amuse/lib/SongConverter.cpp

1491 lines
53 KiB
C++

#include "amuse/SongConverter.hpp"
#include "amuse/SongState.hpp"
#include "amuse/Common.hpp"
#include <cstdlib>
#include <map>
namespace amuse
{
static inline uint8_t clamp7(uint8_t val) { return std::max(0, std::min(127, int(val))); }
enum class Status
{
NoteOff = 0x80,
NoteOn = 0x90,
NotePressure = 0xA0,
ControlChange = 0xB0,
ProgramChange = 0xC0,
ChannelPressure = 0xD0,
PitchBend = 0xE0,
SysEx = 0xF0,
TimecodeQuarterFrame = 0xF1,
SongPositionPointer = 0xF2,
SongSelect = 0xF3,
TuneRequest = 0xF6,
SysExTerm = 0xF7,
TimingClock = 0xF8,
Start = 0xFA,
Continue = 0xFB,
Stop = 0xFC,
ActiveSensing = 0xFE,
Reset = 0xFF,
};
/* Event tags */
struct NoteEvent
{
};
struct CtrlEvent
{
};
struct ProgEvent
{
};
struct PitchEvent
{
};
/* Intermediate event */
struct Event
{
enum class Type : uint8_t
{
Note,
Control,
Program,
Pitch
} m_type;
bool endEvent = false;
uint8_t channel;
uint8_t noteOrCtrl;
uint8_t velOrVal;
uint8_t program;
uint16_t length;
int pitchBend;
Event(NoteEvent, uint8_t chan, uint8_t note, uint8_t vel, uint16_t len)
: m_type(Type::Note), channel(chan), noteOrCtrl(note), velOrVal(vel), length(len)
{
}
Event(CtrlEvent, uint8_t chan, uint8_t note, uint8_t vel, uint16_t len)
: m_type(Type::Control), channel(chan), noteOrCtrl(note), velOrVal(vel), length(len)
{
}
Event(ProgEvent, uint8_t chan, uint8_t prog) : m_type(Type::Program), channel(chan), program(prog) {}
Event(PitchEvent, uint8_t chan, int pBend) : m_type(Type::Pitch), channel(chan), pitchBend(pBend) {}
};
class MIDIDecoder
{
int m_tick = 0;
std::vector<std::pair<int, std::multimap<int, Event>>> m_results;
std::multimap<int, int> m_tempos;
std::array<std::multimap<int, Event>::iterator, 128> m_notes;
void _addProgramChange(int prog)
{
m_results.emplace_back();
m_results.back().first = prog;
for (size_t i = 0; i < 128; ++i)
m_notes[i] = m_results.back().second.end();
}
uint8_t m_status = 0;
bool _readContinuedValue(std::vector<uint8_t>::const_iterator& it, std::vector<uint8_t>::const_iterator end,
uint32_t& valOut)
{
uint8_t a = *it++;
valOut = a & 0x7f;
if (a & 0x80)
{
if (it == end)
return false;
valOut <<= 7;
a = *it++;
valOut |= a & 0x7f;
if (a & 0x80)
{
if (it == end)
return false;
valOut <<= 7;
a = *it++;
valOut |= a & 0x7f;
}
}
return true;
}
public:
std::vector<uint8_t>::const_iterator receiveBytes(std::vector<uint8_t>::const_iterator begin,
std::vector<uint8_t>::const_iterator end)
{
std::vector<uint8_t>::const_iterator it = begin;
if (it == end)
return begin;
uint32_t deltaTime;
_readContinuedValue(it, end, deltaTime);
m_tick += deltaTime;
uint8_t a = *it++;
uint8_t b;
if (a & 0x80)
m_status = a;
else
it--;
/* Not actually used as such for now */
if (m_results.empty())
_addProgramChange(0);
std::multimap<int, Event>& res = m_results.back().second;
if (m_status == 0xff)
{
/* Meta events */
if (it == end)
return begin;
a = *it++;
uint32_t length;
_readContinuedValue(it, end, length);
switch (a)
{
case 0x51:
{
uint32_t tempo = 0;
memcpy(&reinterpret_cast<uint8_t*>(&tempo)[1], &*it, 3);
m_tempos.emplace(m_tick, 60000000 / SBig(tempo));
}
default:
it += length;
}
}
else
{
uint8_t chan = m_status & 0xf;
switch (Status(m_status & 0xf0))
{
case Status::NoteOff:
{
if (it == end)
return begin;
a = *it++;
if (it == end)
return begin;
b = *it++;
uint8_t notenum = clamp7(a);
std::multimap<int, Event>::iterator note = m_notes[notenum];
if (note != res.end())
{
note->second.length = uint16_t(m_tick - note->first);
m_notes[notenum] = res.end();
}
break;
}
case Status::NoteOn:
{
if (it == end)
return begin;
a = *it++;
if (it == end)
return begin;
b = *it++;
uint8_t notenum = clamp7(a);
uint8_t vel = clamp7(b);
std::multimap<int, Event>::iterator note = m_notes[notenum];
if (note != res.end())
note->second.length = uint16_t(m_tick - note->first);
m_notes[notenum] = res.emplace(m_tick, Event{NoteEvent{}, chan, notenum, vel, 0});
break;
}
case Status::NotePressure:
{
if (it == end)
return begin;
a = *it++;
if (it == end)
return begin;
b = *it++;
break;
}
case Status::ControlChange:
{
if (it == end)
return begin;
a = *it++;
if (it == end)
return begin;
b = *it++;
res.emplace(m_tick, Event{CtrlEvent{}, chan, clamp7(a), clamp7(b), 0});
break;
}
case Status::ProgramChange:
{
if (it == end)
return begin;
a = *it++;
res.emplace(m_tick, Event{ProgEvent{}, chan, a});
break;
}
case Status::ChannelPressure:
{
if (it == end)
return begin;
a = *it++;
break;
}
case Status::PitchBend:
{
if (it == end)
return begin;
a = *it++;
if (it == end)
return begin;
b = *it++;
res.emplace(m_tick, Event{PitchEvent{}, chan, clamp7(b) * 128 + clamp7(a)});
break;
}
case Status::SysEx:
{
switch (Status(m_status & 0xff))
{
case Status::SysEx:
{
uint32_t len;
if (!_readContinuedValue(it, end, len) || end - it < len)
return begin;
break;
}
case Status::TimecodeQuarterFrame:
{
if (it == end)
return begin;
a = *it++;
break;
}
case Status::SongPositionPointer:
{
if (it == end)
return begin;
a = *it++;
if (it == end)
return begin;
b = *it++;
break;
}
case Status::SongSelect:
{
if (it == end)
return begin;
a = *it++;
break;
}
case Status::TuneRequest:
case Status::Start:
case Status::Continue:
case Status::Stop:
case Status::Reset:
case Status::SysExTerm:
case Status::TimingClock:
case Status::ActiveSensing:
default:
break;
}
break;
}
default:
break;
}
}
return it;
}
std::vector<std::pair<int, std::multimap<int, Event>>>& getResults() { return m_results; }
std::multimap<int, int>& getTempos() { return m_tempos; }
};
class MIDIEncoder
{
friend class SongConverter;
std::vector<uint8_t> m_result;
uint8_t m_status = 0;
void _sendMessage(const uint8_t* data, size_t len)
{
if (data[0] == m_status)
{
for (size_t i = 1; i < len; ++i)
m_result.push_back(data[i]);
}
else
{
if (data[0] & 0x80)
m_status = data[0];
for (size_t i = 0; i < len; ++i)
m_result.push_back(data[i]);
}
}
void _sendContinuedValue(uint32_t val)
{
uint8_t send[3] = {};
uint8_t* ptr = nullptr;
if (val >= 0x4000)
{
ptr = &send[0];
send[0] = 0x80 | ((val / 0x4000) & 0x7f);
send[1] = 0x80;
val &= 0x3fff;
}
if (val >= 0x80)
{
if (!ptr)
ptr = &send[1];
send[1] = 0x80 | ((val / 0x80) & 0x7f);
}
if (!ptr)
ptr = &send[2];
send[2] = val & 0x7f;
size_t len = 3 - (ptr - send);
for (size_t i = 0; i < len; ++i)
m_result.push_back(ptr[i]);
}
public:
void noteOff(uint8_t chan, uint8_t key, uint8_t velocity)
{
uint8_t cmd[3] = {uint8_t(int(Status::NoteOff) | (chan & 0xf)), uint8_t(key & 0x7f), uint8_t(velocity & 0x7f)};
_sendMessage(cmd, 3);
}
void noteOn(uint8_t chan, uint8_t key, uint8_t velocity)
{
uint8_t cmd[3] = {uint8_t(int(Status::NoteOn) | (chan & 0xf)), uint8_t(key & 0x7f), uint8_t(velocity & 0x7f)};
_sendMessage(cmd, 3);
}
void notePressure(uint8_t chan, uint8_t key, uint8_t pressure)
{
uint8_t cmd[3] = {uint8_t(int(Status::NotePressure) | (chan & 0xf)), uint8_t(key & 0x7f),
uint8_t(pressure & 0x7f)};
_sendMessage(cmd, 3);
}
void controlChange(uint8_t chan, uint8_t control, uint8_t value)
{
uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), uint8_t(control & 0x7f),
uint8_t(value & 0x7f)};
_sendMessage(cmd, 3);
}
void programChange(uint8_t chan, uint8_t program)
{
uint8_t cmd[2] = {uint8_t(int(Status::ProgramChange) | (chan & 0xf)), uint8_t(program & 0x7f)};
_sendMessage(cmd, 2);
}
void channelPressure(uint8_t chan, uint8_t pressure)
{
uint8_t cmd[2] = {uint8_t(int(Status::ChannelPressure) | (chan & 0xf)), uint8_t(pressure & 0x7f)};
_sendMessage(cmd, 2);
}
void pitchBend(uint8_t chan, int16_t pitch)
{
uint8_t cmd[3] = {uint8_t(int(Status::PitchBend) | (chan & 0xf)), uint8_t((pitch % 128) & 0x7f),
uint8_t((pitch / 128) & 0x7f)};
_sendMessage(cmd, 3);
}
void allSoundOff(uint8_t chan)
{
uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), 120, 0};
_sendMessage(cmd, 3);
}
void resetAllControllers(uint8_t chan)
{
uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), 121, 0};
_sendMessage(cmd, 3);
}
void localControl(uint8_t chan, bool on)
{
uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), 122, uint8_t(on ? 127 : 0)};
_sendMessage(cmd, 3);
}
void allNotesOff(uint8_t chan)
{
uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), 123, 0};
_sendMessage(cmd, 3);
}
void omniMode(uint8_t chan, bool on)
{
uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), uint8_t(on ? 125 : 124), 0};
_sendMessage(cmd, 3);
}
void polyMode(uint8_t chan, bool on)
{
uint8_t cmd[3] = {uint8_t(int(Status::ControlChange) | (chan & 0xf)), uint8_t(on ? 127 : 126), 0};
_sendMessage(cmd, 3);
}
void sysex(const void* data, size_t len)
{
uint8_t cmd = uint8_t(Status::SysEx);
_sendMessage(&cmd, 1);
_sendContinuedValue(len);
for (size_t i = 0; i < len; ++i)
m_result.push_back(reinterpret_cast<const uint8_t*>(data)[i]);
cmd = uint8_t(Status::SysExTerm);
_sendMessage(&cmd, 1);
}
void timeCodeQuarterFrame(uint8_t message, uint8_t value)
{
uint8_t cmd[2] = {uint8_t(int(Status::TimecodeQuarterFrame)), uint8_t((message & 0x7 << 4) | (value & 0xf))};
_sendMessage(cmd, 2);
}
void songPositionPointer(uint16_t pointer)
{
uint8_t cmd[3] = {uint8_t(int(Status::SongPositionPointer)), uint8_t((pointer % 128) & 0x7f),
uint8_t((pointer / 128) & 0x7f)};
_sendMessage(cmd, 3);
}
void songSelect(uint8_t song)
{
uint8_t cmd[2] = {uint8_t(int(Status::TimecodeQuarterFrame)), uint8_t(song & 0x7f)};
_sendMessage(cmd, 2);
}
void tuneRequest()
{
uint8_t cmd = uint8_t(Status::TuneRequest);
_sendMessage(&cmd, 1);
}
void startSeq()
{
uint8_t cmd = uint8_t(Status::Start);
_sendMessage(&cmd, 1);
}
void continueSeq()
{
uint8_t cmd = uint8_t(Status::Continue);
_sendMessage(&cmd, 1);
}
void stopSeq()
{
uint8_t cmd = uint8_t(Status::Stop);
_sendMessage(&cmd, 1);
}
void reset()
{
uint8_t cmd = uint8_t(Status::Reset);
_sendMessage(&cmd, 1);
}
const std::vector<uint8_t>& getResult() const { return m_result; }
std::vector<uint8_t>& getResult() { return m_result; }
};
static uint16_t DecodeUnsignedValue(const unsigned char*& data)
{
uint16_t ret;
if (data[0] & 0x80)
{
ret = data[1] | ((data[0] & 0x7f) << 8);
data += 2;
}
else
{
ret = data[0];
data += 1;
}
return ret;
}
static void EncodeUnsignedValue(std::vector<uint8_t>& vecOut, uint16_t val)
{
if (val >= 128)
{
vecOut.push_back(0x80 | ((val >> 8) & 0x7f));
vecOut.push_back(val & 0xff);
}
else
{
vecOut.push_back(val & 0x7f);
}
}
static int16_t DecodeSignedValue(const unsigned char*& data)
{
int16_t ret;
if (data[0] & 0x80)
{
ret = data[1] | ((data[0] & 0x7f) << 8);
ret |= ((ret << 1) & 0x8000);
data += 2;
}
else
{
ret = int8_t(data[0] | ((data[0] << 1) & 0x80));
data += 1;
}
return ret;
}
static void EncodeSignedValue(std::vector<uint8_t>& vecOut, int16_t val)
{
if (val >= 64 || val < -64)
{
vecOut.push_back(0x80 | ((val >> 8) & 0x7f));
vecOut.push_back(val & 0xff);
}
else
{
vecOut.push_back(val & 0x7f);
}
}
static uint32_t DecodeTimeRLE(const unsigned char*& data)
{
uint32_t ret = 0;
while (true)
{
uint16_t thisPart = SBig(*reinterpret_cast<const uint16_t*>(data));
if (thisPart == 0xffff)
{
ret += 65535;
data += 4;
continue;
}
ret += thisPart;
data += 2;
break;
}
return ret;
}
static void EncodeTimeRLE(std::vector<uint8_t>& vecOut, uint32_t val)
{
while (val >= 65535)
{
vecOut.push_back(0xff);
vecOut.push_back(0xff);
vecOut.push_back(0);
vecOut.push_back(0);
val -= 65535;
}
uint16_t lastPart = SBig(uint16_t(val));
vecOut.push_back(reinterpret_cast<const uint8_t*>(&lastPart)[0]);
vecOut.push_back(reinterpret_cast<const uint8_t*>(&lastPart)[1]);
}
std::vector<uint8_t> SongConverter::SongToMIDI(const unsigned char* data, int& versionOut, bool& isBig)
{
std::vector<uint8_t> ret = {'M', 'T', 'h', 'd'};
uint32_t six32 = SBig(uint32_t(6));
for (int i = 0; i < 4; ++i)
ret.push_back(reinterpret_cast<uint8_t*>(&six32)[i]);
ret.push_back(0);
ret.push_back(1);
SongState song;
if (!song.initialize(data))
return {};
versionOut = song.m_sngVersion;
isBig = song.m_bigEndian;
size_t trkCount = 1;
for (SongState::Track& trk : song.m_tracks)
if (trk)
++trkCount;
uint16_t trkCount16 = SBig(uint16_t(trkCount));
ret.push_back(reinterpret_cast<uint8_t*>(&trkCount16)[0]);
ret.push_back(reinterpret_cast<uint8_t*>(&trkCount16)[1]);
uint16_t tickDiv16 = SBig(uint16_t(384));
ret.push_back(reinterpret_cast<uint8_t*>(&tickDiv16)[0]);
ret.push_back(reinterpret_cast<uint8_t*>(&tickDiv16)[1]);
/* Write tempo track */
{
MIDIEncoder encoder;
/* Initial tempo */
encoder._sendContinuedValue(0);
encoder.getResult().push_back(0xff);
encoder.getResult().push_back(0x51);
encoder.getResult().push_back(3);
uint32_t tempo24 = SBig(60000000 / song.m_tempo);
for (int i = 1; i < 4; ++i)
encoder.getResult().push_back(reinterpret_cast<uint8_t*>(&tempo24)[i]);
/* Write out tempo changes */
int lastTick = 0;
while (song.m_tempoPtr && song.m_tempoPtr->m_tick != 0xffffffff)
{
SongState::TempoChange change = *song.m_tempoPtr;
if (song.m_bigEndian)
change.swapBig();
encoder._sendContinuedValue(change.m_tick - lastTick);
lastTick = change.m_tick;
encoder.getResult().push_back(0xff);
encoder.getResult().push_back(0x51);
encoder.getResult().push_back(3);
uint32_t tempo24 = SBig(60000000 / (change.m_tempo & 0x7fffffff));
for (int i = 1; i < 4; ++i)
encoder.getResult().push_back(reinterpret_cast<uint8_t*>(&tempo24)[i]);
++song.m_tempoPtr;
}
encoder.getResult().push_back(0);
encoder.getResult().push_back(0xff);
encoder.getResult().push_back(0x2f);
encoder.getResult().push_back(0);
ret.push_back('M');
ret.push_back('T');
ret.push_back('r');
ret.push_back('k');
uint32_t trkSz = SBig(uint32_t(encoder.getResult().size()));
for (int i = 0; i < 4; ++i)
ret.push_back(reinterpret_cast<uint8_t*>(&trkSz)[i]);
ret.insert(ret.cend(), encoder.getResult().begin(), encoder.getResult().end());
}
/* Iterate each SNG track into type-1 MIDI track */
for (SongState::Track& trk : song.m_tracks)
{
if (trk)
{
MIDIEncoder encoder;
std::multimap<int, Event> allEvents;
/* Iterate all regions */
while (trk.m_nextRegion->indexValid(song.m_bigEndian))
{
std::multimap<int, Event> events;
trk.advanceRegion(nullptr);
uint32_t regStart =
song.m_bigEndian ? SBig(trk.m_curRegion->m_startTick) : trk.m_curRegion->m_startTick;
/* Initial program change */
if (trk.m_curRegion->m_progNum != 0xff)
events.emplace(regStart, Event{ProgEvent{}, trk.m_midiChan, trk.m_curRegion->m_progNum});
/* Update continuous pitch data */
if (trk.m_pitchWheelData)
{
while (true)
{
/* Update pitch */
trk.m_pitchVal += trk.m_nextPitchDelta;
events.emplace(regStart + trk.m_nextPitchTick,
Event{PitchEvent{}, trk.m_midiChan,
clamp(0, trk.m_pitchVal + 0x2000, 0x4000)});
if (trk.m_pitchWheelData[0] != 0x80 || trk.m_pitchWheelData[1] != 0x00)
{
trk.m_nextPitchTick += DecodeUnsignedValue(trk.m_pitchWheelData);
trk.m_nextPitchDelta = DecodeSignedValue(trk.m_pitchWheelData);
}
else
{
break;
}
}
}
/* Update continuous modulation data */
if (trk.m_modWheelData)
{
while (true)
{
/* Update modulation */
trk.m_modVal += trk.m_nextModDelta;
events.emplace(regStart + trk.m_nextModTick,
Event{CtrlEvent{}, trk.m_midiChan, 1,
uint8_t(clamp(0, trk.m_modVal / 128, 127)), 0});
if (trk.m_modWheelData[0] != 0x80 || trk.m_modWheelData[1] != 0x00)
{
trk.m_nextModTick += DecodeUnsignedValue(trk.m_modWheelData);
trk.m_nextModDelta = DecodeSignedValue(trk.m_modWheelData);
}
else
{
break;
}
}
}
/* Loop through as many commands as we can for this time period */
if (song.m_sngVersion == 1)
{
/* Revision */
while (true)
{
/* Load next command */
if (*reinterpret_cast<const uint16_t*>(trk.m_data) == 0xffff)
{
/* End of channel */
trk.m_data = nullptr;
break;
}
else if (trk.m_data[0] & 0x80 && trk.m_data[1] & 0x80)
{
/* Control change */
uint8_t val = trk.m_data[0] & 0x7f;
uint8_t ctrl = trk.m_data[1] & 0x7f;
events.emplace(regStart + trk.m_eventWaitCountdown,
Event{CtrlEvent{}, trk.m_midiChan, ctrl, val, 0});
trk.m_data += 2;
}
else if (trk.m_data[0] & 0x80)
{
/* Program change */
uint8_t prog = trk.m_data[0] & 0x7f;
events.emplace(regStart + trk.m_eventWaitCountdown,
Event{ProgEvent{}, trk.m_midiChan, prog});
trk.m_data += 2;
}
else
{
/* Note */
uint8_t note = trk.m_data[0] & 0x7f;
uint8_t vel = trk.m_data[1] & 0x7f;
uint16_t length =
(song.m_bigEndian ? SBig(*reinterpret_cast<const uint16_t*>(trk.m_data + 2))
: *reinterpret_cast<const uint16_t*>(trk.m_data + 2));
events.emplace(regStart + trk.m_eventWaitCountdown,
Event{NoteEvent{}, trk.m_midiChan, note, vel, length});
trk.m_data += 4;
}
/* Set next delta-time */
trk.m_eventWaitCountdown += int32_t(DecodeTimeRLE(trk.m_data));
}
}
else
{
/* Legacy */
while (true)
{
/* Load next command */
if (*reinterpret_cast<const uint16_t*>(&trk.m_data[2]) == 0xffff)
{
/* End of channel */
trk.m_data = nullptr;
break;
}
else
{
if ((trk.m_data[2] & 0x80) != 0x80)
{
/* Note */
uint16_t length =
(song.m_bigEndian ? SBig(*reinterpret_cast<const uint16_t*>(trk.m_data))
: *reinterpret_cast<const uint16_t*>(trk.m_data));
uint8_t note = trk.m_data[2] & 0x7f;
uint8_t vel = trk.m_data[3] & 0x7f;
events.emplace(regStart + trk.m_eventWaitCountdown,
Event{NoteEvent{}, trk.m_midiChan, note, vel, length});
}
else if (trk.m_data[2] & 0x80 && trk.m_data[3] & 0x80)
{
/* Control change */
uint8_t val = trk.m_data[2] & 0x7f;
uint8_t ctrl = trk.m_data[3] & 0x7f;
events.emplace(regStart + trk.m_eventWaitCountdown,
Event{CtrlEvent{}, trk.m_midiChan, ctrl, val, 0});
}
else if (trk.m_data[2] & 0x80)
{
/* Program change */
uint8_t prog = trk.m_data[2] & 0x7f;
events.emplace(regStart + trk.m_eventWaitCountdown,
Event{ProgEvent{}, trk.m_midiChan, prog});
}
trk.m_data += 4;
}
/* Set next delta-time */
int32_t absTick = (song.m_bigEndian ? SBig(*reinterpret_cast<const int32_t*>(trk.m_data))
: *reinterpret_cast<const int32_t*>(trk.m_data));
trk.m_eventWaitCountdown += absTick - trk.m_lastN64EventTick;
trk.m_lastN64EventTick = absTick;
trk.m_data += 4;
}
}
/* Merge events */
allEvents.insert(events.begin(), events.end());
/* Resolve key-off events */
for (auto& pair : events)
{
if (pair.second.m_type == Event::Type::Note)
{
auto it = allEvents.emplace(pair.first + pair.second.length, pair.second);
it->second.endEvent = true;
}
}
}
/* Emit MIDI events */
int lastTime = 0;
for (auto& pair : allEvents)
{
encoder._sendContinuedValue(pair.first - lastTime);
lastTime = pair.first;
switch (pair.second.m_type)
{
case Event::Type::Control:
encoder.controlChange(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal);
break;
case Event::Type::Program:
encoder.programChange(trk.m_midiChan, pair.second.program);
break;
case Event::Type::Pitch:
encoder.pitchBend(trk.m_midiChan, pair.second.pitchBend);
break;
case Event::Type::Note:
if (pair.second.endEvent)
encoder.noteOff(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal);
else
encoder.noteOn(pair.second.channel, pair.second.noteOrCtrl, pair.second.velOrVal);
break;
}
}
encoder.getResult().push_back(0);
encoder.getResult().push_back(0xff);
encoder.getResult().push_back(0x2f);
encoder.getResult().push_back(0);
/* Write out */
ret.push_back('M');
ret.push_back('T');
ret.push_back('r');
ret.push_back('k');
uint32_t trkSz = SBig(uint32_t(encoder.getResult().size()));
for (int i = 0; i < 4; ++i)
ret.push_back(reinterpret_cast<uint8_t*>(&trkSz)[i]);
ret.insert(ret.cend(), encoder.getResult().begin(), encoder.getResult().end());
}
}
return ret;
}
std::vector<uint8_t> SongConverter::MIDIToSong(const std::vector<uint8_t>& data, int version, bool big)
{
std::vector<uint8_t> ret;
std::vector<uint8_t>::const_iterator it = data.cbegin();
struct MIDIHeader
{
char magic[4];
uint32_t length;
uint16_t type;
uint16_t count;
uint16_t div;
void swapBig()
{
length = SBig(length);
type = SBig(type);
count = SBig(count);
div = SBig(div);
}
};
MIDIHeader header = *reinterpret_cast<const MIDIHeader*>(&*it);
header.swapBig();
it += 8 + header.length;
if (memcmp(header.magic, "MThd", 4))
return {};
/* Only Type 0 and 1 MIDI files supported as input */
if (header.type == 0)
header.count = 1;
else if (header.type != 1)
return {};
std::vector<uint32_t> trackRegionIdxArr;
std::vector<uint32_t> regionDataIdxArr;
std::vector<SongState::TrackRegion> regionBuf;
uint32_t initTempo = 120;
std::vector<std::pair<uint32_t, uint32_t>> tempoBuf;
std::array<uint8_t, 64> chanMap;
for (int i = 0; i < 64; ++i)
chanMap[i] = 0xff;
struct Region
{
std::vector<uint8_t> eventBuf;
std::vector<uint8_t> pitchBuf;
std::vector<uint8_t> modBuf;
int padding = 0;
bool operator==(const Region& other) const
{
if (eventBuf.size() != other.eventBuf.size())
return false;
if (pitchBuf.size() != other.pitchBuf.size())
return false;
if (modBuf.size() != other.modBuf.size())
return false;
if (eventBuf.size() && memcmp(eventBuf.data(), other.eventBuf.data(), eventBuf.size()))
return false;
if (pitchBuf.size() && memcmp(pitchBuf.data(), other.pitchBuf.data(), pitchBuf.size()))
return false;
if (modBuf.size() && memcmp(modBuf.data(), other.modBuf.data(), modBuf.size()))
return false;
return true;
}
};
std::vector<Region> regions;
int curRegionOff = 0;
for (int i = 0; i < header.count; ++i)
{
if (memcmp(&*it, "MTrk", 4))
return {};
it += 4;
uint32_t length = SBig(*reinterpret_cast<const uint32_t*>(&*it));
it += 4;
if (i == 0)
{
/* Extract tempo events from first track */
std::vector<uint8_t>::const_iterator begin = it;
std::vector<uint8_t>::const_iterator end = it + length;
MIDIDecoder dec;
while (begin != end)
begin = dec.receiveBytes(begin, end);
std::multimap<int, int>& tempos = dec.getTempos();
if (tempos.size() == 1)
initTempo = tempos.begin()->second;
else if (tempos.size() > 1)
{
auto it = tempos.begin();
initTempo = it->second;
++it;
for (auto& pair : tempos)
{
if (big)
tempoBuf.emplace_back(SBig(uint32_t(pair.first * 384 / header.div)),
SBig(uint32_t(pair.second)));
else
tempoBuf.emplace_back(pair.first * 384 / header.div, pair.second);
}
}
if (header.type == 1)
{
it = end;
continue;
}
}
/* Extract channel events */
std::vector<uint8_t>::const_iterator begin = it;
std::vector<uint8_t>::const_iterator end = it + length;
it = end;
MIDIDecoder dec;
while (begin != end)
begin = dec.receiveBytes(begin, end);
std::vector<std::pair<int, std::multimap<int, Event>>>& results = dec.getResults();
for (int c = 0; c < 16; ++c)
{
int lastTrackStartTick = 0;
bool didChanInit = false;
for (auto& prog : results)
{
bool didInit = false;
int startTick;
int lastEventTick;
int lastPitchTick;
int lastPitchVal;
int lastModTick;
int lastModVal;
Region region;
for (auto& event : prog.second)
{
uint32_t eventTick = event.first * 384 / header.div;
if (event.second.channel == c)
{
if (!didInit)
{
didInit = true;
startTick = eventTick;
lastTrackStartTick = startTick;
lastEventTick = startTick;
lastPitchTick = startTick;
lastPitchVal = 0;
lastModTick = startTick;
lastModVal = 0;
}
switch (event.second.m_type)
{
case Event::Type::Control:
{
if (event.second.noteOrCtrl == 1)
{
EncodeUnsignedValue(region.modBuf, uint32_t(eventTick - lastModTick));
lastModTick = eventTick;
int newMod = event.second.velOrVal * 128;
EncodeSignedValue(region.modBuf, newMod - lastModVal);
lastModVal = newMod;
}
else
{
if (version == 1)
{
EncodeTimeRLE(region.eventBuf, uint32_t(eventTick - lastEventTick));
lastEventTick = eventTick;
region.eventBuf.push_back(0x80 | event.second.velOrVal);
region.eventBuf.push_back(0x80 | event.second.noteOrCtrl);
}
else
{
if (big)
{
uint32_t tickBig = SBig(uint32_t(eventTick - startTick));
for (int i = 0; i < 4; ++i)
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&tickBig)[i]);
region.eventBuf.push_back(0x80 | event.second.velOrVal);
region.eventBuf.push_back(0x80 | event.second.noteOrCtrl);
}
else
{
uint32_t tick = uint32_t(eventTick - startTick);
for (int i = 0; i < 4; ++i)
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&tick)[i]);
region.eventBuf.push_back(0x80 | event.second.velOrVal);
region.eventBuf.push_back(0x80 | event.second.noteOrCtrl);
}
}
}
break;
}
case Event::Type::Program:
{
if (version == 1)
{
EncodeTimeRLE(region.eventBuf, uint32_t(eventTick - lastEventTick));
lastEventTick = eventTick;
region.eventBuf.push_back(0x80 | event.second.program);
region.eventBuf.push_back(0);
}
else
{
if (big)
{
uint32_t tickBig = SBig(uint32_t(eventTick - startTick));
for (int i = 0; i < 4; ++i)
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&tickBig)[i]);
region.eventBuf.push_back(0x80 | event.second.program);
region.eventBuf.push_back(0);
}
else
{
uint32_t tick = uint32_t(eventTick - startTick);
for (int i = 0; i < 4; ++i)
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&tick)[i]);
region.eventBuf.push_back(0x80 | event.second.program);
region.eventBuf.push_back(0);
}
}
break;
}
case Event::Type::Pitch:
{
EncodeUnsignedValue(region.pitchBuf, uint32_t(eventTick - lastPitchTick));
lastPitchTick = eventTick;
int newPitch = event.second.pitchBend - 0x2000;
EncodeSignedValue(region.pitchBuf, newPitch - lastPitchVal);
lastPitchVal = newPitch;
break;
}
case Event::Type::Note:
{
if (version == 1)
{
EncodeTimeRLE(region.eventBuf, uint32_t(eventTick - lastEventTick));
lastEventTick = eventTick;
region.eventBuf.push_back(event.second.noteOrCtrl);
region.eventBuf.push_back(event.second.velOrVal);
uint16_t lenBig = SBig(uint16_t(event.second.length));
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&lenBig)[0]);
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&lenBig)[1]);
}
else
{
if (big)
{
uint32_t tickBig = SBig(uint32_t(eventTick - startTick));
for (int i = 0; i < 4; ++i)
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&tickBig)[i]);
uint16_t lenBig = SBig(uint16_t(event.second.length));
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&lenBig)[0]);
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&lenBig)[1]);
region.eventBuf.push_back(event.second.noteOrCtrl);
region.eventBuf.push_back(event.second.velOrVal);
}
else
{
uint32_t tick = uint32_t(eventTick - startTick);
for (int i = 0; i < 4; ++i)
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&tick)[i]);
uint16_t len = uint16_t(event.second.length);
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&len)[0]);
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&len)[1]);
region.eventBuf.push_back(event.second.noteOrCtrl);
region.eventBuf.push_back(event.second.velOrVal);
}
}
break;
}
}
}
}
if (didInit)
{
if (!didChanInit)
{
didChanInit = true;
if (trackRegionIdxArr.size() == 64)
return {};
chanMap[trackRegionIdxArr.size()] = c;
trackRegionIdxArr.push_back(regionBuf.size());
}
/* Terminate region */
if (version == 1)
{
size_t pitchDelta = 0;
size_t modDelta = 0;
if (lastPitchTick > lastEventTick)
pitchDelta = lastPitchTick - lastEventTick;
if (lastModTick > lastEventTick)
modDelta = lastModTick - lastEventTick;
EncodeTimeRLE(region.eventBuf, std::max(pitchDelta, modDelta));
region.eventBuf.push_back(0xff);
region.eventBuf.push_back(0xff);
}
else
{
if (big)
{
uint32_t selTick = std::max(std::max(lastEventTick - startTick, lastPitchTick - startTick),
lastModTick - startTick);
uint32_t tickBig = SBig(uint32_t(selTick));
for (int i = 0; i < 4; ++i)
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&tickBig)[i]);
region.eventBuf.push_back(0);
region.eventBuf.push_back(0);
region.eventBuf.push_back(0xff);
region.eventBuf.push_back(0xff);
}
else
{
uint32_t selTick = std::max(std::max(lastEventTick - startTick, lastPitchTick - startTick),
lastModTick - startTick);
uint32_t tick = uint32_t(selTick);
for (int i = 0; i < 4; ++i)
region.eventBuf.push_back(reinterpret_cast<const uint8_t*>(&tick)[i]);
region.eventBuf.push_back(0);
region.eventBuf.push_back(0);
region.eventBuf.push_back(0xff);
region.eventBuf.push_back(0xff);
}
}
if (region.pitchBuf.size())
{
region.pitchBuf.push_back(0x80);
region.pitchBuf.push_back(0);
}
if (region.modBuf.size())
{
region.modBuf.push_back(0x80);
region.modBuf.push_back(0);
}
/* See if there's a matching region buffer already present */
int regIdx = 0;
for (Region& reg : regions)
{
if (reg == region)
break;
++regIdx;
}
if (regIdx == regions.size())
{
regionDataIdxArr.push_back(curRegionOff);
curRegionOff += 12 + region.eventBuf.size() + region.pitchBuf.size() + region.modBuf.size();
int paddedRegOff = ((curRegionOff + 3) & ~3);
region.padding = paddedRegOff - curRegionOff;
curRegionOff = paddedRegOff;
regions.push_back(std::move(region));
}
/* Region header */
regionBuf.emplace_back();
SongState::TrackRegion& reg = regionBuf.back();
if (big)
{
reg.m_startTick = SBig(uint32_t(startTick));
reg.m_progNum = 0xff;
reg.m_unk1 = 0xff;
reg.m_unk2 = 0;
reg.m_regionIndex = SBig(uint16_t(regIdx));
reg.m_unk3 = 0;
}
else
{
reg.m_startTick = uint32_t(startTick);
reg.m_progNum = 0xff;
reg.m_unk1 = 0xff;
reg.m_unk2 = 0;
reg.m_regionIndex = uint16_t(regIdx);
reg.m_unk3 = 0;
}
}
}
if (didChanInit)
{
/* Terminating region header */
regionBuf.emplace_back();
SongState::TrackRegion& reg = regionBuf.back();
if (big)
{
reg.m_startTick = SBig(uint32_t(lastTrackStartTick));
reg.m_progNum = 0xff;
reg.m_unk1 = 0xff;
reg.m_unk2 = 0;
reg.m_regionIndex = -1;
reg.m_unk3 = 0;
}
else
{
reg.m_startTick = uint32_t(lastTrackStartTick);
reg.m_progNum = 0xff;
reg.m_unk1 = 0xff;
reg.m_unk2 = 0;
reg.m_regionIndex = -1;
reg.m_unk3 = 0;
}
}
}
}
if (version == 1)
{
SongState::Header head;
head.m_trackIdxOff = 0x18;
head.m_regionIdxOff = 0x18 + 4 * 64 + regionBuf.size() * 12;
head.m_chanMapOff = head.m_regionIdxOff + 4 * regionDataIdxArr.size() + curRegionOff;
head.m_tempoTableOff = tempoBuf.size() ? head.m_chanMapOff + 64 : 0;
head.m_initialTempo = initTempo;
head.m_unkOff = 0;
uint32_t regIdxOff = head.m_regionIdxOff;
if (big)
head.swapBig();
*reinterpret_cast<SongState::Header*>(&*ret.insert(ret.cend(), 0x18, 0)) = head;
for (int i = 0; i < 64; ++i)
{
if (i >= trackRegionIdxArr.size())
{
ret.insert(ret.cend(), 4, 0);
continue;
}
uint32_t idx = trackRegionIdxArr[i];
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) =
big ? SBig(uint32_t(0x18 + 4 * 64 + idx * 12)) : uint32_t(0x18 + 4 * 64 + idx * 12);
}
for (SongState::TrackRegion& reg : regionBuf)
*reinterpret_cast<SongState::TrackRegion*>(&*ret.insert(ret.cend(), 12, 0)) = reg;
uint32_t regBase = regIdxOff + 4 * regionDataIdxArr.size();
for (uint32_t regOff : regionDataIdxArr)
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) =
big ? SBig(uint32_t(regBase + regOff)) : uint32_t(regBase + regOff);
uint32_t curOffset = regBase;
for (Region& reg : regions)
{
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(8)) : 8;
if (reg.pitchBuf.size())
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) =
big ? SBig(uint32_t(curOffset + 12 + reg.eventBuf.size()))
: uint32_t(curOffset + 12 + reg.eventBuf.size());
else
ret.insert(ret.cend(), 4, 0);
if (reg.modBuf.size())
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) =
big ? SBig(uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size()))
: uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size());
else
ret.insert(ret.cend(), 4, 0);
if (reg.eventBuf.size())
memmove(&*ret.insert(ret.cend(), reg.eventBuf.size(), 0), reg.eventBuf.data(), reg.eventBuf.size());
if (reg.pitchBuf.size())
memmove(&*ret.insert(ret.cend(), reg.pitchBuf.size(), 0), reg.pitchBuf.data(), reg.pitchBuf.size());
if (reg.modBuf.size())
memmove(&*ret.insert(ret.cend(), reg.modBuf.size(), 0), reg.modBuf.data(), reg.modBuf.size());
ret.insert(ret.cend(), reg.padding, 0);
curOffset += 12 + reg.eventBuf.size() + reg.pitchBuf.size() + reg.modBuf.size() + reg.padding;
}
memmove(&*ret.insert(ret.cend(), 64, 0), chanMap.data(), 64);
if (tempoBuf.size())
memmove(&*ret.insert(ret.cend(), tempoBuf.size() * 8, 0), tempoBuf.data(), tempoBuf.size() * 8);
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(0xffffffff);
}
else
{
SongState::Header head;
head.m_trackIdxOff = 0x18 + regionBuf.size() * 12;
head.m_regionIdxOff = head.m_trackIdxOff + 4 * 64 + 64 + curRegionOff;
head.m_chanMapOff = head.m_trackIdxOff + 4 * 64;
head.m_tempoTableOff = tempoBuf.size() ? head.m_regionIdxOff + 4 * regionDataIdxArr.size() : 0;
head.m_initialTempo = initTempo;
head.m_unkOff = 0;
uint32_t chanMapOff = head.m_chanMapOff;
if (big)
head.swapBig();
*reinterpret_cast<SongState::Header*>(&*ret.insert(ret.cend(), 0x18, 0)) = head;
for (SongState::TrackRegion& reg : regionBuf)
*reinterpret_cast<SongState::TrackRegion*>(&*ret.insert(ret.cend(), 12, 0)) = reg;
for (int i = 0; i < 64; ++i)
{
if (i >= trackRegionIdxArr.size())
{
ret.insert(ret.cend(), 4, 0);
continue;
}
uint32_t idx = trackRegionIdxArr[i];
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) =
big ? SBig(uint32_t(0x18 + 4 * 64 + idx * 12)) : uint32_t(0x18 + 4 * 64 + idx * 12);
}
memmove(&*ret.insert(ret.cend(), 64, 0), chanMap.data(), 64);
uint32_t regBase = chanMapOff + 64;
uint32_t curOffset = regBase;
for (Region& reg : regions)
{
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) = big ? SBig(uint32_t(8)) : 8;
if (reg.pitchBuf.size())
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) =
big ? SBig(uint32_t(curOffset + 12 + reg.eventBuf.size()))
: uint32_t(curOffset + 12 + reg.eventBuf.size());
else
ret.insert(ret.cend(), 4, 0);
if (reg.modBuf.size())
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) =
big ? SBig(uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size()))
: uint32_t(curOffset + 12 + reg.eventBuf.size() + reg.pitchBuf.size());
else
ret.insert(ret.cend(), 4, 0);
if (reg.eventBuf.size())
memmove(&*ret.insert(ret.cend(), reg.eventBuf.size(), 0), reg.eventBuf.data(), reg.eventBuf.size());
if (reg.pitchBuf.size())
memmove(&*ret.insert(ret.cend(), reg.pitchBuf.size(), 0), reg.pitchBuf.data(), reg.pitchBuf.size());
if (reg.modBuf.size())
memmove(&*ret.insert(ret.cend(), reg.modBuf.size(), 0), reg.modBuf.data(), reg.modBuf.size());
ret.insert(ret.cend(), reg.padding, 0);
curOffset += 12 + reg.eventBuf.size() + reg.pitchBuf.size() + reg.modBuf.size();
}
for (uint32_t regOff : regionDataIdxArr)
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) =
big ? SBig(uint32_t(regBase + regOff)) : uint32_t(regBase + regOff);
if (tempoBuf.size())
memmove(&*ret.insert(ret.cend(), tempoBuf.size() * 8, 0), tempoBuf.data(), tempoBuf.size() * 8);
*reinterpret_cast<uint32_t*>(&*ret.insert(ret.cend(), 4, 0)) = uint32_t(0xffffffff);
}
return ret;
}
}