mirror of https://github.com/AxioDL/metaforce.git
251 lines
11 KiB
C
251 lines
11 KiB
C
|
/* -*- c++ -*- (enables emacs c++ mode) */
|
||
|
/*===========================================================================
|
||
|
|
||
|
Copyright (C) 2003-2017 Yves Renard
|
||
|
|
||
|
This file is a part of GetFEM++
|
||
|
|
||
|
GetFEM++ is free software; you can redistribute it and/or modify it
|
||
|
under the terms of the GNU Lesser General Public License as published
|
||
|
by the Free Software Foundation; either version 3 of the License, or
|
||
|
(at your option) any later version along with the GCC Runtime Library
|
||
|
Exception either version 3.1 or (at your option) any later version.
|
||
|
This program is distributed in the hope that it will be useful, but
|
||
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
||
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
||
|
License and GCC Runtime Library Exception for more details.
|
||
|
You should have received a copy of the GNU Lesser General Public License
|
||
|
along with this program; if not, write to the Free Software Foundation,
|
||
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
||
|
|
||
|
As a special exception, you may use this file as it is a part of a free
|
||
|
software library without restriction. Specifically, if other files
|
||
|
instantiate templates or use macros or inline functions from this file,
|
||
|
or you compile this file and link it with other files to produce an
|
||
|
executable, this file does not by itself cause the resulting executable
|
||
|
to be covered by the GNU Lesser General Public License. This exception
|
||
|
does not however invalidate any other reasons why the executable file
|
||
|
might be covered by the GNU Lesser General Public License.
|
||
|
|
||
|
===========================================================================*/
|
||
|
|
||
|
// This file is a modified version of lu.h from MTL.
|
||
|
// See http://osl.iu.edu/research/mtl/
|
||
|
// Following the corresponding Copyright notice.
|
||
|
//===========================================================================
|
||
|
//
|
||
|
// Copyright (c) 1998-2001, University of Notre Dame. All rights reserved.
|
||
|
// Redistribution and use in source and binary forms, with or without
|
||
|
// modification, are permitted provided that the following conditions are met:
|
||
|
//
|
||
|
// * Redistributions of source code must retain the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer.
|
||
|
// * Redistributions in binary form must reproduce the above copyright
|
||
|
// notice, this list of conditions and the following disclaimer in the
|
||
|
// documentation and/or other materials provided with the distribution.
|
||
|
// * Neither the name of the University of Notre Dame nor the
|
||
|
// names of its contributors may be used to endorse or promote products
|
||
|
// derived from this software without specific prior written permission.
|
||
|
//
|
||
|
// THIS SOFTWARE IS PROVIDED BY THE TRUSTEES OF INDIANA UNIVERSITY AND
|
||
|
// CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
|
||
|
// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
||
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE TRUSTEES
|
||
|
// OF INDIANA UNIVERSITY AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
||
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
|
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
||
|
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
|
//
|
||
|
//===========================================================================
|
||
|
|
||
|
/**@file gmm_dense_lu.h
|
||
|
@author Andrew Lumsdaine, Jeremy G. Siek, Lie-Quan Lee, Y. Renard
|
||
|
@date June 5, 2003.
|
||
|
@brief LU factorizations and determinant computation for dense matrices.
|
||
|
*/
|
||
|
#ifndef GMM_DENSE_LU_H
|
||
|
#define GMM_DENSE_LU_H
|
||
|
|
||
|
#include "gmm_dense_Householder.h"
|
||
|
#include "gmm_opt.h"
|
||
|
|
||
|
namespace gmm {
|
||
|
|
||
|
|
||
|
/** LU Factorization of a general (dense) matrix (real or complex).
|
||
|
|
||
|
This is the outer product (a level-2 operation) form of the LU
|
||
|
Factorization with pivoting algorithm . This is equivalent to
|
||
|
LAPACK's dgetf2. Also see "Matrix Computations" 3rd Ed. by Golub
|
||
|
and Van Loan section 3.2.5 and especially page 115.
|
||
|
|
||
|
The pivot indices in ipvt are indexed starting from 1
|
||
|
so that this is compatible with LAPACK (Fortran).
|
||
|
*/
|
||
|
template <typename DenseMatrix, typename Pvector>
|
||
|
size_type lu_factor(DenseMatrix& A, Pvector& ipvt) {
|
||
|
typedef typename linalg_traits<DenseMatrix>::value_type T;
|
||
|
typedef typename linalg_traits<Pvector>::value_type int_T;
|
||
|
typedef typename number_traits<T>::magnitude_type R;
|
||
|
size_type info(0), i, j, jp, M(mat_nrows(A)), N(mat_ncols(A));
|
||
|
size_type NN = std::min(M, N);
|
||
|
std::vector<T> c(M), r(N);
|
||
|
|
||
|
GMM_ASSERT2(ipvt.size()+1 >= NN, "IPVT too small");
|
||
|
for (i = 0; i+1 < NN; ++i) ipvt[i] = int_T(i);
|
||
|
|
||
|
if (M || N) {
|
||
|
for (j = 0; j+1 < NN; ++j) {
|
||
|
R max = gmm::abs(A(j,j)); jp = j;
|
||
|
for (i = j+1; i < M; ++i) /* find pivot. */
|
||
|
if (gmm::abs(A(i,j)) > max) { jp = i; max = gmm::abs(A(i,j)); }
|
||
|
ipvt[j] = int_T(jp + 1);
|
||
|
|
||
|
if (max == R(0)) { info = j + 1; break; }
|
||
|
if (jp != j) for (i = 0; i < N; ++i) std::swap(A(jp, i), A(j, i));
|
||
|
|
||
|
for (i = j+1; i < M; ++i) { A(i, j) /= A(j,j); c[i-j-1] = -A(i, j); }
|
||
|
for (i = j+1; i < N; ++i) r[i-j-1] = A(j, i); // avoid the copy ?
|
||
|
rank_one_update(sub_matrix(A, sub_interval(j+1, M-j-1),
|
||
|
sub_interval(j+1, N-j-1)), c, conjugated(r));
|
||
|
}
|
||
|
ipvt[NN-1] = int_T(NN);
|
||
|
}
|
||
|
return info;
|
||
|
}
|
||
|
|
||
|
/** LU Solve : Solve equation Ax=b, given an LU factored matrix.*/
|
||
|
// Thanks to Valient Gough for this routine!
|
||
|
template <typename DenseMatrix, typename VectorB, typename VectorX,
|
||
|
typename Pvector>
|
||
|
void lu_solve(const DenseMatrix &LU, const Pvector& pvector,
|
||
|
VectorX &x, const VectorB &b) {
|
||
|
typedef typename linalg_traits<DenseMatrix>::value_type T;
|
||
|
copy(b, x);
|
||
|
for(size_type i = 0; i < pvector.size(); ++i) {
|
||
|
size_type perm = pvector[i]-1; // permutations stored in 1's offset
|
||
|
if(i != perm) { T aux = x[i]; x[i] = x[perm]; x[perm] = aux; }
|
||
|
}
|
||
|
/* solve Ax = b -> LUx = b -> Ux = L^-1 b. */
|
||
|
lower_tri_solve(LU, x, true);
|
||
|
upper_tri_solve(LU, x, false);
|
||
|
}
|
||
|
|
||
|
template <typename DenseMatrix, typename VectorB, typename VectorX>
|
||
|
void lu_solve(const DenseMatrix &A, VectorX &x, const VectorB &b) {
|
||
|
typedef typename linalg_traits<DenseMatrix>::value_type T;
|
||
|
dense_matrix<T> B(mat_nrows(A), mat_ncols(A));
|
||
|
std::vector<int> ipvt(mat_nrows(A));
|
||
|
gmm::copy(A, B);
|
||
|
size_type info = lu_factor(B, ipvt);
|
||
|
GMM_ASSERT1(!info, "Singular system, pivot = " << info);
|
||
|
lu_solve(B, ipvt, x, b);
|
||
|
}
|
||
|
|
||
|
template <typename DenseMatrix, typename VectorB, typename VectorX,
|
||
|
typename Pvector>
|
||
|
void lu_solve_transposed(const DenseMatrix &LU, const Pvector& pvector,
|
||
|
VectorX &x, const VectorB &b) {
|
||
|
typedef typename linalg_traits<DenseMatrix>::value_type T;
|
||
|
copy(b, x);
|
||
|
lower_tri_solve(transposed(LU), x, false);
|
||
|
upper_tri_solve(transposed(LU), x, true);
|
||
|
for(size_type i = pvector.size(); i > 0; --i) {
|
||
|
size_type perm = pvector[i-1]-1; // permutations stored in 1's offset
|
||
|
if(i-1 != perm) { T aux = x[i-1]; x[i-1] = x[perm]; x[perm] = aux; }
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
|
||
|
///@cond DOXY_SHOW_ALL_FUNCTIONS
|
||
|
template <typename DenseMatrixLU, typename DenseMatrix, typename Pvector>
|
||
|
void lu_inverse(const DenseMatrixLU& LU, const Pvector& pvector,
|
||
|
DenseMatrix& AInv, col_major) {
|
||
|
typedef typename linalg_traits<DenseMatrixLU>::value_type T;
|
||
|
std::vector<T> tmp(pvector.size(), T(0));
|
||
|
std::vector<T> result(pvector.size());
|
||
|
for(size_type i = 0; i < pvector.size(); ++i) {
|
||
|
tmp[i] = T(1);
|
||
|
lu_solve(LU, pvector, result, tmp);
|
||
|
copy(result, mat_col(AInv, i));
|
||
|
tmp[i] = T(0);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
template <typename DenseMatrixLU, typename DenseMatrix, typename Pvector>
|
||
|
void lu_inverse(const DenseMatrixLU& LU, const Pvector& pvector,
|
||
|
DenseMatrix& AInv, row_major) {
|
||
|
typedef typename linalg_traits<DenseMatrixLU>::value_type T;
|
||
|
std::vector<T> tmp(pvector.size(), T(0));
|
||
|
std::vector<T> result(pvector.size());
|
||
|
for(size_type i = 0; i < pvector.size(); ++i) {
|
||
|
tmp[i] = T(1); // to be optimized !!
|
||
|
// on peut sur le premier tri solve reduire le systeme
|
||
|
// et peut etre faire un solve sur une serie de vecteurs au lieu
|
||
|
// de vecteur a vecteur (accumulation directe de l'inverse dans la
|
||
|
// matrice au fur et a mesure du calcul ... -> evite la copie finale
|
||
|
lu_solve_transposed(LU, pvector, result, tmp);
|
||
|
copy(result, mat_row(AInv, i));
|
||
|
tmp[i] = T(0);
|
||
|
}
|
||
|
}
|
||
|
///@endcond
|
||
|
|
||
|
/** Given an LU factored matrix, build the inverse of the matrix. */
|
||
|
template <typename DenseMatrixLU, typename DenseMatrix, typename Pvector>
|
||
|
void lu_inverse(const DenseMatrixLU& LU, const Pvector& pvector,
|
||
|
const DenseMatrix& AInv_) {
|
||
|
DenseMatrix& AInv = const_cast<DenseMatrix&>(AInv_);
|
||
|
lu_inverse(LU, pvector, AInv, typename principal_orientation_type<typename
|
||
|
linalg_traits<DenseMatrix>::sub_orientation>::potype());
|
||
|
}
|
||
|
|
||
|
/** Given a dense matrix, build the inverse of the matrix, and
|
||
|
return the determinant */
|
||
|
template <typename DenseMatrix>
|
||
|
typename linalg_traits<DenseMatrix>::value_type
|
||
|
lu_inverse(const DenseMatrix& A_, bool doassert = true) {
|
||
|
typedef typename linalg_traits<DenseMatrix>::value_type T;
|
||
|
DenseMatrix& A = const_cast<DenseMatrix&>(A_);
|
||
|
dense_matrix<T> B(mat_nrows(A), mat_ncols(A));
|
||
|
std::vector<int> ipvt(mat_nrows(A));
|
||
|
gmm::copy(A, B);
|
||
|
size_type info = lu_factor(B, ipvt);
|
||
|
if (doassert) GMM_ASSERT1(!info, "Non invertible matrix, pivot = "<<info);
|
||
|
if (!info) lu_inverse(B, ipvt, A);
|
||
|
return lu_det(B, ipvt);
|
||
|
}
|
||
|
|
||
|
/** Compute the matrix determinant (via a LU factorization) */
|
||
|
template <typename DenseMatrixLU, typename Pvector>
|
||
|
typename linalg_traits<DenseMatrixLU>::value_type
|
||
|
lu_det(const DenseMatrixLU& LU, const Pvector &pvector) {
|
||
|
typedef typename linalg_traits<DenseMatrixLU>::value_type T;
|
||
|
T det(1);
|
||
|
for (size_type j = 0; j < std::min(mat_nrows(LU), mat_ncols(LU)); ++j)
|
||
|
det *= LU(j,j);
|
||
|
for(size_type i = 0; i < pvector.size(); ++i)
|
||
|
if (i != size_type(pvector[i]-1)) { det = -det; }
|
||
|
return det;
|
||
|
}
|
||
|
|
||
|
template <typename DenseMatrix>
|
||
|
typename linalg_traits<DenseMatrix>::value_type
|
||
|
lu_det(const DenseMatrix& A) {
|
||
|
typedef typename linalg_traits<DenseMatrix>::value_type T;
|
||
|
dense_matrix<T> B(mat_nrows(A), mat_ncols(A));
|
||
|
std::vector<int> ipvt(mat_nrows(A));
|
||
|
gmm::copy(A, B);
|
||
|
lu_factor(B, ipvt);
|
||
|
return lu_det(B, ipvt);
|
||
|
}
|
||
|
|
||
|
}
|
||
|
|
||
|
#endif
|
||
|
|