libSquish/rangefit.cpp

209 lines
5.2 KiB
C++

/* -----------------------------------------------------------------------------
Copyright (c) 2006 Simon Brown si@sjbrown.co.uk
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be included
in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
-------------------------------------------------------------------------- */
#include "rangefit.h"
#include "colourset.h"
#include "colourblock.h"
#include "colourblockGCN.h"
#include <cfloat>
namespace squish {
RangeFit::RangeFit( ColourSet const* colours, int flags, float* metric )
: ColourFit( colours, flags )
{
// initialise the metric (old perceptual = 0.2126f, 0.7152f, 0.0722f)
if( metric )
m_metric = Vec3( metric[0], metric[1], metric[2] );
else
m_metric = Vec3( 1.0f );
// initialise the best error
m_besterror = FLT_MAX;
// cache some values
int const count = m_colours->GetCount();
Vec3 const* values = m_colours->GetPoints();
float const* weights = m_colours->GetWeights();
// get the covariance matrix
Sym3x3 covariance = ComputeWeightedCovariance( count, values, weights );
// compute the principle component
Vec3 principle = ComputePrincipleComponent( covariance );
// get the min and max range as the codebook endpoints
Vec3 start( 0.0f );
Vec3 end( 0.0f );
if( count > 0 )
{
float min, max;
// compute the range
start = end = values[0];
min = max = Dot( values[0], principle );
for( int i = 1; i < count; ++i )
{
float val = Dot( values[i], principle );
if( val < min )
{
start = values[i];
min = val;
}
else if( val > max )
{
end = values[i];
max = val;
}
}
}
// clamp the output to [0, 1]
Vec3 const one( 1.0f );
Vec3 const zero( 0.0f );
start = Min( one, Max( zero, start ) );
end = Min( one, Max( zero, end ) );
// clamp to the grid and save
Vec3 const grid( 31.0f, 63.0f, 31.0f );
Vec3 const gridrcp( 1.0f/31.0f, 1.0f/63.0f, 1.0f/31.0f );
Vec3 const half( 0.5f );
m_start = Truncate( grid*start + half )*gridrcp;
m_end = Truncate( grid*end + half )*gridrcp;
}
void RangeFit::Compress3( void* block )
{
// cache some values
int const count = m_colours->GetCount();
Vec3 const* values = m_colours->GetPoints();
// create a codebook
Vec3 codes[3];
codes[0] = m_start;
codes[1] = m_end;
codes[2] = 0.5f*m_start + 0.5f*m_end;
// match each point to the closest code
u8 closest[16];
float error = 0.0f;
for( int i = 0; i < count; ++i )
{
// find the closest code
float dist = FLT_MAX;
int idx = 0;
for( int j = 0; j < 3; ++j )
{
float d = LengthSquared( m_metric*( values[i] - codes[j] ) );
if( d < dist )
{
dist = d;
idx = j;
}
}
// save the index
closest[i] = ( u8 )idx;
// accumulate the error
error += dist;
}
// save this scheme if it wins
if( error < m_besterror )
{
// remap the indices
u8 indices[16];
m_colours->RemapIndices( closest, indices );
// save the block
if ( ( m_flags & kDxt1GCN ) != 0 )
WriteColourBlock3GCN( m_start, m_end, indices, block );
else
WriteColourBlock3( m_start, m_end, indices, block );
// save the error
m_besterror = error;
}
}
void RangeFit::Compress4( void* block )
{
// cache some values
int const count = m_colours->GetCount();
Vec3 const* values = m_colours->GetPoints();
// create a codebook
Vec3 codes[4];
codes[0] = m_start;
codes[1] = m_end;
codes[2] = ( 2.0f/3.0f )*m_start + ( 1.0f/3.0f )*m_end;
codes[3] = ( 1.0f/3.0f )*m_start + ( 2.0f/3.0f )*m_end;
// match each point to the closest code
u8 closest[16];
float error = 0.0f;
for( int i = 0; i < count; ++i )
{
// find the closest code
float dist = FLT_MAX;
int idx = 0;
for( int j = 0; j < 4; ++j )
{
float d = LengthSquared( m_metric*( values[i] - codes[j] ) );
if( d < dist )
{
dist = d;
idx = j;
}
}
// save the index
closest[i] = ( u8 )idx;
// accumulate the error
error += dist;
}
// save this scheme if it wins
if( error < m_besterror )
{
// remap the indices
u8 indices[16];
m_colours->RemapIndices( closest, indices );
// save the block
if ( ( m_flags & kDxt1GCN ) != 0 )
WriteColourBlock4GCN( m_start, m_end, indices, block );
else
WriteColourBlock4( m_start, m_end, indices, block );
// save the error
m_besterror = error;
}
}
} // namespace squish