amuse/lib/Voice.cpp

842 lines
24 KiB
C++

#include "amuse/Voice.hpp"
#include "amuse/Submix.hpp"
#include "amuse/IBackendVoice.hpp"
#include "amuse/IBackendVoiceAllocator.hpp"
#include "amuse/AudioGroup.hpp"
#include "amuse/Common.hpp"
#include "amuse/Engine.hpp"
#include "amuse/dsp.h"
#include <cmath>
#include <string.h>
namespace amuse
{
void Voice::_destroy()
{
Entity::_destroy();
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->_destroy();
}
Voice::~Voice()
{
//fprintf(stderr, "DEALLOC %d\n", m_vid);
}
Voice::Voice(Engine& engine, const AudioGroup& group, int groupId, int vid, bool emitter, Submix* smx)
: Entity(engine, group, groupId), m_vid(vid), m_emitter(emitter), m_submix(smx)
{
//fprintf(stderr, "ALLOC %d\n", m_vid);
}
Voice::Voice(Engine& engine, const AudioGroup& group, int groupId, ObjectId oid, int vid, bool emitter, Submix* smx)
: Entity(engine, group, groupId, oid), m_vid(vid), m_emitter(emitter), m_submix(smx)
{
//fprintf(stderr, "ALLOC %d\n", m_vid);
}
void Voice::_reset()
{
m_curVol = 1.f;
m_curReverbVol = 0.f;
m_curPan = 0.f;
m_curSpan = 0.f;
m_curAftertouch = 0;
m_pitchWheelUp = 6;
m_pitchWheelDown = 6;
m_pitchWheelVal = 0;
m_pitchSweep1 = 0;
m_pitchSweep1Times = 0;
m_pitchSweep2 = 0;
m_pitchSweep2Times = 0;
m_envelopeTime = -1.f;
m_panningTime = -1.f;
m_vibratoLevel = 0;
m_vibratoModLevel = 0;
m_vibratoPeriod = 0.f;
m_tremoloScale = 0.f;
m_tremoloModScale = 0.f;
m_lfoPeriods[0] = 0.f;
m_lfoPeriods[1] = 0.f;
}
void Voice::_macroSampleEnd()
{
if (m_sampleEndTrap.macroId != 0xffff)
{
if (m_sampleEndTrap.macroId == m_state.m_header.m_macroId)
{
m_state.m_pc.back().second = m_sampleEndTrap.macroStep;
m_state.m_inWait = false;
}
else
loadSoundObject(m_sampleEndTrap.macroId, m_sampleEndTrap.macroStep,
m_state.m_ticksPerSec, m_state.m_initKey,
m_state.m_initVel, m_state.m_initMod);
}
else
m_state.sampleEndNotify(*this);
}
bool Voice::_checkSamplePos()
{
if (!m_curSample)
return true;
if (m_curSamplePos >= m_lastSamplePos)
{
if (m_curSample->first.m_loopLengthSamples)
{
/* Turn over looped sample */
m_curSamplePos = m_curSample->first.m_loopStartSample;
m_prev1 = m_curSample->second.m_hist1;
m_prev2 = m_curSample->second.m_hist2;
}
else
{
/* Notify sample end */
_macroSampleEnd();
m_curSample = nullptr;
return true;
}
}
/* Looped samples issue sample end when ADSR envelope complete */
if (m_volAdsr.isComplete())
{
_macroSampleEnd();
m_curSample = nullptr;
return true;
}
return false;
}
void Voice::_doKeyOff()
{
m_volAdsr.keyOff();
m_pitchAdsr.keyOff();
m_state.keyoffNotify(*this);
}
void Voice::_setTotalPitch(int32_t cents)
{
//fprintf(stderr, "PITCH %d\n", cents);
int32_t interval = cents - m_curSample->first.m_pitch * 100;
double ratio = std::exp2(interval / 1200.0);
m_sampleRate = m_curSample->first.m_sampleRate * ratio;
m_backendVoice->setPitchRatio(ratio);
}
bool Voice::_isRecursivelyDead()
{
if (m_voxState != VoiceState::Dead)
return false;
for (std::shared_ptr<Voice>& vox : m_childVoices)
if (!vox->_isRecursivelyDead())
return false;
return true;
}
void Voice::_bringOutYourDead()
{
for (auto it = m_childVoices.begin() ; it != m_childVoices.end() ;)
{
Voice* vox = it->get();
vox->_bringOutYourDead();
if (vox->_isRecursivelyDead())
{
it = _destroyVoice(vox);
continue;
}
++it;
}
}
std::shared_ptr<Voice> Voice::_findVoice(int vid, std::weak_ptr<Voice> thisPtr)
{
if (m_vid == vid)
return thisPtr.lock();
for (std::shared_ptr<Voice>& vox : m_childVoices)
{
std::shared_ptr<Voice> ret = vox->_findVoice(vid, vox);
if (ret)
return ret;
}
return {};
}
std::unique_ptr<int8_t[]>& Voice::_ensureCtrlVals()
{
if (m_ctrlValsSelf)
return m_ctrlValsSelf;
m_ctrlValsSelf.reset(new int8_t[128]);
memset(m_ctrlValsSelf.get(), 0, 128);
return m_ctrlValsSelf;
}
std::shared_ptr<Voice> Voice::_allocateVoice(double sampleRate, bool dynamicPitch)
{
auto it = m_childVoices.emplace(m_childVoices.end(), new Voice(m_engine, m_audioGroup,
m_groupId, m_engine.m_nextVid++, m_emitter, m_submix));
m_childVoices.back()->m_backendVoice =
m_engine.getBackend().allocateVoice(*m_childVoices.back(), sampleRate, dynamicPitch);
m_childVoices.back()->m_engineIt = it;
return m_childVoices.back();
}
std::list<std::shared_ptr<Voice>>::iterator Voice::_destroyVoice(Voice* voice)
{
if (voice->m_destroyed)
return m_childVoices.begin();
voice->_destroy();
return m_childVoices.erase(voice->m_engineIt);
}
bool Voice::_advanceSample(int16_t& samp, int32_t& newPitch)
{
double dt = 1.0 / m_sampleRate;
m_voiceTime += dt;
bool refresh = false;
/* Process active envelope */
if (m_envelopeTime >= 0.0)
{
m_envelopeTime += dt;
float start = m_envelopeStart / 127.f;
float end = m_envelopeEnd / 127.f;
double t = std::max(0.0, std::min(1.0, m_envelopeTime / m_envelopeDur));
if (m_envelopeCurve)
t = (*m_envelopeCurve)[int(t*127.f)] / 127.f;
m_curVol = (start * (1.0f - t)) + (end * t);
/* Done with envelope */
if (m_envelopeTime > m_envelopeDur)
m_envelopeTime = -1.f;
}
/* Factor in ADSR envelope state */
float totalVol = m_userVol * m_curVol * m_volAdsr.nextSample(m_sampleRate) /* (m_state.m_curVel / 127.f)*/;
/* Apply tremolo */
if (m_state.m_tremoloSel && (m_tremoloScale || m_tremoloModScale))
{
float t = m_state.m_tremoloSel.evaluate(*this, m_state);
if (m_tremoloScale && m_tremoloModScale)
{
float fac = (1.0f - t) + (m_tremoloScale * t);
float modT = getModWheel() / 127.f;
float modFac = (1.0f - modT) + (m_tremoloModScale * modT);
totalVol *= fac * modFac;
}
else if (m_tremoloScale)
{
float fac = (1.0f - t) + (m_tremoloScale * t);
totalVol *= fac;
}
else if (m_tremoloModScale)
{
float modT = getModWheel() / 127.f;
float modFac = (1.0f - modT) + (m_tremoloModScale * modT);
totalVol *= modFac;
}
}
/* Multiply sample with total volume */
samp = ClampFull<int16_t>(samp * totalVol);
/* Process active pan-sweep */
if (m_panningTime >= 0.f)
{
m_panningTime += dt;
float start = (m_panPos - 64) / 64.f;
float end = (m_panPos + m_panWidth - 64) / 64.f;
float t = std::max(0.f, std::min(1.f, m_panningTime / m_panningDur));
setPan((start * (1.0f - t)) + (end * t));
refresh = true;
/* Done with panning */
if (m_panningTime > m_panningDur)
m_panningTime = -1.f;
}
/* Process active span-sweep */
if (m_spanningTime >= 0.f)
{
m_spanningTime += dt;
float start = (m_spanPos - 64) / 64.f;
float end = (m_spanPos + m_spanWidth - 64) / 64.f;
float t = std::max(0.f, std::min(1.f, m_spanningTime / m_spanningDur));
setSurroundPan((start * (1.0f - t)) + (end * t));
refresh = true;
/* Done with spanning */
if (m_spanningTime > m_spanningDur)
m_spanningTime = -1.f;
}
/* Calculate total pitch */
newPitch = m_curPitch;
refresh |= m_pitchDirty;
m_pitchDirty = false;
if (m_pitchEnv)
{
newPitch = m_curPitch * m_pitchAdsr.nextSample(m_sampleRate);
refresh = true;
}
/* Process pitch sweep 1 */
if (m_pitchSweep1Times)
{
m_pitchSweep1 += m_pitchSweep1Add;
--m_pitchSweep1Times;
refresh = true;
}
/* Process pitch sweep 2 */
if (m_pitchSweep2Times)
{
m_pitchSweep2 += m_pitchSweep2Add;
--m_pitchSweep2Times;
refresh = true;
}
/* True if backend voice needs reconfiguration before next sample */
return refresh;
}
size_t Voice::supplyAudio(size_t samples, int16_t* data)
{
uint32_t samplesRem = samples;
size_t samplesProc = 0;
bool dead = true;
/* Attempt to load stopped sample for immediate decoding */
if (!m_curSample)
{
dead = m_state.advance(*this, 0.0);
if (!dead)
{
memset(data, 0, sizeof(int16_t) * samples);
return samples;
}
}
if (m_curSample)
{
dead = m_state.advance(*this, samples / m_sampleRate);
uint32_t block = m_curSamplePos / 14;
uint32_t rem = m_curSamplePos % 14;
bool refresh = false;
int32_t curPitch = m_curPitch;
if (rem)
{
uint32_t remCount = std::min(samplesRem, m_lastSamplePos - block * 14);
uint32_t decSamples;
switch (m_curFormat)
{
case SampleFormat::DSP:
{
decSamples = DSPDecompressFrameRanged(data, m_curSampleData + 8 * block,
m_curSample->second.m_coefs,
&m_prev1, &m_prev2, rem, remCount);
break;
}
case SampleFormat::PCM:
{
const int16_t* pcm = reinterpret_cast<const int16_t*>(m_curSampleData);
remCount = std::min(samplesRem, m_lastSamplePos - m_curSamplePos);
for (uint32_t i=0 ; i<remCount ; ++i)
data[i] = SBig(pcm[m_curSamplePos+i]);
decSamples = remCount;
break;
}
default:
memset(data, 0, sizeof(int16_t) * samples);
return samples;
}
/* Per-sample processing */
for (int i=0 ; i<decSamples ; ++i)
{
++samplesProc;
++m_curSamplePos;
refresh |= _advanceSample(data[i], curPitch);
}
samplesRem -= decSamples;
data += decSamples;
}
if (_checkSamplePos())
{
if (samplesRem)
memset(data, 0, sizeof(int16_t) * samplesRem);
return samples;
}
while (samplesRem)
{
block = m_curSamplePos / 14;
uint32_t remCount = std::min(samplesRem, m_lastSamplePos - block * 14);
uint32_t decSamples;
switch (m_curFormat)
{
case SampleFormat::DSP:
{
decSamples = DSPDecompressFrame(data, m_curSampleData + 8 * block,
m_curSample->second.m_coefs,
&m_prev1, &m_prev2, remCount);
break;
}
case SampleFormat::PCM:
{
const int16_t* pcm = reinterpret_cast<const int16_t*>(m_curSampleData);
remCount = std::min(samplesRem, m_lastSamplePos - m_curSamplePos);
for (uint32_t i=0 ; i<remCount ; ++i)
data[i] = SBig(pcm[m_curSamplePos+i]);
decSamples = remCount;
break;
}
default:
memset(data, 0, sizeof(int16_t) * samples);
return samples;
}
/* Per-sample processing */
for (int i=0 ; i<decSamples ; ++i)
{
++samplesProc;
++m_curSamplePos;
refresh |= _advanceSample(data[i], curPitch);
}
samplesRem -= decSamples;
data += decSamples;
if (_checkSamplePos())
{
if (samplesRem)
memset(data, 0, sizeof(int16_t) * samplesRem);
return samples;
}
}
if (refresh)
_setTotalPitch(curPitch + m_pitchSweep1 + m_pitchSweep2 + m_pitchWheelVal);
}
else
memset(data, 0, sizeof(int16_t) * samples);
if (dead && m_voxState == VoiceState::KeyOff &&
m_sampleEndTrap.macroId == 0xffff &&
m_messageTrap.macroId == 0xffff &&
m_volAdsr.isComplete())
{
m_voxState = VoiceState::Dead;
m_backendVoice->stop();
}
return samples;
}
int Voice::maxVid() const
{
int maxVid = m_vid;
for (const std::shared_ptr<Voice>& vox : m_childVoices)
maxVid = std::max(maxVid, vox->maxVid());
return maxVid;
}
std::shared_ptr<Voice> Voice::_startChildMacro(ObjectId macroId, int macroStep, double ticksPerSec,
uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc)
{
std::shared_ptr<Voice> vox = _allocateVoice(32000.0, true);
if (!vox->loadSoundObject(macroId, macroStep, ticksPerSec, midiKey,
midiVel, midiMod, pushPc))
{
_destroyVoice(vox.get());
return {};
}
return vox;
}
std::shared_ptr<Voice> Voice::startChildMacro(int8_t addNote, ObjectId macroId, int macroStep)
{
return _startChildMacro(macroId, macroStep, 1000.0, m_state.m_initKey + addNote,
m_state.m_initVel, m_state.m_initMod);
}
bool Voice::_loadSoundMacro(const unsigned char* macroData, int macroStep, double ticksPerSec,
uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc)
{
if (m_state.m_pc.empty())
m_state.initialize(macroData, macroStep, ticksPerSec, midiKey, midiVel, midiMod);
else
{
if (!pushPc)
m_state.m_pc.clear();
m_state.m_pc.push_back({macroData, macroStep});
m_state.m_header = *reinterpret_cast<const SoundMacroState::Header*>(macroData);
m_state.m_header.swapBig();
}
m_voxState = VoiceState::Playing;
m_backendVoice->start();
return true;
}
bool Voice::_loadKeymap(const Keymap* keymap, int macroStep, double ticksPerSec,
uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc)
{
const Keymap& km = keymap[midiKey];
midiKey += km.transpose;
return loadSoundObject(SBig(km.objectId), macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc);
}
bool Voice::_loadLayer(const std::vector<const LayerMapping*>& layer, int macroStep, double ticksPerSec,
uint8_t midiKey, uint8_t midiVel, uint8_t midiMod, bool pushPc)
{
bool ret = false;
for (const LayerMapping* mapping : layer)
{
if (midiKey >= mapping->keyLo && midiKey <= mapping->keyHi)
{
uint8_t mappingKey = midiKey + mapping->transpose;
if (m_voxState != VoiceState::Playing)
ret |= loadSoundObject(SBig(mapping->objectId), macroStep, ticksPerSec,
mappingKey, midiVel, midiMod, pushPc);
else
ret |= _startChildMacro(SBig(mapping->objectId), macroStep, ticksPerSec,
mappingKey, midiVel, midiMod, pushPc).operator bool();
}
}
return ret;
}
bool Voice::loadSoundObject(ObjectId objectId, int macroStep, double ticksPerSec,
uint8_t midiKey, uint8_t midiVel, uint8_t midiMod,
bool pushPc)
{
const unsigned char* macroData = m_audioGroup.getPool().soundMacro(objectId);
if (macroData)
return _loadSoundMacro(macroData, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc);
const Keymap* keymap = m_audioGroup.getPool().keymap(objectId);
if (keymap)
return _loadKeymap(keymap, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc);
const std::vector<const LayerMapping*>* layer = m_audioGroup.getPool().layer(objectId);
if (layer)
return _loadLayer(*layer, macroStep, ticksPerSec, midiKey, midiVel, midiMod, pushPc);
return false;
}
void Voice::_macroKeyOff()
{
if (m_voxState == VoiceState::Playing)
{
if (m_sustained)
m_sustainKeyOff = true;
else
_doKeyOff();
m_voxState = VoiceState::KeyOff;
}
for (const std::shared_ptr<Voice>& vox : m_childVoices)
vox->keyOff();
}
void Voice::keyOff()
{
if (m_keyoffTrap.macroId != 0xffff)
{
if (m_keyoffTrap.macroId == m_state.m_header.m_macroId)
{
m_state.m_pc.back().second = m_keyoffTrap.macroStep;
m_state.m_inWait = false;
}
else
loadSoundObject(m_keyoffTrap.macroId, m_keyoffTrap.macroStep,
m_state.m_ticksPerSec, m_state.m_initKey,
m_state.m_initVel, m_state.m_initMod);
return;
}
else
_macroKeyOff();
}
void Voice::message(int32_t val)
{
m_messageQueue.push_back(val);
if (m_messageTrap.macroId != 0xffff)
{
if (m_messageTrap.macroId == m_state.m_header.m_macroId)
m_state.m_pc.back().second = m_messageTrap.macroStep;
else
loadSoundObject(m_messageTrap.macroId, m_messageTrap.macroStep,
m_state.m_ticksPerSec, m_state.m_initKey,
m_state.m_initVel, m_state.m_initMod);
}
}
void Voice::startSample(int16_t sampId, int32_t offset)
{
m_curSample = m_audioGroup.getSample(sampId);
if (m_curSample)
{
_reset();
m_sampleRate = m_curSample->first.m_sampleRate;
m_curPitch = m_curSample->first.m_pitch;
setPitchWheel(m_curPitchWheel);
m_backendVoice->resetSampleRate(m_curSample->first.m_sampleRate);
m_curSamplePos = offset;
m_curSampleData = m_audioGroup.getSampleData(m_curSample->first.m_sampleOff);
m_prev1 = 0;
m_prev2 = 0;
uint32_t numSamples = m_curSample->first.m_numSamples & 0xffffff;
m_curFormat = SampleFormat(m_curSample->first.m_numSamples >> 24);
m_lastSamplePos = m_curSample->first.m_loopLengthSamples ?
(m_curSample->first.m_loopStartSample + m_curSample->first.m_loopLengthSamples) : numSamples;
if (m_curFormat != SampleFormat::DSP && m_curFormat != SampleFormat::PCM)
{
m_curSample = nullptr;
return;
}
_checkSamplePos();
/* Seek DSPADPCM state if needed */
if (m_curSamplePos && m_curFormat == SampleFormat::DSP)
{
uint32_t block = m_curSamplePos / 14;
uint32_t rem = m_curSamplePos % 14;
for (uint32_t b = 0 ; b < block ; ++b)
DSPDecompressFrameStateOnly(m_curSampleData + 8 * b, m_curSample->second.m_coefs,
&m_prev1, &m_prev2, 14);
if (rem)
DSPDecompressFrameStateOnly(m_curSampleData + 8 * block, m_curSample->second.m_coefs,
&m_prev1, &m_prev2, rem);
}
}
}
void Voice::stopSample()
{
m_curSample = nullptr;
}
void Voice::setVolume(float vol)
{
m_userVol = clamp(0.f, vol, 1.f);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setVolume(vol);
}
void Voice::setPan(float pan)
{
m_curPan = clamp(-1.f, pan, 1.f);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setPan(pan);
}
void Voice::setSurroundPan(float span)
{
m_curSpan = clamp(-1.f, span, 1.f);
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setSurroundPan(span);
}
void Voice::startEnvelope(double dur, float vol, const Curve* envCurve)
{
m_envelopeTime = m_voiceTime;
m_envelopeDur = dur;
m_envelopeStart = clamp(0.f, m_curVol, 1.f);
m_envelopeEnd = clamp(0.f, vol, 1.f);
m_envelopeCurve = envCurve;
}
void Voice::startFadeIn(double dur, float vol, const Curve* envCurve)
{
m_envelopeTime = m_voiceTime;
m_envelopeDur = dur;
m_envelopeStart = 0.f;
m_envelopeEnd = clamp(0.f, m_curVol, 1.f);
m_envelopeCurve = envCurve;
}
void Voice::startPanning(double dur, uint8_t panPos, uint8_t panWidth)
{
m_panningTime = m_voiceTime;
m_panningDur = dur;
m_panPos = panPos;
m_panWidth = panWidth;
}
void Voice::startSpanning(double dur, uint8_t spanPos, uint8_t spanWidth)
{
m_spanningTime = m_voiceTime;
m_spanningDur = dur;
m_spanPos = spanPos;
m_spanWidth = spanWidth;
}
void Voice::setPitchKey(int32_t cents)
{
m_curPitch = cents;
m_pitchDirty = true;
}
void Voice::setPedal(bool pedal)
{
if (m_sustained && !pedal && m_sustainKeyOff)
{
m_sustainKeyOff = false;
_doKeyOff();
}
m_sustained = pedal;
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setPedal(pedal);
}
void Voice::setDoppler(float doppler)
{
}
void Voice::setVibrato(int32_t level, int32_t modLevel, float period)
{
m_vibratoLevel = level;
m_vibratoModLevel = modLevel;
m_vibratoPeriod = period;
}
void Voice::setMod2VibratoRange(int32_t modLevel)
{
m_vibratoModLevel = modLevel;
}
void Voice::setTremolo(float tremoloScale, float tremoloModScale)
{
m_tremoloScale = tremoloScale;
m_tremoloModScale = tremoloModScale;
}
void Voice::setPitchSweep1(uint8_t times, int16_t add)
{
m_pitchSweep1 = 0;
m_pitchSweep1Times = times;
m_pitchSweep1Add = add;
}
void Voice::setPitchSweep2(uint8_t times, int16_t add)
{
m_pitchSweep2 = 0;
m_pitchSweep2Times = times;
m_pitchSweep2Add = add;
}
void Voice::setReverbVol(float rvol)
{
m_curReverbVol = rvol;
}
void Voice::setAdsr(ObjectId adsrId, bool dls)
{
if (dls)
{
const ADSRDLS* adsr = m_audioGroup.getPool().tableAsAdsrDLS(adsrId);
if (adsr)
m_volAdsr.reset(adsr, m_state.m_initKey, m_state.m_initVel);
}
else
{
const ADSR* adsr = m_audioGroup.getPool().tableAsAdsr(adsrId);
if (adsr)
m_volAdsr.reset(adsr);
}
}
void Voice::setPitchFrequency(uint32_t hz, uint16_t fine)
{
m_sampleRate = hz + fine / 65536.0;
m_backendVoice->setPitchRatio(1.0);
m_backendVoice->resetSampleRate(m_sampleRate);
}
void Voice::setPitchAdsr(ObjectId adsrId, int32_t cents)
{
const ADSRDLS* adsr = m_audioGroup.getPool().tableAsAdsrDLS(adsrId);
if (adsr)
{
m_pitchAdsr.reset(adsr, m_state.m_initKey, m_state.m_initVel);
m_pitchEnvRange = cents;
m_pitchEnv = true;
}
}
void Voice::setPitchWheel(float pitchWheel)
{
m_curPitchWheel = amuse::clamp(-1.f, pitchWheel, 1.f);
if (pitchWheel > 0.f)
m_pitchWheelVal = m_pitchWheelUp * m_curPitchWheel * 100;
else if (pitchWheel < 0.f)
m_pitchWheelVal = m_pitchWheelDown * m_curPitchWheel * 100;
else
m_pitchWheelVal = 0;
m_pitchDirty = true;
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setPitchWheel(pitchWheel);
}
void Voice::setPitchWheelRange(int8_t up, int8_t down)
{
m_pitchWheelUp = up * 100;
m_pitchWheelDown = down * 100;
setPitchWheel(m_curPitchWheel);
}
void Voice::setAftertouch(uint8_t aftertouch)
{
m_curAftertouch = aftertouch;
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->setAftertouch(aftertouch);
}
void Voice::notifyCtrlChange(uint8_t ctrl, int8_t val)
{
if (ctrl == 64)
{
if (val >= 64)
setPedal(true);
else
setPedal(false);
}
for (std::shared_ptr<Voice>& vox : m_childVoices)
vox->notifyCtrlChange(ctrl, val);
}
size_t Voice::getTotalVoices() const
{
size_t ret = 1;
for (const std::shared_ptr<Voice>& vox : m_childVoices)
ret += vox->getTotalVoices();
return ret;
}
}