{
if (ctrl == 0x40)
{
if (val >= 0x40)
setPedal(true);
else
setPedal(false);
}
else if (ctrl == 0x5b)
{
setReverbVol(val / 127.f);
}
else if (ctrl == 0x5d)
{
setAuxBVol(val / 127.f);
}
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->_notifyCtrlChange(ctrl, val);
}
size_t Voice::getTotalVoices() const
{
size_t ret = 1;
for (const std::shared_ptr<Voice>& vox : m_childVoices)
ret += vox->getTotalVoices();
return ret;
}
void Voice::kill()
{
m_voxState = VoiceState::Dead;
m_backendVoice->stop();
for (const std::shared_ptr<Voice>& vox : m_childVoices)
vox->kill();
}
}