metaforce/Runtime/Collision/CollisionUtil.cpp

1240 lines
38 KiB
C++

#include "CollisionUtil.hpp"
#include "CCollisionInfo.hpp"
#include "CCollisionInfoList.hpp"
namespace urde::CollisionUtil
{
bool LineIntersectsOBBox(const zeus::COBBox& obb, const zeus::CMRay& ray, float& d)
{
zeus::CVector3f norm;
return RayAABoxIntersection(ray.getInvUnscaledTransformRay(obb.transform), {-obb.extents, obb.extents},
norm, d);
}
u32 RayAABoxIntersection(const zeus::CMRay& ray, const zeus::CAABox& aabb, float& tMin, float& tMax)
{
tMin = -999999.f;
tMax = 999999.f;
for (int i=0 ; i<3 ; ++i)
{
if (std::fabs(ray.dir[i]) < 0.00001f)
{
if (ray.start[i] < aabb.min[i] || ray.start[i] > aabb.max[i])
return 0;
}
else
{
if (ray.dir[i] < 0.f)
{
float startToMax = aabb.max[i] - ray.start[i];
float startToMin = aabb.min[i] - ray.start[i];
float dirRecip = 1.f / ray.dir[i];
if (startToMax < tMin * ray.dir[i])
tMin = startToMax * dirRecip;
if (startToMin > tMax * ray.dir[i])
tMax = startToMin * dirRecip;
}
else
{
float startToMin = aabb.min[i] - ray.start[i];
float startToMax = aabb.max[i] - ray.start[i];
float dirRecip = 1.f / ray.dir[i];
if (startToMin > tMin * ray.dir[i])
tMin = startToMin * dirRecip;
if (startToMax < tMax * ray.dir[i])
tMax = startToMax * dirRecip;
}
}
}
return tMin <= tMax ? 2 : 0;
}
u32 RayAABoxIntersection(const zeus::CMRay& ray, const zeus::CAABox& aabb,
zeus::CVector3f& norm, float& d)
{
int sign[] = {2, 2, 2};
bool bad = true;
zeus::CVector3f rayStart = ray.start;
zeus::CVector3f rayDelta = ray.delta;
zeus::CVector3f aabbMin = aabb.min;
zeus::CVector3f aabbMax = aabb.max;
zeus::CVector3f vec0 = {-1.f, -1.f, -1.f};
zeus::CVector3f vec1;
if (rayDelta.x != 0.f && rayDelta.y != 0.f && rayDelta.z != 0.f)
{
for (int i=0 ; i<3 ; ++i)
{
if (rayStart[i] < aabbMin[i])
{
sign[i] = 1;
bad = false;
vec0[i] = (aabbMin[i] - rayStart[i]) / rayDelta[i];
}
else if (rayStart[i] > aabbMax[i])
{
sign[i] = 0;
bad = false;
vec0[i] = (aabbMax[i] - rayStart[i]) / rayDelta[i];
}
}
if (bad)
{
d = 0.f;
return 1;
}
}
else
{
zeus::CVector3f end;
for (int i=0 ; i<3 ; ++i)
{
if (rayStart[i] < aabbMin[i])
{
sign[i] = 1;
bad = false;
end[i] = aabbMin[i];
}
else if (rayStart[i] > aabbMax[i])
{
sign[i] = 0;
bad = false;
end[i] = aabbMax[i];
}
}
if (bad)
{
d = 0.f;
return 1;
}
for (int i=0 ; i<3 ; ++i)
if (sign[i] != 2 && rayDelta[i] != 0.f)
vec0[i] = (end[i] - rayStart[i]) / rayDelta[i];
}
float maxComp = vec0.x;
int maxCompIdx = 0;
if (maxComp < vec0.y)
{
maxComp = vec0.y;
maxCompIdx = 1;
}
if (maxComp < vec0.z)
{
maxComp = vec0.z;
maxCompIdx = 2;
}
if (maxComp < 0.f || maxComp > 1.f)
return 0;
for (int i=0 ; i<3 ; ++i)
{
if (maxCompIdx != i)
{
vec1[i] = maxComp * rayDelta[i] + rayStart[i];
if (vec1[i] > aabbMax[i])
return 0;
}
}
d = maxComp;
norm = zeus::CVector3f::skZero;
norm[maxCompIdx] = (sign[maxCompIdx] == 1) ? -1.f : 1.f;
return 2;
}
u32 RayAABoxIntersection_Double(const zeus::CMRay& ray, const zeus::CAABox& aabb,
zeus::CVector3f& norm, double& d)
{
int sign[] = {2, 2, 2};
bool bad = true;
zeus::CVector3d rayStart = ray.start;
zeus::CVector3d rayDelta = ray.delta;
zeus::CVector3d aabbMin = aabb.min;
zeus::CVector3d aabbMax = aabb.max;
zeus::CVector3d vec0 = {-1.0, -1.0, -1.0};
zeus::CVector3d vec1;
if (rayDelta.x != 0.0 && rayDelta.y != 0.0 && rayDelta.z != 0.0)
{
for (int i=0 ; i<3 ; ++i)
{
if (rayStart[i] < aabbMin[i])
{
sign[i] = 1;
bad = false;
vec0[i] = (aabbMin[i] - rayStart[i]) / rayDelta[i];
}
else if (rayStart[i] > aabbMax[i])
{
sign[i] = 0;
bad = false;
vec0[i] = (aabbMax[i] - rayStart[i]) / rayDelta[i];
}
}
if (bad)
{
d = 0.0;
return 1;
}
}
else
{
zeus::CVector3d end;
for (int i=0 ; i<3 ; ++i)
{
if (rayStart[i] < aabbMin[i])
{
sign[i] = 1;
bad = false;
end[i] = aabbMin[i];
}
else if (rayStart[i] > aabbMax[i])
{
sign[i] = 0;
bad = false;
end[i] = aabbMax[i];
}
}
if (bad)
{
d = 0.0;
return 1;
}
for (int i=0 ; i<3 ; ++i)
if (sign[i] != 2 && rayDelta[i] != 0.0)
vec0[i] = (end[i] - rayStart[i]) / rayDelta[i];
}
double maxComp = vec0.x;
int maxCompIdx = 0;
if (maxComp < vec0.y)
{
maxComp = vec0.y;
maxCompIdx = 1;
}
if (maxComp < vec0.z)
{
maxComp = vec0.z;
maxCompIdx = 2;
}
if (maxComp < 0.0 || maxComp > 1.0)
return 0;
for (int i=0 ; i<3 ; ++i)
{
if (maxCompIdx != i)
{
vec1[i] = maxComp * rayDelta[i] + rayStart[i];
if (vec1[i] > aabbMax[i])
return 0;
}
}
d = maxComp;
norm = zeus::CVector3f::skZero;
norm[maxCompIdx] = (sign[maxCompIdx] == 1) ? -1.0 : 1.0;
return 2;
}
bool RaySphereIntersection_Double(const zeus::CSphere& sphere, const zeus::CVector3f& pos,
const zeus::CVector3f& dir, double& T)
{
zeus::CVector3d sPosD = sphere.position;
zeus::CVector3d posD = pos;
zeus::CVector3d sphereToPos = posD - sPosD;
double f30 = sphereToPos.dot(zeus::CVector3d(dir)) * 2.0;
double f1 = f30 * f30 - 4.0 * (sphereToPos.magSquared() - sphere.radius * sphere.radius);
if (f1 >= 0.0)
{
double intersectT = 0.5 * (-f30 - std::sqrt(f1));
if (T == 0 || intersectT < T)
{
T = intersectT;
return true;
}
}
return false;
}
bool RaySphereIntersection(const zeus::CSphere& sphere, const zeus::CVector3f& pos, const zeus::CVector3f& dir,
float mag, float& T, zeus::CVector3f& point)
{
zeus::CVector3f rayToSphere = sphere.position - pos;
float magSq = rayToSphere.magSquared();
float dirDot = rayToSphere.dot(dir);
float radSq = sphere.radius * sphere.radius;
if (dirDot < 0.f && magSq > radSq)
return false;
float intersectSq = radSq - (magSq - dirDot * dirDot);
if (intersectSq < 0.f)
return false;
T = magSq > radSq ? dirDot - std::sqrt(intersectSq) : dirDot + std::sqrt(intersectSq);
if (T < mag || mag == 0.f)
{
point = pos + T * dir;
return true;
}
return false;
}
bool RayTriangleIntersection_Double(const zeus::CVector3f& point, const zeus::CVector3f& dir,
const zeus::CVector3f* verts, double& d)
{
zeus::CVector3d v0tov1 = verts[1] - verts[0];
zeus::CVector3d v0tov2 = verts[2] - verts[0];
zeus::CVector3d cross0 = zeus::CVector3d(dir).cross(v0tov2);
double dot0 = v0tov1.dot(cross0);
if (dot0 < DBL_EPSILON)
return false;
zeus::CVector3d v0toPoint = point - verts[0];
double dot1 = v0toPoint.dot(cross0);
if (dot1 < 0.0 || dot1 > dot0)
return false;
zeus::CVector3d cross1 = v0toPoint.cross(v0tov1);
double dot2 = cross1.dot(dir);
if (dot2 < 0.0 || dot1 + dot2 > dot0)
return false;
double final = 1.0 / dot0 * cross1.dot(v0tov2);
if (final < 0.0 || final >= d)
return false;
d = final;
return true;
}
bool RayTriangleIntersection(const zeus::CVector3f& point, const zeus::CVector3f& dir,
const zeus::CVector3f* verts, float& d)
{
zeus::CVector3f v0tov1 = verts[1] - verts[0];
zeus::CVector3f v0tov2 = verts[2] - verts[0];
zeus::CVector3f cross0 = dir.cross(v0tov2);
float dot0 = v0tov1.dot(cross0);
if (dot0 < DBL_EPSILON)
return false;
zeus::CVector3f v0toPoint = point - verts[0];
float dot1 = v0toPoint.dot(cross0);
if (dot1 < 0.f || dot1 > dot0)
return false;
zeus::CVector3f cross1 = v0toPoint.cross(v0tov1);
float dot2 = cross1.dot(dir);
if (dot2 < 0.f || dot1 + dot2 > dot0)
return false;
float final = 1.f / dot0 * cross1.dot(v0tov2);
if (final < 0.f || final >= d)
return false;
d = final;
return true;
}
void FilterOutBackfaces(const zeus::CVector3f& vec, const CCollisionInfoList& in, CCollisionInfoList& out)
{
if (vec.canBeNormalized())
{
zeus::CVector3f norm = vec.normalized();
for (const CCollisionInfo& info : in)
{
if (info.GetNormalLeft().dot(norm) < 0.001f)
out.Add(info, false);
}
}
else
{
out = in;
}
}
void FilterByClosestNormal(const zeus::CVector3f& norm, const CCollisionInfoList& in, CCollisionInfoList& out)
{
float maxDot = -1.1f;
int idx = -1;
int i=0;
for (const CCollisionInfo& info : in)
{
float dot = info.GetNormalLeft().dot(norm);
if (dot > maxDot)
{
maxDot = dot;
idx = i;
}
++i;
}
if (idx != -1)
out.Add(in.GetItem(i), false);
}
static const zeus::CVector3f AABBNormalTable[] =
{
{-1.f, 0.f, 0.f},
{1.f, 0.f, 0.f},
{0.f, -1.f, 0.f},
{0.f, 1.f, 0.f},
{0.f, 0.f, -1.f},
{0.f, 0.f, 1.f}
};
bool AABoxAABoxIntersection(const zeus::CAABox& aabb0, const CMaterialList& list0,
const zeus::CAABox& aabb1, const CMaterialList& list1,
CCollisionInfoList& infoList)
{
zeus::CVector3f maxOfMin(std::max(aabb0.min.x, aabb1.min.x),
std::max(aabb0.min.y, aabb1.min.y),
std::max(aabb0.min.z, aabb1.min.z));
zeus::CVector3f minOfMax(std::min(aabb0.max.x, aabb1.max.x),
std::min(aabb0.max.y, aabb1.max.y),
std::min(aabb0.max.z, aabb1.max.z));
if (maxOfMin.x >= minOfMax.x || maxOfMin.y >= minOfMax.y || maxOfMin.z >= minOfMax.z)
return false;
zeus::CAABox boolAABB(maxOfMin, minOfMax);
int ineqFlags[] =
{
(aabb0.min.x <= aabb1.min.x ? 1 << 0 : 0) |
(aabb0.min.x <= aabb1.max.x ? 1 << 1 : 0) |
(aabb0.max.x <= aabb1.min.x ? 1 << 2 : 0) |
(aabb0.max.x <= aabb1.max.x ? 1 << 3 : 0),
(aabb0.min.y <= aabb1.min.y ? 1 << 0 : 0) |
(aabb0.min.y <= aabb1.max.y ? 1 << 1 : 0) |
(aabb0.max.y <= aabb1.min.y ? 1 << 2 : 0) |
(aabb0.max.y <= aabb1.max.y ? 1 << 3 : 0),
(aabb0.min.z <= aabb1.min.z ? 1 << 0 : 0) |
(aabb0.min.z <= aabb1.max.z ? 1 << 1 : 0) |
(aabb0.max.z <= aabb1.min.z ? 1 << 2 : 0) |
(aabb0.max.z <= aabb1.max.z ? 1 << 3 : 0),
};
for (int i=0 ; i<3 ; ++i)
{
switch (ineqFlags[i])
{
case 0x2: // aabb0.min <= aabb1.max
{
CCollisionInfo info(boolAABB, list0, list1, AABBNormalTable[i*2+1], -AABBNormalTable[i*2+1]);
infoList.Add(info, false);
break;
}
case 0xB: // aabb0.min <= aabb1.min && aabb0.max <= aabb1.min && aabb0.max <= aabb1.max
{
CCollisionInfo info(boolAABB, list0, list1, AABBNormalTable[i*2], -AABBNormalTable[i*2]);
infoList.Add(info, false);
break;
}
default: break;
}
}
if (infoList.GetCount())
return true;
{
CCollisionInfo info(boolAABB, list0, list1, AABBNormalTable[4], -AABBNormalTable[4]);
infoList.Add(info, false);
}
{
CCollisionInfo info(boolAABB, list0, list1, AABBNormalTable[5], -AABBNormalTable[5]);
infoList.Add(info, false);
}
return true;
}
bool AABoxAABoxIntersection(const zeus::CAABox& aabb0, const zeus::CAABox& aabb1)
{
return aabb0.intersects(aabb1);
}
/* http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox2.txt */
/********************************************************/
/* AABB-triangle overlap test code */
/* by Tomas Akenine-Möller */
/* Function: int triBoxOverlap(float boxcenter[3], */
/* float boxhalfsize[3],float triverts[3][3]); */
/* History: */
/* 2001-03-05: released the code in its first version */
/* 2001-06-18: changed the order of the tests, faster */
/* */
/* Acknowledgement: Many thanks to Pierre Terdiman for */
/* suggestions and discussions on how to optimize code. */
/* Thanks to David Hunt for finding a ">="-bug! */
/********************************************************/
#define FINDMINMAX(x0,x1,x2,min,max) \
min = max = x0; \
if (x1<min) min = x1;\
if (x1>max) max = x1;\
if (x2<min) min = x2;\
if (x2>max) max = x2;
static bool planeBoxOverlap(const zeus::CVector3f& normal, float d, const zeus::CVector3f& maxbox)
{
zeus::CVector3f vmin, vmax;
for (int q=0 ; q<=2 ; q++)
{
if (normal[q] > 0.0f)
{
vmin[q] = -maxbox[q];
vmax[q] = maxbox[q];
}
else
{
vmin[q] = maxbox[q];
vmax[q] = -maxbox[q];
}
}
if (normal.dot(vmin) + d > 0.0f) return false;
if (normal.dot(vmax) + d >= 0.0f) return true;
return false;
}
/*======================== X-tests ========================*/
#define AXISTEST_X01(a, b, fa, fb) \
p0 = a*v0.y - b*v0.z; \
p2 = a*v2.y - b*v2.z; \
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
#define AXISTEST_X2(a, b, fa, fb) \
p0 = a*v0.y - b*v0.z; \
p1 = a*v1.y - b*v1.z; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.y + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
/*======================== Y-tests ========================*/
#define AXISTEST_Y02(a, b, fa, fb) \
p0 = -a*v0.x + b*v0.z; \
p2 = -a*v2.x + b*v2.z; \
if(p0<p2) {min=p0; max=p2;} else {min=p2; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
#define AXISTEST_Y1(a, b, fa, fb) \
p0 = -a*v0.x + b*v0.z; \
p1 = -a*v1.x + b*v1.z; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.z; \
if(min>rad || max<-rad) return false;
/*======================== Z-tests ========================*/
#define AXISTEST_Z12(a, b, fa, fb) \
p1 = a*v1.x - b*v1.y; \
p2 = a*v2.x - b*v2.y; \
if(p2<p1) {min=p2; max=p1;} else {min=p1; max=p2;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if(min>rad || max<-rad) return false;
#define AXISTEST_Z0(a, b, fa, fb) \
p0 = a*v0.x - b*v0.y; \
p1 = a*v1.x - b*v1.y; \
if(p0<p1) {min=p0; max=p1;} else {min=p1; max=p0;} \
rad = fa * boxhalfsize.x + fb * boxhalfsize.y; \
if(min>rad || max<-rad) return false;
bool TriBoxOverlap(const zeus::CVector3f& boxcenter, const zeus::CVector3f& boxhalfsize,
const zeus::CVector3f& trivert0, const zeus::CVector3f& trivert1,
const zeus::CVector3f& trivert2)
{
/* use separating axis theorem to test overlap between triangle and box */
/* need to test for overlap in these directions: */
/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
/* we do not even need to test these) */
/* 2) normal of the triangle */
/* 3) crossproduct(edge from tri, {x,y,z}-directin) */
/* this gives 3x3=9 more tests */
zeus::CVector3f v0, v1, v2;
float min, max, d, p0, p1, p2, rad, fex, fey, fez;
zeus::CVector3f normal, e0, e1, e2;
/* This is the fastest branch on Sun */
/* move everything so that the boxcenter is in (0,0,0) */
v0 = trivert0 - boxcenter;
v1 = trivert1 - boxcenter;
v2 = trivert2 - boxcenter;
/* compute triangle edges */
e0 = v1 - v0; /* tri edge 0 */
e1 = v2 - v1; /* tri edge 1 */
e2 = v0 - v2; /* tri edge 2 */
/* Bullet 3: */
/* test the 9 tests first (this was faster) */
fex = std::fabs(e0.x);
fey = std::fabs(e0.y);
fez = std::fabs(e0.z);
AXISTEST_X01(e0.z, e0.y, fez, fey);
AXISTEST_Y02(e0.z, e0.x, fez, fex);
AXISTEST_Z12(e0.y, e0.x, fey, fex);
fex = std::fabs(e1.x);
fey = std::fabs(e1.y);
fez = std::fabs(e1.z);
AXISTEST_X01(e1.z, e1.y, fez, fey);
AXISTEST_Y02(e1.z, e1.x, fez, fex);
AXISTEST_Z0(e1.y, e1.x, fey, fex);
fex = std::fabs(e2.x);
fey = std::fabs(e2.y);
fez = std::fabs(e2.z);
AXISTEST_X2(e2.z, e2.y, fez, fey);
AXISTEST_Y1(e2.z, e2.x, fez, fex);
AXISTEST_Z12(e2.y, e2.x, fey, fex);
/* Bullet 1: */
/* first test overlap in the {x,y,z}-directions */
/* find min, max of the triangle each direction, and test for overlap in */
/* that direction -- this is equivalent to testing a minimal AABB around */
/* the triangle against the AABB */
/* test in X-direction */
FINDMINMAX(v0.x, v1.x, v2.x, min, max);
if (min>boxhalfsize.x || max<-boxhalfsize.x) return false;
/* test in Y-direction */
FINDMINMAX(v0.y, v1.y, v2.y, min, max);
if (min>boxhalfsize.y || max<-boxhalfsize.y) return false;
/* test in Z-direction */
FINDMINMAX(v0.z, v1.z, v2.z, min, max);
if (min>boxhalfsize.z || max<-boxhalfsize.z) return false;
/* Bullet 2: */
/* test if the box intersects the plane of the triangle */
/* compute plane equation of triangle: normal*x+d=0 */
normal = e0.cross(e1);
d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
if (!planeBoxOverlap(normal, d, boxhalfsize)) return false;
return true; /* box and triangle overlaps */
}
double TriPointSqrDist(const zeus::CVector3f& point,
const zeus::CVector3f& trivert0, const zeus::CVector3f& trivert1,
const zeus::CVector3f& trivert2, float* baryX, float* baryY)
{
zeus::CVector3d A = trivert0 - point;
zeus::CVector3d B = trivert1 - trivert0;
zeus::CVector3d C = trivert2 - trivert0;
double bMag = B.magSquared();
double cMag = C.magSquared();
double bDotC = B.dot(C);
double aDotB = A.dot(B);
double aDotC = A.dot(C);
double ret = A.magSquared();
double rej = std::fabs(bMag * cMag - bDotC * bDotC);
double retB = bDotC * aDotC - cMag * aDotB;
double retA = bDotC * aDotB - bMag * aDotC;
if (retB + retA <= rej)
{
if (retB < 0.0)
{
if (retA < 0.0)
{
if (aDotB < 0.0)
{
retA = 0.0;
if (-aDotB >= bMag)
{
retB = 1.0;
ret += 2.0 * aDotB + bMag;
}
else
{
retB = -aDotB / bMag;
ret += aDotB * retB;
}
}
else
{
retB = 0.0;
if (aDotC >= 0.0)
{
retA = 0.0;
}
else if (-aDotC >= cMag)
{
retA = 1.0;
ret += 2.0 * aDotC + cMag;
}
else
{
retA = -aDotC / cMag;
ret += aDotC * retA;
}
}
}
else
{
retB = 0.0;
if (aDotC >= 0.0)
{
retA = 0.0;
}
else if (-aDotC >= cMag)
{
retA = 1.0;
ret += 2.0 * aDotC + cMag;
}
else
{
retA = -aDotC / cMag;
ret += aDotC * retA;
}
}
}
else if (retA < 0.0)
{
retA = 0.0;
if (aDotB >= 0.0)
{
retB = 0.0;
}
else if (-aDotB >= bMag)
{
retB = 1.0;
ret += 2.0 * aDotB + bMag;
}
else
{
retB = -aDotB / bMag;
ret += aDotB * retB;
}
}
else
{
float f3 = 1.0 / rej;
retA *= f3;
retB *= f3;
ret += retB * (2.0 * aDotB + (bMag * retB + bDotC * retA)) +
retA * (2.0 * aDotC + (bDotC * retB + cMag * retA));
}
}
else if (retB < 0.0)
{
retB = bDotC + aDotB;
retA = cMag + aDotC;
if (retA > retB)
{
retA -= retB;
retB = bMag - 2.0 * bDotC;
retB += cMag;
if (retA >= retB)
{
retB = 1.0;
retA = 0.0;
ret += 2.0 * aDotB + bMag;
}
else
{
retB = retA / retB;
retA = 1.0 - retB;
ret += retB * (2.0 * aDotB + (bMag * retB + bDotC * retA)) +
retA * (2.0 * aDotC + (bDotC * retB + cMag * retA));
}
}
else
{
retB = 0.0;
if (retA <= 0.0)
{
retA = 1.0;
ret += 2.0 * aDotC + cMag;
}
else if (aDotC >= 0.0)
{
retA = 0.0;
}
else
{
retA = -aDotC / cMag;
ret += aDotC * retA;
}
}
}
else
{
if (retA < 0.0)
{
retB = bDotC + aDotC;
retA = bMag + aDotB;
if (retA > retB)
{
retA -= retB;
retB = bMag - 2.0 * bDotC;
retB += cMag;
if (retA >= retB)
{
retA = 1.0;
retB = 0.0;
ret += 2.0 * aDotC + cMag;
}
else
{
retA /= retB;
retB = 1.0 - retA;
ret += retB * (2.0 * aDotB + (bMag * retB + bDotC * retA)) +
retA * (2.0 * aDotC + (bDotC * retB + cMag * retA));
}
}
else
{
retA = 0.0;
if (retA <= 0.0)
{
retB = 1.0;
ret += 2.0 * aDotB + bMag;
}
else if (aDotB >= 0.0)
{
retB = 0.0;
}
else
{
retB = -aDotB / bMag;
ret += aDotB * retB;
}
}
}
else
{
retB = cMag + aDotC;
retB -= bDotC;
retA = retB - aDotB;
if (retA <= 0.0)
{
retB = 0.0;
retA = 1.0;
ret += 2.0 * aDotC + cMag;
}
else
{
retB = bMag - 2.0 * bDotC;
retB += cMag;
if (retA >= retB)
{
retB = 1.0;
retA = 0.0;
ret += 2.0 * aDotB + bMag;
}
else
{
retB = retA / retB;
retA = 1.0 - retB;
ret += retB * (2.0 * aDotB + (bMag * retB + bDotC * retA)) +
retA * (2.0 * aDotC + (bDotC * retB + cMag * retA));
}
}
}
}
if (baryX)
*baryX = retA;
if (baryY)
*baryY = retB;
return ret;
}
bool TriSphereOverlap(const zeus::CSphere& sphere,
const zeus::CVector3f& trivert0, const zeus::CVector3f& trivert1,
const zeus::CVector3f& trivert2)
{
return TriPointSqrDist(sphere.position, trivert0, trivert1, trivert2, nullptr, nullptr) <=
sphere.radius * sphere.radius;
}
bool TriSphereIntersection(const zeus::CSphere& sphere,
const zeus::CVector3f& trivert0, const zeus::CVector3f& trivert1,
const zeus::CVector3f& trivert2, zeus::CVector3f& point, zeus::CVector3f& normal)
{
float baryX, baryY;
if (TriPointSqrDist(sphere.position, trivert0, trivert1, trivert2, &baryX, &baryY) >
sphere.radius * sphere.radius)
return false;
zeus::CVector3f barys(baryX, baryY, 1.f - (baryX + baryY));
point = zeus::baryToWorld(trivert2, trivert1, trivert0, barys);
if (baryX == 0.f || baryX == 1.f || baryY == 0.f || baryY == 1.f ||
barys.z == 0.f || barys.z == 1.f)
normal = -sphere.getSurfaceNormal(point);
else
normal = (trivert1 - trivert0).cross(trivert2 - trivert0).normalized();
return true;
}
bool BoxLineTest(const zeus::CAABox& aabb, const zeus::CVector3f& point, const zeus::CVector3f& dir,
float& tMin, float& tMax, int& axis, bool& sign)
{
tMin = -999999.f;
tMax = 999999.f;
for (int i=0 ; i<3 ; ++i)
{
if (dir[i] == 0.f)
if (point[i] < aabb.min[i] || point[i] > aabb.max[i])
return false;
float dirRecip = 1.f / dir[i];
float tmpMin, tmpMax;
if (dir[i] < 0.f)
{
tmpMin = (aabb.max[i] - point[i]) * dirRecip;
tmpMax = (aabb.min[i] - point[i]) * dirRecip;
}
else
{
tmpMin = (aabb.min[i] - point[i]) * dirRecip;
tmpMax = (aabb.max[i] - point[i]) * dirRecip;
}
if (tmpMin > tMin)
{
sign = dir[i] < 0.f;
axis = i;
tMin = tmpMin;
}
if (tmpMax < tMax)
tMax = tmpMax;
}
return tMin <= tMax;
}
bool LineCircleIntersection2d(const zeus::CVector3f& point, const zeus::CVector3f& dir, const zeus::CSphere& sphere,
int axis1, int axis2, float& d)
{
zeus::CVector3f delta = sphere.position - point;
zeus::CVector2f deltaVec(delta[axis1], delta[axis2]);
zeus::CVector2f dirVec(dir[axis1], dir[axis2]);
float dirVecMag = dirVec.magnitude();
if (dirVecMag < FLT_EPSILON)
return false;
float deltaVecDot = deltaVec.dot(dirVec / dirVecMag);
float deltaVecMagSq = deltaVec.magSquared();
float sphereRadSq = sphere.radius * sphere.radius;
if (deltaVecDot < 0.f && deltaVecMagSq > sphereRadSq)
return false;
float tSq = sphereRadSq - (deltaVecMagSq - deltaVecDot * deltaVecDot);
if (tSq < 0.f)
return false;
float t = std::sqrt(tSq);
d = (deltaVecMagSq > sphereRadSq) ? deltaVecDot - t : deltaVecDot + t;
d /= dirVecMag;
return true;
}
bool MovingSphereAABox(const zeus::CSphere& sphere, const zeus::CAABox& aabb, const zeus::CVector3f& dir,
double& dOut, zeus::CVector3f& point, zeus::CVector3f& normal)
{
zeus::CAABox expAABB(aabb.min - sphere.radius, aabb.max + sphere.radius);
float tMin, tMax;
int axis;
bool sign;
if (!BoxLineTest(expAABB, sphere.position, dir, tMin, tMax, axis, sign))
return false;
point = sphere.position + tMin * dir;
int nextAxis1 = (axis+1) % 3; // r0
int nextAxis2 = (axis+2) % 3; // r5
bool inMin1 = point[nextAxis1] >= aabb.min[nextAxis1]; // r6
bool inMax1 = point[nextAxis1] <= aabb.max[nextAxis1]; // r8
bool inBounds1 = inMin1 && inMax1; // r9
bool inMin2 = point[nextAxis2] >= aabb.min[nextAxis2]; // r7
bool inMax2 = point[nextAxis2] <= aabb.max[nextAxis2]; // r4
bool inBounds2 = inMin2 && inMax2; // r8
if (inBounds1 && inBounds2)
{
if (tMin < 0.f || tMin > dOut)
return false;
normal[axis] = sign ? 1.f : -1.f;
dOut = tMin;
point -= normal * sphere.radius;
return true;
}
else if (!inBounds1 && !inBounds2)
{
int pointFlags = (1 << axis) * sign | (1 << nextAxis1) * inMin1 | (1 << nextAxis2) * inMin2;
zeus::CVector3f aabbPoint = aabb.getPoint(pointFlags);
float d;
if (CollisionUtil::RaySphereIntersection(zeus::CSphere(aabbPoint, sphere.radius),
sphere.position, dir, dOut, d, point))
{
int useAxis = -1;
for (int i=0 ; i<3 ; ++i)
{
if ((pointFlags & (1 << i)) ? aabbPoint[i] > point[i] : aabbPoint[i] < point[i])
{
useAxis = i;
break;
}
}
if (useAxis == -1)
{
normal = (point - aabbPoint).normalized();
point -= sphere.radius * normal;
return true;
}
int useAxisNext1 = (useAxis+1) % 3;
int useAxisNext2 = (useAxis+2) % 3;
float d;
if (CollisionUtil::LineCircleIntersection2d(sphere.position, dir, zeus::CSphere(aabbPoint, sphere.radius),
useAxisNext1, useAxisNext2, d) && d > 0.f && d < dOut)
{
if (point[useAxis] > aabb.max[useAxis])
{
int useAxisBit = 1 << useAxis;
if (pointFlags & useAxisBit)
return false;
zeus::CVector3f aabbPoint1 = aabb.getPoint(pointFlags | useAxisBit);
if (CollisionUtil::RaySphereIntersection(zeus::CSphere(aabbPoint1, sphere.radius),
sphere.position, dir, dOut, d, point))
{
dOut = d;
normal = (point - aabbPoint1).normalized();
point -= normal * sphere.radius;
return true;
}
else
{
return false;
}
}
else if (point[useAxis] < aabb.min[useAxis])
{
int useAxisBit = 1 << useAxis;
if (!(pointFlags & useAxisBit))
return false;
zeus::CVector3f aabbPoint1 = aabb.getPoint(pointFlags ^ useAxisBit);
if (CollisionUtil::RaySphereIntersection(zeus::CSphere(aabbPoint1, sphere.radius),
sphere.position, dir, dOut, d, point))
{
dOut = d;
normal = (point - aabbPoint1).normalized();
point -= normal * sphere.radius;
return true;
}
else
{
return false;
}
}
else
{
normal = point - aabbPoint;
normal.normalize();
point -= normal * sphere.radius;
return true;
}
}
}
else
{
int reverseCount = 0;
float dMin = 1.0e10f;
int minAxis = 0;
for (int i=0 ; i<3 ; ++i)
{
if (std::fabs(dir[i]) > FLT_EPSILON)
{
bool pointMax = pointFlags & (1 << i);
if (pointMax != dir[i] > 0.f)
{
++reverseCount;
float d = 1.f / dir[i] * ((pointMax ? aabb.max[i] : aabb.min[i]) - sphere.position[i]);
if (d < 0.f)
return false;
if (d < dMin)
{
dMin = d;
minAxis = i;
}
}
}
}
if (reverseCount < 2)
return false;
int useAxisNext1 = (minAxis+1) % 3;
int useAxisNext2 = (minAxis+2) % 3;
float d;
if (CollisionUtil::LineCircleIntersection2d(sphere.position, dir, zeus::CSphere(aabbPoint, sphere.radius),
useAxisNext1, useAxisNext2, d) && d > 0.f && d < dOut)
{
point = sphere.position + d * dir;
if (point[minAxis] > aabb.max[minAxis])
return false;
if (point[minAxis] < aabb.min[minAxis])
return false;
dOut = d;
normal = point - aabbPoint;
normal.normalize();
point -= sphere.radius * normal;
return true;
}
else
{
return false;
}
}
}
bool useNextAxis1 = inBounds1 ? nextAxis2 : nextAxis1;
bool useNextAxis2 = inBounds1 ? nextAxis1 : nextAxis2;
int pointFlags = ((1 << int(useNextAxis1)) * (inBounds1 ? inMin2 : inMin1)) | ((1 << axis) * sign);
zeus::CVector3f aabbPoint2 = aabb.getPoint(pointFlags);
float d;
if (LineCircleIntersection2d(sphere.position, dir, zeus::CSphere(aabbPoint2, sphere.radius),
axis, useNextAxis1, d) && d > 0.f && d < dOut)
{
point = sphere.position + d * dir;
if (point[useNextAxis2] > aabb.max[useNextAxis2])
{
zeus::CVector3f aabbPoint3 = aabb.getPoint(pointFlags | (1 << int(useNextAxis2)));
if (point[useNextAxis2] < expAABB.max[useNextAxis2])
{
if (RaySphereIntersection(zeus::CSphere(aabbPoint3, sphere.radius),
sphere.position, dir, dOut, d, point))
{
dOut = d;
normal = (point - aabbPoint3).normalized();
point -= sphere.radius * normal;
return true;
}
}
return false;
}
else if (point[useNextAxis2] < aabb.min[useNextAxis2])
{
if (point[useNextAxis2] > expAABB.min[useNextAxis2])
{
if (RaySphereIntersection(zeus::CSphere(aabbPoint2, sphere.radius),
sphere.position, dir, dOut, d, point))
{
dOut = d;
normal = (point - aabbPoint2).normalized();
point -= sphere.radius * normal;
return true;
}
}
return false;
}
else
{
dOut = d;
normal = point - aabbPoint2;
normal.normalize();
point -= sphere.radius * normal;
return true;
}
}
return false;
}
bool AABox_AABox_Moving(const zeus::CAABox& aabb0, const zeus::CAABox& aabb1, const zeus::CVector3f& dir,
double& d, zeus::CVector3f& point, zeus::CVector3f& normal)
{
zeus::CVector3d vecMin(DBL_MIN);
zeus::CVector3d vecMax(DBL_MAX);
for (int i=0 ; i<3 ; ++i)
{
if (std::fabs(dir[i]) < FLT_EPSILON)
{
if (aabb0.min[i] >= aabb1.min[i] && aabb0.min[i] <= aabb1.max[i])
continue;
if (aabb0.max[i] >= aabb1.min[i] && aabb0.max[i] <= aabb1.max[i])
continue;
if (aabb0.min[i] < aabb1.min[i] && aabb0.max[i] > aabb1.max[i])
continue;
return false;
}
else
{
if (aabb0.max[i] < aabb1.min[i] && dir[i] > 0.f)
vecMin[i] = (aabb1.min[i] - aabb0.max[i]) / dir[i];
else if (aabb1.max[i] < aabb0.min[i] && dir[i] < 0.f)
vecMin[i] = (aabb1.max[i] - aabb0.min[i]) / dir[i];
else if (aabb1.max[i] > aabb0.min[i] && dir[i] < 0.f)
vecMin[i] = (aabb1.max[i] - aabb0.min[i]) / dir[i];
else if (aabb0.max[i] > aabb1.min[i] && dir[i] > 0.f)
vecMin[i] = (aabb1.min[i] - aabb0.max[i]) / dir[i];
if (aabb1.max[i] > aabb0.min[i] && dir[i] > 0.f)
vecMax[i] = (aabb1.max[i] - aabb0.min[i]) / dir[i];
else if (aabb0.max[i] > aabb1.min[i] && dir[i] < 0.f)
vecMax[i] = (aabb1.min[i] - aabb0.max[i]) / dir[i];
else if (aabb0.max[i] < aabb1.min[i] && dir[i] < 0.f)
vecMax[i] = (aabb1.min[i] - aabb0.max[i]) / dir[i];
else if (aabb1.max[i] < aabb0.min[i] && dir[i] > 0.f)
vecMax[i] = (aabb1.max[i] - aabb0.min[i]) / dir[i];
}
}
int maxAxis = 0;
if (vecMin[1] > vecMin[0])
maxAxis = 1;
if (vecMin[2] > vecMin[maxAxis])
maxAxis = 2;
float minMax = std::min(std::min(vecMax[2], vecMax[1]), vecMax[0]);
if (vecMin[maxAxis] > minMax)
return false;
d = minMax;
normal = zeus::CVector3f::skZero;
normal[maxAxis] = dir[maxAxis] > 0.f ? -1.f : 1.f;
for (int i=0 ; i<3 ; ++i)
point[i] = dir[i] > 0.f ? aabb0.max[i] : aabb0.min[i];
point += float(d) * dir;
return true;
}
}