metaforce/DataSpec/DNACommon/CMDL.hpp

1498 lines
57 KiB
C++

#ifndef _DNACOMMON_CMDL_HPP_
#define _DNACOMMON_CMDL_HPP_
#include <Athena/FileWriter.hpp>
#include <HECL/Frontend.hpp>
#include <HECL/Backend/GX.hpp>
#include "PAK.hpp"
#include "BlenderConnection.hpp"
#include "GX.hpp"
#include "TXTR.hpp"
namespace Retro
{
namespace DNACMDL
{
using Mesh = HECL::BlenderConnection::DataStream::Mesh;
struct Header : BigDNA
{
DECL_DNA
Value<atUint32> magic;
Value<atUint32> version;
struct Flags : BigDNA
{
DECL_DNA
Value<atUint32> flags = 0;
bool shortNormals() const {return (flags & 0x2) != 0;}
void setShortNormals(bool val) {flags &= ~0x2; flags |= val << 1;}
bool shortUVs() const {return (flags & 0x4) != 0;}
void setShortUVs(bool val) {flags &= ~0x4; flags |= val << 2;}
} flags;
Value<atVec3f> aabbMin;
Value<atVec3f> aabbMax;
Value<atUint32> secCount;
Value<atUint32> matSetCount;
Vector<atUint32, DNA_COUNT(secCount)> secSizes;
Align<32> align;
};
struct SurfaceHeader_1_2 : BigDNA
{
DECL_DNA
Value<atVec3f> centroid;
Value<atUint32> matIdx = 0;
Value<atUint16> qDiv = 0x8000;
Value<atUint16> dlSize = 0;
Value<atUint32> unk1 = 0;
Value<atUint32> unk2 = 0;
Value<atUint32> aabbSz = 0;
Value<atVec3f> reflectionNormal;
Seek<DNA_COUNT(aabbSz), Athena::Current> seek2;
Align<32> align;
static constexpr bool UseMatrixSkinning() {return false;}
static constexpr atInt16 skinMatrixBankIdx() {return -1;}
};
struct SurfaceHeader_3 : BigDNA
{
DECL_DNA
Value<atVec3f> centroid;
Value<atUint32> matIdx = 0;
Value<atUint16> qDiv = 0x8000;
Value<atUint16> dlSize = 0;
Value<atUint32> unk1 = 0;
Value<atUint32> unk2 = 0;
Value<atUint32> aabbSz = 0;
Value<atVec3f> reflectionNormal;
Value<atInt16> skinMtxBankIdx;
Value<atUint16> unk3;
Seek<DNA_COUNT(aabbSz), Athena::Current> seek2;
Align<32> align;
static constexpr bool UseMatrixSkinning() {return true;}
atInt16 skinMatrixBankIdx() const {return skinMtxBankIdx;}
};
struct VertexAttributes
{
GX::AttrType pos = GX::NONE;
GX::AttrType norm = GX::NONE;
GX::AttrType color0 = GX::NONE;
GX::AttrType color1 = GX::NONE;
unsigned uvCount = 0;
GX::AttrType uvs[7] = {GX::NONE};
GX::AttrType pnMtxIdx = GX::NONE;
unsigned texMtxIdxCount = 0;
GX::AttrType texMtxIdx[7] = {GX::NONE};
bool shortUVs;
};
template <class MaterialSet>
void GetVertexAttributes(const MaterialSet& matSet,
std::vector<VertexAttributes>& attributesOut)
{
attributesOut.clear();
attributesOut.reserve(matSet.materials.size());
for (const typename MaterialSet::Material& mat : matSet.materials)
{
const typename MaterialSet::Material::VAFlags& vaFlags = mat.getVAFlags();
attributesOut.emplace_back();
VertexAttributes& va = attributesOut.back();
va.pos = vaFlags.position();
va.norm = vaFlags.normal();
va.color0 = vaFlags.color0();
va.color1 = vaFlags.color1();
if ((va.uvs[0] = vaFlags.tex0()))
++va.uvCount;
if ((va.uvs[1] = vaFlags.tex1()))
++va.uvCount;
if ((va.uvs[2] = vaFlags.tex2()))
++va.uvCount;
if ((va.uvs[3] = vaFlags.tex3()))
++va.uvCount;
if ((va.uvs[4] = vaFlags.tex4()))
++va.uvCount;
if ((va.uvs[5] = vaFlags.tex5()))
++va.uvCount;
if ((va.uvs[6] = vaFlags.tex6()))
++va.uvCount;
va.pnMtxIdx = vaFlags.pnMatIdx();
if ((va.texMtxIdx[0] = vaFlags.tex0MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[1] = vaFlags.tex1MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[2] = vaFlags.tex2MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[3] = vaFlags.tex3MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[4] = vaFlags.tex4MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[5] = vaFlags.tex5MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[6] = vaFlags.tex6MatIdx()))
++va.texMtxIdxCount;
va.shortUVs = mat.getFlags().lightmapUVArray();
}
}
template <class PAKRouter, class MaterialSet>
void ReadMaterialSetToBlender_1_2(HECL::BlenderConnection::PyOutStream& os,
const MaterialSet& matSet,
const PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
unsigned setIdx)
{
/* Texmaps */
os << "texmap_list = []\n";
for (const UniqueID32& tex : matSet.head.textureIDs)
{
std::string texName = pakRouter.getBestEntryName(tex);
const NOD::Node* node;
const typename PAKRouter::EntryType* texEntry = pakRouter.lookupEntry(tex, &node);
HECL::ProjectPath txtrPath = pakRouter.getWorking(texEntry);
if (txtrPath.getPathType() == HECL::ProjectPath::PT_NONE)
{
PAKEntryReadStream rs = texEntry->beginReadStream(*node);
TXTR::Extract(rs, txtrPath);
}
HECL::SystemString resPath = pakRouter.getResourceRelativePath(entry, tex);
HECL::SystemUTF8View resPathView(resPath);
os.format("if '%s' in bpy.data.textures:\n"
" image = bpy.data.images['%s']\n"
" texture = bpy.data.textures[image.name]\n"
"else:\n"
" image = bpy.data.images.load('''//%s''')\n"
" image.name = '%s'\n"
" texture = bpy.data.textures.new(image.name, 'IMAGE')\n"
" texture.image = image\n"
"texmap_list.append(texture)\n"
"\n", texName.c_str(), texName.c_str(),
resPathView.str().c_str(), texName.c_str());
}
unsigned m=0;
for (const typename MaterialSet::Material& mat : matSet.materials)
{
MaterialSet::ConstructMaterial(os, mat, setIdx, m++);
os << "materials.append(new_material)\n";
}
}
template <class PAKRouter, class MaterialSet>
void ReadMaterialSetToBlender_3(HECL::BlenderConnection::PyOutStream& os,
const MaterialSet& matSet,
const PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
unsigned setIdx)
{
unsigned m=0;
for (const typename MaterialSet::Material& mat : matSet.materials)
{
MaterialSet::ConstructMaterial(os, pakRouter, entry, mat, setIdx, m++);
os << "materials.append(new_material)\n";
}
}
class DLReader
{
public:
/* Class used for splitting verts with shared positions but different skinning matrices */
class ExtraVertTracker
{
std::map<atUint16, std::vector<std::pair<atInt16, atUint16>>> m_extraVerts;
atUint16 m_maxBasePos = 0;
atUint16 m_nextOverPos = 1;
public:
atInt16 addPosSkinPair(atUint16 pos, atInt16 skin)
{
m_maxBasePos = std::max(m_maxBasePos, pos);
auto search = m_extraVerts.find(pos);
if (search == m_extraVerts.end())
{
m_extraVerts[pos] = {std::make_pair(skin, 0)};
return skin;
}
std::vector<std::pair<atInt16, atUint16>>& vertTrack = search->second;
for (const std::pair<atInt16, atUint16>& s : vertTrack)
if (s.first == skin)
return vertTrack.front().first;
vertTrack.push_back(std::make_pair(skin, m_nextOverPos++));
return vertTrack.front().first;
}
template<class RigPair>
void sendAdditionalVertsToBlender(HECL::BlenderConnection::PyOutStream& os,
const RigPair& rp) const
{
atUint32 nextVert = 1;
while (nextVert < m_nextOverPos)
{
for (const std::pair<atUint16, std::vector<std::pair<atInt16, atUint16>>>& ev : m_extraVerts)
{
for (const std::pair<atInt16, atUint16>& se : ev.second)
{
if (se.second == nextVert)
{
os.format("bm.verts.ensure_lookup_table()\n"
"orig_vert = bm.verts[%u]\n"
"vert = bm.verts.new(orig_vert.co)\n",
ev.first);
rp.first->weightVertex(os, *rp.second, se.first);
++nextVert;
}
}
}
}
}
atUint16 lookupVertIdx(atUint16 pos, atInt16 skin) const
{
auto search = m_extraVerts.find(pos);
if (search == m_extraVerts.end())
return -1;
const std::vector<std::pair<atInt16, atUint16>>& vertTrack = search->second;
if (vertTrack.front().first == skin)
return pos;
for (auto it=vertTrack.begin()+1 ; it!=vertTrack.end() ; ++it)
if (it->first == skin)
return m_maxBasePos + it->second;
return -1;
}
};
private:
const VertexAttributes& m_va;
std::unique_ptr<atUint8[]> m_dl;
size_t m_dlSize;
ExtraVertTracker& m_evt;
const atInt16* m_bankIn;
atUint8* m_cur;
atUint16 readVal(GX::AttrType type)
{
atUint16 retval = 0;
switch (type)
{
case GX::DIRECT:
case GX::INDEX8:
if ((m_cur - m_dl.get()) >= intptr_t(m_dlSize))
return 0;
retval = *m_cur;
++m_cur;
break;
case GX::INDEX16:
if ((m_cur - m_dl.get() + 1) >= intptr_t(m_dlSize))
return 0;
retval = HECL::SBig(*(atUint16*)m_cur);
m_cur += 2;
break;
default: break;
}
return retval;
}
public:
DLReader(const VertexAttributes& va, std::unique_ptr<atUint8[]>&& dl,
size_t dlSize, ExtraVertTracker& evt, const atInt16* bankIn=nullptr)
: m_va(va), m_dl(std::move(dl)), m_dlSize(dlSize), m_evt(evt), m_bankIn(bankIn)
{
m_cur = m_dl.get();
}
operator bool()
{
return ((m_cur - m_dl.get()) < intptr_t(m_dlSize)) && *m_cur;
}
GX::Primitive readPrimitive()
{
return GX::Primitive(*m_cur++ & 0xf8);
}
GX::Primitive readPrimitiveAndVat(unsigned& vatOut)
{
atUint8 val = *m_cur++;
vatOut = val & 0x7;
return GX::Primitive(val & 0xf8);
}
atUint16 readVertCount()
{
atUint16 retval = HECL::SBig(*(atUint16*)m_cur);
m_cur += 2;
return retval;
}
struct DLPrimVert
{
atUint16 pos = 0;
atUint16 norm = 0;
atUint16 color[2] = {0};
atUint16 uvs[7] = {0};
atUint8 pnMtxIdx = 0;
atUint8 texMtxIdx[7] = {0};
};
DLPrimVert readVert(bool peek=false)
{
atUint8* bakCur = m_cur;
DLPrimVert retval;
retval.pnMtxIdx = readVal(m_va.pnMtxIdx);
retval.texMtxIdx[0] = readVal(m_va.texMtxIdx[0]);
retval.texMtxIdx[1] = readVal(m_va.texMtxIdx[1]);
retval.texMtxIdx[2] = readVal(m_va.texMtxIdx[2]);
retval.texMtxIdx[3] = readVal(m_va.texMtxIdx[3]);
retval.texMtxIdx[4] = readVal(m_va.texMtxIdx[4]);
retval.texMtxIdx[5] = readVal(m_va.texMtxIdx[5]);
retval.texMtxIdx[6] = readVal(m_va.texMtxIdx[6]);
if (m_bankIn)
{
atUint16 posIdx = readVal(m_va.pos);
atUint8 mtxIdx = retval.pnMtxIdx / 3;
atInt16 skinIdx = -1;
if (mtxIdx < 10)
skinIdx = m_bankIn[mtxIdx];
retval.pos = m_evt.lookupVertIdx(posIdx, skinIdx);
}
else
retval.pos = readVal(m_va.pos);
retval.norm = readVal(m_va.norm);
retval.color[0] = readVal(m_va.color0);
retval.color[1] = readVal(m_va.color1);
retval.uvs[0] = readVal(m_va.uvs[0]);
retval.uvs[1] = readVal(m_va.uvs[1]);
retval.uvs[2] = readVal(m_va.uvs[2]);
retval.uvs[3] = readVal(m_va.uvs[3]);
retval.uvs[4] = readVal(m_va.uvs[4]);
retval.uvs[5] = readVal(m_va.uvs[5]);
retval.uvs[6] = readVal(m_va.uvs[6]);
if (peek)
m_cur = bakCur;
return retval;
}
void preReadMaxIdxs(DLPrimVert& out)
{
atUint8* bakCur = m_cur;
while (*this)
{
readPrimitive();
atUint16 vc = readVertCount();
for (atUint16 v=0 ; v<vc ; ++v)
{
atUint16 val;
val = readVal(m_va.pnMtxIdx);
out.pnMtxIdx = std::max(out.pnMtxIdx, atUint8(val));
val = readVal(m_va.texMtxIdx[0]);
out.texMtxIdx[0] = std::max(out.texMtxIdx[0], atUint8(val));
val = readVal(m_va.texMtxIdx[1]);
out.texMtxIdx[1] = std::max(out.texMtxIdx[1], atUint8(val));
val = readVal(m_va.texMtxIdx[2]);
out.texMtxIdx[2] = std::max(out.texMtxIdx[2], atUint8(val));
val = readVal(m_va.texMtxIdx[3]);
out.texMtxIdx[3] = std::max(out.texMtxIdx[3], atUint8(val));
val = readVal(m_va.texMtxIdx[4]);
out.texMtxIdx[4] = std::max(out.texMtxIdx[4], atUint8(val));
val = readVal(m_va.texMtxIdx[5]);
out.texMtxIdx[5] = std::max(out.texMtxIdx[5], atUint8(val));
val = readVal(m_va.texMtxIdx[6]);
out.texMtxIdx[6] = std::max(out.texMtxIdx[6], atUint8(val));
val = readVal(m_va.pos);
out.pos = std::max(out.pos, val);
val = readVal(m_va.norm);
out.norm = std::max(out.norm, val);
val = readVal(m_va.color0);
out.color[0] = std::max(out.color[0], val);
val = readVal(m_va.color1);
out.color[1] = std::max(out.color[1], val);
val = readVal(m_va.uvs[0]);
out.uvs[0] = std::max(out.uvs[0], val);
val = readVal(m_va.uvs[1]);
out.uvs[1] = std::max(out.uvs[1], val);
val = readVal(m_va.uvs[2]);
out.uvs[2] = std::max(out.uvs[2], val);
val = readVal(m_va.uvs[3]);
out.uvs[3] = std::max(out.uvs[3], val);
val = readVal(m_va.uvs[4]);
out.uvs[4] = std::max(out.uvs[4], val);
val = readVal(m_va.uvs[5]);
out.uvs[5] = std::max(out.uvs[5], val);
val = readVal(m_va.uvs[6]);
out.uvs[6] = std::max(out.uvs[6], val);
}
}
m_cur = bakCur;
}
void preReadMaxIdxs(DLPrimVert& out,
std::vector<atInt16>& skinOut)
{
atUint8* bakCur = m_cur;
while (*this)
{
readPrimitive();
atUint16 vc = readVertCount();
for (atUint16 v=0 ; v<vc ; ++v)
{
atUint16 val;
atUint8 pnMtxVal = readVal(m_va.pnMtxIdx);
out.pnMtxIdx = std::max(out.pnMtxIdx, pnMtxVal);
val = readVal(m_va.texMtxIdx[0]);
out.texMtxIdx[0] = std::max(out.texMtxIdx[0], atUint8(val));
val = readVal(m_va.texMtxIdx[1]);
out.texMtxIdx[1] = std::max(out.texMtxIdx[1], atUint8(val));
val = readVal(m_va.texMtxIdx[2]);
out.texMtxIdx[2] = std::max(out.texMtxIdx[2], atUint8(val));
val = readVal(m_va.texMtxIdx[3]);
out.texMtxIdx[3] = std::max(out.texMtxIdx[3], atUint8(val));
val = readVal(m_va.texMtxIdx[4]);
out.texMtxIdx[4] = std::max(out.texMtxIdx[4], atUint8(val));
val = readVal(m_va.texMtxIdx[5]);
out.texMtxIdx[5] = std::max(out.texMtxIdx[5], atUint8(val));
val = readVal(m_va.texMtxIdx[6]);
out.texMtxIdx[6] = std::max(out.texMtxIdx[6], atUint8(val));
atUint16 posVal = readVal(m_va.pos);
out.pos = std::max(out.pos, posVal);
val = readVal(m_va.norm);
out.norm = std::max(out.norm, val);
val = readVal(m_va.color0);
out.color[0] = std::max(out.color[0], val);
val = readVal(m_va.color1);
out.color[1] = std::max(out.color[1], val);
val = readVal(m_va.uvs[0]);
out.uvs[0] = std::max(out.uvs[0], val);
val = readVal(m_va.uvs[1]);
out.uvs[1] = std::max(out.uvs[1], val);
val = readVal(m_va.uvs[2]);
out.uvs[2] = std::max(out.uvs[2], val);
val = readVal(m_va.uvs[3]);
out.uvs[3] = std::max(out.uvs[3], val);
val = readVal(m_va.uvs[4]);
out.uvs[4] = std::max(out.uvs[4], val);
val = readVal(m_va.uvs[5]);
out.uvs[5] = std::max(out.uvs[5], val);
val = readVal(m_va.uvs[6]);
out.uvs[6] = std::max(out.uvs[6], val);
atInt16 skinIdx = m_bankIn[pnMtxVal/3];
skinOut[posVal] = m_evt.addPosSkinPair(posVal, skinIdx);
}
}
m_cur = bakCur;
}
};
void InitGeomBlenderContext(HECL::BlenderConnection::PyOutStream& os,
const HECL::ProjectPath& masterShaderPath);
void FinishBlenderMesh(HECL::BlenderConnection::PyOutStream& os,
unsigned matSetCount, int meshIdx);
template <class PAKRouter, class MaterialSet, class RigPair, class SurfaceHeader>
atUint32 ReadGeomSectionsToBlender(HECL::BlenderConnection::PyOutStream& os,
Athena::io::IStreamReader& reader,
PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
const RigPair& rp,
bool shortNormals,
bool shortUVs,
std::vector<VertexAttributes>& vertAttribs,
int meshIdx,
atUint32 secCount,
atUint32 matSetCount,
const atUint32* secSizes,
atUint32 surfaceCount=0)
{
os << "# Begin bmesh\n"
"bm = bmesh.new()\n"
"\n"
"# Overdraw-tracking\n"
"od_list = []\n"
"\n"
"orig_pidx_lay = bm.verts.layers.int.new('CMDLOriginalPosIdxs')\n"
"orig_nidx_lay = bm.loops.layers.int.new('CMDLOriginalNormIdxs')\n";
if (rp.first)
os << "dvert_lay = bm.verts.layers.deform.verify()\n";
/* Pre-read pass to determine maximum used vert indices */
atUint32 matSecCount = 0;
if (matSetCount)
matSecCount = MaterialSet::OneSection() ? 1 : matSetCount;
bool visitedDLOffsets = false;
atUint32 lastDlSec = secCount;
atUint64 afterHeaderPos = reader.position();
DLReader::DLPrimVert maxIdxs;
std::vector<atInt16> skinIndices;
DLReader::ExtraVertTracker extraTracker;
for (size_t s=0 ; s<lastDlSec ; ++s)
{
atUint64 secStart = reader.position();
if (s < matSecCount)
{
if (!s)
{
MaterialSet matSet;
matSet.read(reader);
GetVertexAttributes(matSet, vertAttribs);
}
}
else
{
switch (s-matSecCount)
{
case 0:
{
/* Positions */
if (SurfaceHeader::UseMatrixSkinning() && rp.first)
skinIndices.assign(secSizes[s] / 12, -1);
break;
}
case 1:
{
/* Normals */
break;
}
case 2:
{
/* Colors */
break;
}
case 3:
{
/* Float UVs */
break;
}
case 4:
{
if (surfaceCount)
{
/* MP3 MREA case */
visitedDLOffsets = true;
lastDlSec = 4 + surfaceCount;
}
else
{
/* Short UVs */
if (shortUVs)
break;
/* DL Offsets (here or next section) */
visitedDLOffsets = true;
lastDlSec = s + reader.readUint32Big() + 1;
break;
}
}
default:
{
if (!visitedDLOffsets)
{
visitedDLOffsets = true;
lastDlSec = s + reader.readUint32Big() + 1;
break;
}
/* GX Display List (surface) */
SurfaceHeader sHead;
sHead.read(reader);
const atInt16* bankIn = nullptr;
if (SurfaceHeader::UseMatrixSkinning() && rp.first)
bankIn = rp.first->getMatrixBank(sHead.skinMatrixBankIdx());
/* Do max index pre-read */
atUint32 realDlSize = secSizes[s] - (reader.position() - secStart);
DLReader dl(vertAttribs[sHead.matIdx], reader.readUBytes(realDlSize),
realDlSize, extraTracker, bankIn);
if (SurfaceHeader::UseMatrixSkinning() && rp.first)
dl.preReadMaxIdxs(maxIdxs, skinIndices);
else
dl.preReadMaxIdxs(maxIdxs);
}
}
}
if (s < secCount - 1)
reader.seek(secStart + secSizes[s], Athena::Begin);
}
reader.seek(afterHeaderPos, Athena::Begin);
visitedDLOffsets = false;
unsigned createdUVLayers = 0;
unsigned surfIdx = 0;
for (size_t s=0 ; s<lastDlSec ; ++s)
{
atUint64 secStart = reader.position();
if (s < matSecCount)
{
MaterialSet matSet;
matSet.read(reader);
matSet.readToBlender(os, pakRouter, entry, s);
if (!s)
GetVertexAttributes(matSet, vertAttribs);
}
else
{
switch (s-matSecCount)
{
case 0:
{
/* Positions */
for (size_t i=0 ; i<=maxIdxs.pos ; ++i)
{
atVec3f pos = reader.readVec3fBig();
os.format("vert = bm.verts.new((%f,%f,%f))\n",
pos.vec[0], pos.vec[1], pos.vec[2]);
if (rp.first)
{
if (SurfaceHeader::UseMatrixSkinning() && !skinIndices.empty())
rp.first->weightVertex(os, *rp.second, skinIndices[i]);
else if (!SurfaceHeader::UseMatrixSkinning())
rp.first->weightVertex(os, *rp.second, i);
}
}
if (rp.first && SurfaceHeader::UseMatrixSkinning() && !skinIndices.empty())
extraTracker.sendAdditionalVertsToBlender(os, rp);
break;
}
case 1:
{
/* Normals */
os << "norm_list = []\n";
if (shortNormals)
{
size_t normCount = secSizes[s] / 6;
for (size_t i=0 ; i<normCount ; ++i)
{
float x = reader.readInt16Big() / 16834.0f;
float y = reader.readInt16Big() / 16834.0f;
float z = reader.readInt16Big() / 16834.0f;
os.format("norm_list.append((%f,%f,%f))\n",
x, y, z);
}
}
else
{
size_t normCount = secSizes[s] / 12;
for (size_t i=0 ; i<normCount ; ++i)
{
atVec3f norm = reader.readVec3fBig();
os.format("norm_list.append((%f,%f,%f))\n",
norm.vec[0], norm.vec[1], norm.vec[2]);
}
}
break;
}
case 2:
{
/* Colors */
break;
}
case 3:
{
/* Float UVs */
os << "uv_list = []\n";
size_t uvCount = secSizes[s] / 8;
for (size_t i=0 ; i<uvCount ; ++i)
{
atVec2f uv = reader.readVec2fBig();
os.format("uv_list.append((%f,%f))\n",
uv.vec[0], uv.vec[1]);
}
break;
}
case 4:
{
if (surfaceCount)
{
/* MP3 MREA case */
visitedDLOffsets = true;
}
else
{
/* Short UVs */
os << "suv_list = []\n";
if (shortUVs)
{
size_t uvCount = secSizes[s] / 4;
for (size_t i=0 ; i<uvCount ; ++i)
{
float x = reader.readInt16Big() / 32768.0f;
float y = reader.readInt16Big() / 32768.0f;
os.format("suv_list.append((%f,%f))\n",
x, y);
}
break;
}
/* DL Offsets (here or next section) */
visitedDLOffsets = true;
break;
}
}
default:
{
if (!visitedDLOffsets)
{
visitedDLOffsets = true;
break;
}
/* GX Display List (surface) */
SurfaceHeader sHead;
sHead.read(reader);
VertexAttributes& curVA = vertAttribs[sHead.matIdx];
unsigned matUVCount = curVA.uvCount;
bool matShortUVs = curVA.shortUVs;
const atInt16* bankIn = nullptr;
if (SurfaceHeader::UseMatrixSkinning() && rp.first)
bankIn = rp.first->getMatrixBank(sHead.skinMatrixBankIdx());
os.format("materials[%u].pass_index = %u\n", sHead.matIdx, surfIdx++);
if (matUVCount > createdUVLayers)
{
for (unsigned l=createdUVLayers ; l<matUVCount ; ++l)
os.format("bm.loops.layers.uv.new('UV_%u')\n", l);
createdUVLayers = matUVCount;
}
atUint32 realDlSize = secSizes[s] - (reader.position() - secStart);
DLReader dl(vertAttribs[sHead.matIdx], reader.readUBytes(realDlSize), realDlSize, extraTracker, bankIn);
while (dl)
{
GX::Primitive ptype = dl.readPrimitive();
atUint16 vertCount = dl.readVertCount();
/* First vert */
DLReader::DLPrimVert firstPrimVert = dl.readVert(true);
/* 3 Prim Verts to start */
int c = 0;
DLReader::DLPrimVert primVerts[3] =
{
dl.readVert(),
dl.readVert(),
dl.readVert()
};
if (ptype == GX::TRIANGLESTRIP)
{
atUint8 flip = 0;
for (int v=0 ; v<vertCount-2 ; ++v)
{
if (flip)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
primVerts[c%3].pos,
primVerts[(c+2)%3].pos,
primVerts[(c+1)%3].pos,
primVerts[c%3].norm,
primVerts[(c+2)%3].norm,
primVerts[(c+1)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (unsigned j=0 ; j<matUVCount ; ++j)
{
if (j==0 && matShortUVs)
os.format(" uv_tri = expand_lightmap_triangle(suv_list[%u], suv_list[%u], suv_list[%u])\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[0]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[1]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[2]\n",
primVerts[c%3].uvs[j], primVerts[(c+2)%3].uvs[j], primVerts[(c+1)%3].uvs[j],
primVerts[c%3].pos, j,
primVerts[(c+2)%3].pos, j,
primVerts[(c+1)%3].pos, j);
else
os.format(" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+2)%3].pos, j, primVerts[(c+2)%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j]);
}
}
}
else
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
primVerts[c%3].pos,
primVerts[(c+1)%3].pos,
primVerts[(c+2)%3].pos,
primVerts[c%3].norm,
primVerts[(c+1)%3].norm,
primVerts[(c+2)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (unsigned j=0 ; j<matUVCount ; ++j)
{
if (j==0 && matShortUVs)
os.format(" uv_tri = expand_lightmap_triangle(suv_list[%u], suv_list[%u], suv_list[%u])\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[0]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[1]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[2]\n",
primVerts[c%3].uvs[j], primVerts[(c+1)%3].uvs[j], primVerts[(c+2)%3].uvs[j],
primVerts[c%3].pos, j,
primVerts[(c+1)%3].pos, j,
primVerts[(c+2)%3].pos, j);
else
os.format(" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j],
primVerts[(c+2)%3].pos, j, primVerts[(c+2)%3].uvs[j]);
}
}
}
flip ^= 1;
bool peek = (v >= vertCount - 3);
/* Advance one prim vert */
primVerts[c%3] = dl.readVert(peek);
++c;
}
}
else if (ptype == GX::TRIANGLES)
{
for (int v=0 ; v<vertCount ; v+=3)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
primVerts[0].pos,
primVerts[1].pos,
primVerts[2].pos,
primVerts[0].norm,
primVerts[1].norm,
primVerts[2].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (unsigned j=0 ; j<matUVCount ; ++j)
{
if (j==0 && matShortUVs)
os.format(" uv_tri = expand_lightmap_triangle(suv_list[%u], suv_list[%u], suv_list[%u])\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[0]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[1]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[2]\n",
primVerts[0].uvs[j], primVerts[1].uvs[j], primVerts[2].uvs[j],
primVerts[0].pos, j,
primVerts[1].pos, j,
primVerts[2].pos, j);
else
os.format(" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
primVerts[0].pos, j, primVerts[0].uvs[j],
primVerts[1].pos, j, primVerts[1].uvs[j],
primVerts[2].pos, j, primVerts[2].uvs[j]);
}
}
/* Break if done */
if (v+3 >= vertCount)
break;
/* Advance 3 Prim Verts */
for (int pv=0 ; pv<3 ; ++pv)
primVerts[pv] = dl.readVert();
}
}
else if (ptype == GX::TRIANGLEFAN)
{
++c;
for (int v=0 ; v<vertCount-2 ; ++v)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
firstPrimVert.pos,
primVerts[c%3].pos,
primVerts[(c+1)%3].pos,
firstPrimVert.norm,
primVerts[c%3].norm,
primVerts[(c+1)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (unsigned j=0 ; j<matUVCount ; ++j)
{
if (j==0 && matShortUVs)
os.format(" uv_tri = expand_lightmap_triangle(suv_list[%u], suv_list[%u], suv_list[%u])\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[0]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[1]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_tri[2]\n",
firstPrimVert.uvs[j], primVerts[c%3].uvs[j], primVerts[(c+1)%3].uvs[j],
firstPrimVert.pos, j,
primVerts[c%3].pos, j,
primVerts[(c+1)%3].pos, j);
else
os.format(" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_mesh, last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
firstPrimVert.pos, j, firstPrimVert.uvs[j],
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j]);
}
}
/* Break if done */
if (v+3 >= vertCount)
break;
/* Advance one prim vert */
primVerts[(c+2)%3] = dl.readVert();
++c;
}
}
os << "\n";
}
}
}
}
if (s < secCount - 1)
reader.seek(secStart + secSizes[s], Athena::Begin);
}
/* Finish Mesh */
FinishBlenderMesh(os, matSetCount, meshIdx);
if (rp.first)
rp.second->sendVertexGroupsToBlender(os);
return lastDlSec;
}
template <class PAKRouter, class MaterialSet, class RigPair, class SurfaceHeader, atUint32 Version>
bool ReadCMDLToBlender(HECL::BlenderConnection& conn,
Athena::io::IStreamReader& reader,
PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
const SpecBase& dataspec,
const RigPair& rp)
{
Header head;
head.read(reader);
if (head.magic != 0xDEADBABE)
{
LogDNACommon.report(LogVisor::Error, "invalid CMDL magic");
return false;
}
if (head.version != Version)
{
LogDNACommon.report(LogVisor::Error, "invalid CMDL version");
return false;
}
/* Open Py Stream and read sections */
HECL::BlenderConnection::PyOutStream os = conn.beginPythonOut(true);
os.format("import bpy\n"
"import bmesh\n"
"\n"
"bpy.context.scene.name = '%s'\n"
"bpy.context.scene.hecl_mesh_obj = bpy.context.scene.name\n",
pakRouter.getBestEntryName(entry).c_str());
InitGeomBlenderContext(os, dataspec.getMasterShaderPath());
MaterialSet::RegisterMaterialProps(os);
os << "# Materials\n"
"materials = []\n"
"\n";
std::vector<VertexAttributes> vertAttribs;
ReadGeomSectionsToBlender<PAKRouter, MaterialSet, RigPair, SurfaceHeader>
(os, reader, pakRouter, entry, rp, head.flags.shortNormals(),
head.flags.shortUVs(), vertAttribs, -1,
head.secCount, head.matSetCount, head.secSizes.data());
return true;
}
template <class PAKRouter, class MaterialSet>
void NameCMDL(Athena::io::IStreamReader& reader,
PAKRouter& pakRouter,
typename PAKRouter::EntryType& entry,
const SpecBase& dataspec)
{
Header head;
head.read(reader);
std::string bestName = HECL::Format("CMDL_%s", entry.id.toString().c_str());
/* Pre-read pass to determine maximum used vert indices */
atUint32 matSecCount = 0;
if (head.matSetCount)
matSecCount = MaterialSet::OneSection() ? 1 : head.matSetCount;
atUint32 lastDlSec = head.secCount;
for (size_t s=0 ; s<lastDlSec ; ++s)
{
atUint64 secStart = reader.position();
if (s < matSecCount)
{
MaterialSet matSet;
matSet.read(reader);
matSet.nameTextures(pakRouter, bestName.c_str(), s);
}
if (s < head.secCount - 1)
reader.seek(secStart + head.secSizes[s], Athena::Begin);
}
}
static void WriteDLVal(Athena::io::FileWriter& writer, GX::AttrType type, atUint32 val)
{
switch (type)
{
case GX::DIRECT:
case GX::INDEX8:
writer.writeUByte(atUint8(val));
break;
case GX::INDEX16:
writer.writeUint16Big(atUint16(val));
break;
default: break;
}
}
template <class MaterialSet, class SurfaceHeader, atUint32 Version>
bool WriteCMDL(const HECL::ProjectPath& outPath, const HECL::ProjectPath& inPath, const Mesh& mesh)
{
Header head;
head.magic = 0xDEADBABE;
head.version = Version;
head.aabbMin = mesh.aabbMin.val;
head.aabbMax = mesh.aabbMax.val;
head.matSetCount = mesh.materialSets.size();
head.secCount = head.matSetCount + 5 + mesh.surfaces.size();
head.secSizes.reserve(head.secCount);
/* Lengths of padding to insert while writing */
std::vector<size_t> paddingSizes;
paddingSizes.reserve(head.secCount);
/* Build material sets */
std::vector<MaterialSet> matSets;
matSets.reserve(mesh.materialSets.size());
{
HECL::Frontend::Frontend FE;
for (const std::vector<Mesh::Material>& mset : mesh.materialSets)
{
matSets.emplace_back();
MaterialSet& targetMSet = matSets.back();
std::vector<HECL::ProjectPath> texPaths;
std::vector<HECL::Backend::GX> setBackends;
setBackends.reserve(mset.size());
size_t endOff = 0;
atUint32 nextGroupIdx = 0;
for (const Mesh::Material& mat : mset)
{
std::string diagName = HECL::Format("%s:%s", inPath.getLastComponentUTF8(), mat.name.c_str());
HECL::Frontend::IR matIR = FE.compileSource(mat.source, diagName);
setBackends.emplace_back();
HECL::Backend::GX& matGX = setBackends.back();
matGX.reset(matIR, FE.getDiagnostics());
atUint32 groupIdx = -1;
if (matSets.size() == 1)
{
for (size_t i=0 ; i<setBackends.size()-1 ; ++i)
{
const HECL::Backend::GX& other = setBackends[i];
if (matGX == other)
{
groupIdx = i;
break;
}
}
if (groupIdx == -1)
groupIdx = nextGroupIdx++;
}
targetMSet.materials.emplace_back(matGX, mat.iprops, mat.texs, texPaths,
mesh.colorLayerCount, mesh.uvLayerCount,
false, false, groupIdx);
endOff = targetMSet.materials.back().binarySize(endOff);
targetMSet.head.addMaterialEndOff(endOff);
}
for (const HECL::ProjectPath& path : texPaths)
{
const HECL::SystemString& relPath = path.getRelativePath();
/* TODO: incorporate hecl hashes */
size_t search = relPath.find(_S("TXTR_"));
if (search != HECL::SystemString::npos)
targetMSet.head.addTexture(relPath.c_str() + search + 5);
else
LogDNACommon.report(LogVisor::FatalError, "unable to get hash from path");
}
size_t secSz = targetMSet.binarySize(0);
size_t secSz32 = ROUND_UP_32(secSz);
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
}
}
/* Vertex Positions */
size_t secSz = mesh.pos.size() * 12;
size_t secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Vertex Normals */
secSz = mesh.norm.size() * 12;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Vertex Colors */
secSz = mesh.color.size() * 4;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* UV coords */
secSz = mesh.uv.size() * 8;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Surface index */
std::vector<size_t> surfEndOffs;
surfEndOffs.reserve(mesh.surfaces.size());
secSz = mesh.surfaces.size() * 4 + 4;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Surfaces */
size_t endOff = 0;
for (const Mesh::Surface& surf : mesh.surfaces)
{
size_t vertSz = matSets.at(0).materials.at(surf.materialIdx).getVAFlags().vertDLSize();
if (surf.verts.size() > 65536)
LogDNACommon.report(LogVisor::FatalError, "GX DisplayList overflow");
size_t secSz = 67 + surf.verts.size() * vertSz;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
endOff += secSz32;
surfEndOffs.push_back(endOff);
}
/* Write sections */
Athena::io::FileWriter writer(outPath.getAbsolutePath());
head.write(writer);
std::vector<size_t>::const_iterator padIt = paddingSizes.cbegin();
/* Material Sets */
for (const MaterialSet& mset : matSets)
{
mset.write(writer);
writer.fill(atUint8(0), *padIt);
++padIt;
}
/* Vertex Positions */
for (const atVec3f& pos : mesh.pos)
writer.writeVec3fBig(pos);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Vertex Normals */
for (const atVec3f& norm : mesh.norm)
writer.writeVec3fBig(norm);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Vertex Colors */
for (const atVec3f& col : mesh.color)
{
GX::Color qCol(col);
qCol.write(writer);
}
writer.fill(atUint8(0), *padIt);
++padIt;
/* UV coords */
for (const atVec2f& uv : mesh.uv)
writer.writeVec2fBig(uv);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Surface index */
writer.writeUint32Big(surfEndOffs.size());
for (size_t off : surfEndOffs)
writer.writeUint32Big(off);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Surfaces */
GX::Primitive prim;
if (mesh.topology == HECL::TopologyTriangles)
prim = GX::TRIANGLES;
else if (mesh.topology == HECL::TopologyTriStrips)
prim = GX::TRIANGLESTRIP;
else
LogDNACommon.report(LogVisor::FatalError, "unrecognized mesh output mode");
for (const Mesh::Surface& surf : mesh.surfaces)
{
const typename MaterialSet::Material::VAFlags& vaFlags =
matSets.at(0).materials.at(surf.materialIdx).getVAFlags();
size_t vertSz = vaFlags.vertDLSize();
SurfaceHeader header;
header.centroid = surf.centroid;
header.matIdx = surf.materialIdx;
header.dlSize = 3 + surf.verts.size() * vertSz;
header.reflectionNormal = surf.reflectionNormal;
header.write(writer);
writer.writeUByte(prim);
writer.writeUint16Big(surf.verts.size());
for (const Mesh::Surface::Vert& vert : surf.verts)
{
atUint32 skinIdx = vert.iBankSkin * 3;
WriteDLVal(writer, vaFlags.pnMatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex0MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex1MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex2MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex3MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex4MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex5MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex6MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.position(), vert.iPos);
WriteDLVal(writer, vaFlags.normal(), vert.iNorm);
WriteDLVal(writer, vaFlags.color0(), vert.iColor[0]);
WriteDLVal(writer, vaFlags.color1(), vert.iColor[1]);
WriteDLVal(writer, vaFlags.tex0(), vert.iUv[0]);
WriteDLVal(writer, vaFlags.tex1(), vert.iUv[1]);
WriteDLVal(writer, vaFlags.tex2(), vert.iUv[2]);
WriteDLVal(writer, vaFlags.tex3(), vert.iUv[3]);
WriteDLVal(writer, vaFlags.tex4(), vert.iUv[4]);
WriteDLVal(writer, vaFlags.tex5(), vert.iUv[5]);
WriteDLVal(writer, vaFlags.tex6(), vert.iUv[6]);
}
writer.fill(atUint8(0), *padIt);
++padIt;
}
writer.close();
return true;
}
template <class MaterialSet, class SurfaceHeader, atUint32 Version>
bool WriteHMDLCMDL(const HECL::ProjectPath& outPath, const HECL::ProjectPath& inPath, const Mesh& mesh)
{
Header head;
head.magic = 0xDEADBABE;
head.version = 0x10000 | Version;
head.aabbMin = mesh.aabbMin.val;
head.aabbMax = mesh.aabbMax.val;
head.matSetCount = mesh.materialSets.size();
head.secCount = head.matSetCount + 4 + mesh.surfaces.size();
head.secSizes.reserve(head.secCount);
/* Lengths of padding to insert while writing */
std::vector<size_t> paddingSizes;
paddingSizes.reserve(head.secCount);
/* Build material sets */
std::vector<MaterialSet> matSets;
matSets.reserve(mesh.materialSets.size());
{
HECL::Frontend::Frontend FE;
for (const std::vector<Mesh::Material>& mset : mesh.materialSets)
{
matSets.emplace_back();
MaterialSet& targetMSet = matSets.back();
std::vector<HECL::ProjectPath> texPaths;
texPaths.reserve(mset.size()*4);
for (const Mesh::Material& mat : mset)
{
for (const HECL::ProjectPath& path : mat.texs)
{
bool found = false;
for (const HECL::ProjectPath& ePath : texPaths)
{
if (path == ePath)
{
found = true;
break;
}
}
if (!found)
texPaths.push_back(path);
}
}
size_t endOff = 0;
for (const Mesh::Material& mat : mset)
{
std::string diagName = HECL::Format("%s:%s", inPath.getLastComponentUTF8(), mat.name.c_str());
targetMSet.materials.emplace_back(FE, diagName, mat, mat.iprops, texPaths);
endOff = targetMSet.materials.back().binarySize(endOff);
targetMSet.head.addMaterialEndOff(endOff);
}
for (const HECL::ProjectPath& path : texPaths)
{
const HECL::SystemString& relPath = path.getRelativePath();
/* TODO: incorporate hecl hashes */
size_t search = relPath.find(_S("TXTR_"));
if (search != HECL::SystemString::npos)
targetMSet.head.addTexture(relPath.c_str() + search + 5);
else
LogDNACommon.report(LogVisor::FatalError, "unable to get hash from path");
}
size_t secSz = targetMSet.binarySize(0);
size_t secSz32 = ROUND_UP_32(secSz);
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
}
}
HECL::HMDLBuffers bufs = mesh.getHMDLBuffers();
/* Metadata */
size_t secSz = bufs.m_meta.binarySize(0);
size_t secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* VBO */
secSz = bufs.m_vboSz;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* IBO */
secSz = bufs.m_iboSz;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Surface index */
std::vector<size_t> surfEndOffs;
surfEndOffs.reserve(bufs.m_surfaces.size());
secSz = bufs.m_surfaces.size() * 4 + 4;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Surfaces */
size_t endOff = 0;
for (const HECL::HMDLBuffers::Surface& surf : bufs.m_surfaces)
{
head.secSizes.push_back(64);
paddingSizes.push_back(0);
endOff += 64;
surfEndOffs.push_back(endOff);
}
/* Write sections */
Athena::io::FileWriter writer(outPath.getAbsolutePath());
head.write(writer);
std::vector<size_t>::const_iterator padIt = paddingSizes.cbegin();
/* Material Sets */
for (const MaterialSet& mset : matSets)
{
mset.write(writer);
writer.fill(atUint8(0), *padIt);
++padIt;
}
/* Metadata */
bufs.m_meta.write(writer);
writer.fill(atUint8(0), *padIt);
++padIt;
/* VBO */
writer.writeUBytes(bufs.m_vboData.get(), bufs.m_vboSz);
writer.fill(atUint8(0), *padIt);
++padIt;
/* IBO */
writer.writeUBytes(bufs.m_iboData.get(), bufs.m_iboSz);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Surface index */
writer.writeUint32Big(surfEndOffs.size());
for (size_t off : surfEndOffs)
writer.writeUint32Big(off);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Surfaces */
for (const HECL::HMDLBuffers::Surface& surf : bufs.m_surfaces)
{
const Mesh::Surface& osurf = surf.m_origSurf;
SurfaceHeader header;
header.centroid = osurf.centroid;
header.matIdx = osurf.materialIdx;
header.reflectionNormal = osurf.reflectionNormal;
header.unk1 = surf.m_start;
header.unk2 = surf.m_count;
header.write(writer);
writer.fill(atUint8(0), *padIt);
++padIt;
}
/* Ensure final surface's alignment writes zeros */
writer.seek(-1, Athena::Current);
writer.writeUByte(0);
writer.close();
return true;
}
}
}
#endif // _DNACOMMON_CMDL_HPP_