kabufuda/lib/kabufuda/AsyncIOWin32.cpp

211 lines
5.9 KiB
C++

#include "kabufuda/AsyncIO.hpp"
#ifndef WIN32_LEAN_AND_MEAN
#define WIN32_LEAN_AND_MEAN 1
#endif
#ifndef NOMINMAX
#define NOMINMAX 1
#endif
#include <Windows.h>
#include <algorithm>
#include <cstdio>
namespace kabufuda {
class WStringConv {
std::wstring m_sys;
public:
explicit WStringConv(std::string_view str) {
int len = MultiByteToWideChar(CP_UTF8, 0, str.data(), str.size(), nullptr, 0);
m_sys.assign(len, L'\0');
MultiByteToWideChar(CP_UTF8, 0, str.data(), str.size(), &m_sys[0], len);
}
[[nodiscard]] std::wstring str() const { return m_sys; }
[[nodiscard]] const wchar_t* c_str() const { return m_sys.c_str(); }
};
int Stat(const char* path, Sstat* statOut) {
size_t pos;
WStringConv wpath(path);
const wchar_t* wpathP = wpath.c_str();
for (pos = 0; pos < 3 && wpathP[pos] != L'\0'; ++pos) {}
if (pos == 2 && wpathP[1] == L':') {
wchar_t fixPath[4] = {wpathP[0], L':', L'/', L'\0'};
return _wstat64(fixPath, statOut);
}
return _wstat64(wpath.c_str(), statOut);
}
struct AsyncIOInner {
HANDLE m_fh = INVALID_HANDLE_VALUE;
std::vector<std::pair<OVERLAPPED, SizeReturn>> m_queue;
};
static void ResetOverlapped(OVERLAPPED& aio, DWORD offset = 0) {
aio.Internal = 0;
aio.InternalHigh = 0;
aio.Offset = offset;
aio.OffsetHigh = 0;
}
AsyncIO::AsyncIO(std::string_view filename, bool truncate) : m_inner(new AsyncIOInner) {
#if WINDOWS_STORE
CREATEFILE2_EXTENDED_PARAMETERS parms = {};
parms.dwSize = sizeof(CREATEFILE2_EXTENDED_PARAMETERS);
parms.dwFileAttributes = FILE_ATTRIBUTE_NORMAL;
parms.dwFileFlags = FILE_FLAG_OVERLAPPED;
m_inner->m_fh = CreateFile2(filename.data(), GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE,
truncate ? CREATE_ALWAYS : OPEN_ALWAYS, &parms);
#else
WStringConv wfilename(filename);
m_inner->m_fh =
CreateFileW(wfilename.c_str(), GENERIC_READ | GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, nullptr,
truncate ? CREATE_ALWAYS : OPEN_ALWAYS, FILE_FLAG_OVERLAPPED | FILE_ATTRIBUTE_NORMAL, nullptr);
#endif
}
AsyncIO::~AsyncIO() {
if (*this) {
if (CancelIoEx(m_inner->m_fh, nullptr))
waitForCompletion();
CloseHandle(m_inner->m_fh);
}
delete m_inner;
}
AsyncIO::AsyncIO(AsyncIO&& other) {
if (*this) {
if (CancelIoEx(m_inner->m_fh, nullptr))
waitForCompletion();
CloseHandle(m_inner->m_fh);
}
delete m_inner;
m_inner = other.m_inner;
other.m_inner = nullptr;
m_maxBlock = other.m_maxBlock;
}
AsyncIO& AsyncIO::operator=(AsyncIO&& other) {
if (*this) {
if (CancelIoEx(m_inner->m_fh, nullptr))
waitForCompletion();
CloseHandle(m_inner->m_fh);
}
delete m_inner;
m_inner = other.m_inner;
other.m_inner = nullptr;
m_maxBlock = other.m_maxBlock;
return *this;
}
void AsyncIO::_waitForOperation(size_t qIdx) const {
if (m_inner == nullptr) {
return;
}
auto& aio = m_inner->m_queue[qIdx];
if (aio.first.hEvent == 0)
return;
GetOverlappedResult(m_inner->m_fh, &aio.first, &aio.second, TRUE);
CloseHandle(aio.first.hEvent);
aio.first.hEvent = 0;
}
bool AsyncIO::asyncRead(size_t qIdx, void* buf, size_t length, off_t offset) {
OVERLAPPED& aio = m_inner->m_queue[qIdx].first;
if (aio.hEvent) {
#ifndef NDEBUG
fprintf(stderr, "WARNING: synchronous kabufuda fallback, check access polling\n");
#endif
_waitForOperation(qIdx);
} else {
aio.hEvent = CreateEvent(nullptr, TRUE, FALSE, nullptr);
}
ResetOverlapped(aio, DWORD(offset));
m_maxBlock = std::max(m_maxBlock, qIdx + 1);
BOOL res = ReadFile(m_inner->m_fh, buf, length, nullptr, &aio);
return res == TRUE || GetLastError() == ERROR_IO_PENDING;
}
bool AsyncIO::asyncWrite(size_t qIdx, const void* buf, size_t length, off_t offset) {
OVERLAPPED& aio = m_inner->m_queue[qIdx].first;
if (aio.hEvent) {
#ifndef NDEBUG
fprintf(stderr, "WARNING: synchronous kabufuda fallback, check access polling\n");
#endif
_waitForOperation(qIdx);
} else {
aio.hEvent = CreateEvent(nullptr, TRUE, FALSE, nullptr);
}
ResetOverlapped(aio, DWORD(offset));
m_maxBlock = std::max(m_maxBlock, qIdx + 1);
BOOL res = WriteFile(m_inner->m_fh, buf, length, nullptr, &aio);
return res == TRUE || GetLastError() == ERROR_IO_PENDING;
}
ECardResult AsyncIO::pollStatus(size_t qIdx, SizeReturn* szRet) const {
auto& aio = m_inner->m_queue[qIdx];
if (aio.first.hEvent == 0) {
if (szRet)
*szRet = aio.second;
return ECardResult::READY;
}
if (GetOverlappedResult(m_inner->m_fh, &aio.first, &aio.second, FALSE)) {
CloseHandle(aio.first.hEvent);
aio.first.hEvent = 0;
if (szRet)
*szRet = aio.second;
return ECardResult::READY;
} else {
if (GetLastError() == ERROR_IO_INCOMPLETE) {
return ECardResult::BUSY;
} else {
_waitForOperation(qIdx);
return ECardResult::IOERROR;
}
}
}
ECardResult AsyncIO::pollStatus() const {
ECardResult result = ECardResult::READY;
for (auto it = m_inner->m_queue.begin(); it != m_inner->m_queue.begin() + m_maxBlock; ++it) {
auto& aio = *it;
if (aio.first.hEvent == 0)
continue;
if (GetOverlappedResult(m_inner->m_fh, &aio.first, &aio.second, FALSE)) {
CloseHandle(aio.first.hEvent);
aio.first.hEvent = 0;
} else {
if (GetLastError() == ERROR_IO_INCOMPLETE) {
if (result > ECardResult::BUSY)
result = ECardResult::BUSY;
} else {
_waitForOperation(it - m_inner->m_queue.cbegin());
if (result > ECardResult::IOERROR)
result = ECardResult::IOERROR;
}
}
}
if (result == ECardResult::READY)
m_maxBlock = 0;
return result;
}
void AsyncIO::waitForCompletion() const {
for (size_t i = 0; i < m_maxBlock; ++i)
_waitForOperation(i);
m_maxBlock = 0;
}
void AsyncIO::resizeQueue(size_t queueSz) {
if (m_inner == nullptr) {
return;
}
m_inner->m_queue.resize(queueSz);
}
AsyncIO::operator bool() const { return m_inner != nullptr && m_inner->m_fh != INVALID_HANDLE_VALUE; }
} // namespace kabufuda