mirror of https://github.com/AxioDL/metaforce.git
318 lines
14 KiB
C++
318 lines
14 KiB
C++
/* -*- c++ -*- (enables emacs c++ mode) */
|
|
/*===========================================================================
|
|
|
|
Copyright (C) 2003-2017 Yves Renard, Caroline Lecalvez
|
|
|
|
This file is a part of GetFEM++
|
|
|
|
GetFEM++ is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version along with the GCC Runtime Library
|
|
Exception either version 3.1 or (at your option) any later version.
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License and GCC Runtime Library Exception for more details.
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
As a special exception, you may use this file as it is a part of a free
|
|
software library without restriction. Specifically, if other files
|
|
instantiate templates or use macros or inline functions from this file,
|
|
or you compile this file and link it with other files to produce an
|
|
executable, this file does not by itself cause the resulting executable
|
|
to be covered by the GNU Lesser General Public License. This exception
|
|
does not however invalidate any other reasons why the executable file
|
|
might be covered by the GNU Lesser General Public License.
|
|
|
|
===========================================================================*/
|
|
|
|
/**@file gmm_dense_Householder.h
|
|
@author Caroline Lecalvez <Caroline.Lecalvez@gmm.insa-toulouse.fr>
|
|
@author Yves Renard <Yves.Renard@insa-lyon.fr>
|
|
@date June 5, 2003.
|
|
@brief Householder for dense matrices.
|
|
*/
|
|
|
|
#ifndef GMM_DENSE_HOUSEHOLDER_H
|
|
#define GMM_DENSE_HOUSEHOLDER_H
|
|
|
|
#include "gmm_kernel.h"
|
|
|
|
namespace gmm {
|
|
///@cond DOXY_SHOW_ALL_FUNCTIONS
|
|
|
|
/* ********************************************************************* */
|
|
/* Rank one update (complex and real version) */
|
|
/* ********************************************************************* */
|
|
|
|
template <typename Matrix, typename VecX, typename VecY>
|
|
inline void rank_one_update(Matrix &A, const VecX& x,
|
|
const VecY& y, row_major) {
|
|
typedef typename linalg_traits<Matrix>::value_type T;
|
|
size_type N = mat_nrows(A);
|
|
GMM_ASSERT2(N <= vect_size(x) && mat_ncols(A) <= vect_size(y),
|
|
"dimensions mismatch");
|
|
typename linalg_traits<VecX>::const_iterator itx = vect_const_begin(x);
|
|
for (size_type i = 0; i < N; ++i, ++itx) {
|
|
typedef typename linalg_traits<Matrix>::sub_row_type row_type;
|
|
row_type row = mat_row(A, i);
|
|
typename linalg_traits<typename org_type<row_type>::t>::iterator
|
|
it = vect_begin(row), ite = vect_end(row);
|
|
typename linalg_traits<VecY>::const_iterator ity = vect_const_begin(y);
|
|
T tx = *itx;
|
|
for (; it != ite; ++it, ++ity) *it += conj_product(*ity, tx);
|
|
}
|
|
}
|
|
|
|
template <typename Matrix, typename VecX, typename VecY>
|
|
inline void rank_one_update(Matrix &A, const VecX& x,
|
|
const VecY& y, col_major) {
|
|
typedef typename linalg_traits<Matrix>::value_type T;
|
|
size_type M = mat_ncols(A);
|
|
GMM_ASSERT2(mat_nrows(A) <= vect_size(x) && M <= vect_size(y),
|
|
"dimensions mismatch");
|
|
typename linalg_traits<VecY>::const_iterator ity = vect_const_begin(y);
|
|
for (size_type i = 0; i < M; ++i, ++ity) {
|
|
typedef typename linalg_traits<Matrix>::sub_col_type col_type;
|
|
col_type col = mat_col(A, i);
|
|
typename linalg_traits<typename org_type<col_type>::t>::iterator
|
|
it = vect_begin(col), ite = vect_end(col);
|
|
typename linalg_traits<VecX>::const_iterator itx = vect_const_begin(x);
|
|
T ty = *ity;
|
|
for (; it != ite; ++it, ++itx) *it += conj_product(ty, *itx);
|
|
}
|
|
}
|
|
|
|
///@endcond
|
|
template <typename Matrix, typename VecX, typename VecY>
|
|
inline void rank_one_update(const Matrix &AA, const VecX& x,
|
|
const VecY& y) {
|
|
Matrix& A = const_cast<Matrix&>(AA);
|
|
rank_one_update(A, x, y, typename principal_orientation_type<typename
|
|
linalg_traits<Matrix>::sub_orientation>::potype());
|
|
}
|
|
///@cond DOXY_SHOW_ALL_FUNCTIONS
|
|
|
|
/* ********************************************************************* */
|
|
/* Rank two update (complex and real version) */
|
|
/* ********************************************************************* */
|
|
|
|
template <typename Matrix, typename VecX, typename VecY>
|
|
inline void rank_two_update(Matrix &A, const VecX& x,
|
|
const VecY& y, row_major) {
|
|
typedef typename linalg_traits<Matrix>::value_type value_type;
|
|
size_type N = mat_nrows(A);
|
|
GMM_ASSERT2(N <= vect_size(x) && mat_ncols(A) <= vect_size(y),
|
|
"dimensions mismatch");
|
|
typename linalg_traits<VecX>::const_iterator itx1 = vect_const_begin(x);
|
|
typename linalg_traits<VecY>::const_iterator ity2 = vect_const_begin(y);
|
|
for (size_type i = 0; i < N; ++i, ++itx1, ++ity2) {
|
|
typedef typename linalg_traits<Matrix>::sub_row_type row_type;
|
|
row_type row = mat_row(A, i);
|
|
typename linalg_traits<typename org_type<row_type>::t>::iterator
|
|
it = vect_begin(row), ite = vect_end(row);
|
|
typename linalg_traits<VecX>::const_iterator itx2 = vect_const_begin(x);
|
|
typename linalg_traits<VecY>::const_iterator ity1 = vect_const_begin(y);
|
|
value_type tx = *itx1, ty = *ity2;
|
|
for (; it != ite; ++it, ++ity1, ++itx2)
|
|
*it += conj_product(*ity1, tx) + conj_product(*itx2, ty);
|
|
}
|
|
}
|
|
|
|
template <typename Matrix, typename VecX, typename VecY>
|
|
inline void rank_two_update(Matrix &A, const VecX& x,
|
|
const VecY& y, col_major) {
|
|
typedef typename linalg_traits<Matrix>::value_type value_type;
|
|
size_type M = mat_ncols(A);
|
|
GMM_ASSERT2(mat_nrows(A) <= vect_size(x) && M <= vect_size(y),
|
|
"dimensions mismatch");
|
|
typename linalg_traits<VecX>::const_iterator itx2 = vect_const_begin(x);
|
|
typename linalg_traits<VecY>::const_iterator ity1 = vect_const_begin(y);
|
|
for (size_type i = 0; i < M; ++i, ++ity1, ++itx2) {
|
|
typedef typename linalg_traits<Matrix>::sub_col_type col_type;
|
|
col_type col = mat_col(A, i);
|
|
typename linalg_traits<typename org_type<col_type>::t>::iterator
|
|
it = vect_begin(col), ite = vect_end(col);
|
|
typename linalg_traits<VecX>::const_iterator itx1 = vect_const_begin(x);
|
|
typename linalg_traits<VecY>::const_iterator ity2 = vect_const_begin(y);
|
|
value_type ty = *ity1, tx = *itx2;
|
|
for (; it != ite; ++it, ++itx1, ++ity2)
|
|
*it += conj_product(ty, *itx1) + conj_product(tx, *ity2);
|
|
}
|
|
}
|
|
|
|
///@endcond
|
|
template <typename Matrix, typename VecX, typename VecY>
|
|
inline void rank_two_update(const Matrix &AA, const VecX& x,
|
|
const VecY& y) {
|
|
Matrix& A = const_cast<Matrix&>(AA);
|
|
rank_two_update(A, x, y, typename principal_orientation_type<typename
|
|
linalg_traits<Matrix>::sub_orientation>::potype());
|
|
}
|
|
///@cond DOXY_SHOW_ALL_FUNCTIONS
|
|
|
|
/* ********************************************************************* */
|
|
/* Householder vector computation (complex and real version) */
|
|
/* ********************************************************************* */
|
|
|
|
template <typename VECT> void house_vector(const VECT &VV) {
|
|
VECT &V = const_cast<VECT &>(VV);
|
|
typedef typename linalg_traits<VECT>::value_type T;
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
|
|
R mu = vect_norm2(V), abs_v0 = gmm::abs(V[0]);
|
|
if (mu != R(0))
|
|
gmm::scale(V, (abs_v0 == R(0)) ? T(R(1) / mu)
|
|
: (safe_divide(T(abs_v0), V[0]) / (abs_v0 + mu)));
|
|
if (gmm::real(V[vect_size(V)-1]) * R(0) != R(0)) gmm::clear(V);
|
|
V[0] = T(1);
|
|
}
|
|
|
|
template <typename VECT> void house_vector_last(const VECT &VV) {
|
|
VECT &V = const_cast<VECT &>(VV);
|
|
typedef typename linalg_traits<VECT>::value_type T;
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
|
|
size_type m = vect_size(V);
|
|
R mu = vect_norm2(V), abs_v0 = gmm::abs(V[m-1]);
|
|
if (mu != R(0))
|
|
gmm::scale(V, (abs_v0 == R(0)) ? T(R(1) / mu)
|
|
: ((abs_v0 / V[m-1]) / (abs_v0 + mu)));
|
|
if (gmm::real(V[0]) * R(0) != R(0)) gmm::clear(V);
|
|
V[m-1] = T(1);
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
/* Householder updates (complex and real version) */
|
|
/* ********************************************************************* */
|
|
|
|
// multiply A to the left by the reflector stored in V. W is a temporary.
|
|
template <typename MAT, typename VECT1, typename VECT2> inline
|
|
void row_house_update(const MAT &AA, const VECT1 &V, const VECT2 &WW) {
|
|
VECT2 &W = const_cast<VECT2 &>(WW); MAT &A = const_cast<MAT &>(AA);
|
|
typedef typename linalg_traits<MAT>::value_type value_type;
|
|
typedef typename number_traits<value_type>::magnitude_type magnitude_type;
|
|
|
|
gmm::mult(conjugated(A),
|
|
scaled(V, value_type(magnitude_type(-2)/vect_norm2_sqr(V))), W);
|
|
rank_one_update(A, V, W);
|
|
}
|
|
|
|
// multiply A to the right by the reflector stored in V. W is a temporary.
|
|
template <typename MAT, typename VECT1, typename VECT2> inline
|
|
void col_house_update(const MAT &AA, const VECT1 &V, const VECT2 &WW) {
|
|
VECT2 &W = const_cast<VECT2 &>(WW); MAT &A = const_cast<MAT &>(AA);
|
|
typedef typename linalg_traits<MAT>::value_type value_type;
|
|
typedef typename number_traits<value_type>::magnitude_type magnitude_type;
|
|
|
|
gmm::mult(A,
|
|
scaled(V, value_type(magnitude_type(-2)/vect_norm2_sqr(V))), W);
|
|
rank_one_update(A, W, V);
|
|
}
|
|
|
|
///@endcond
|
|
|
|
/* ********************************************************************* */
|
|
/* Hessenberg reduction with Householder. */
|
|
/* ********************************************************************* */
|
|
|
|
template <typename MAT1, typename MAT2>
|
|
void Hessenberg_reduction(const MAT1& AA, const MAT2 &QQ, bool compute_Q){
|
|
MAT1& A = const_cast<MAT1&>(AA); MAT2& Q = const_cast<MAT2&>(QQ);
|
|
typedef typename linalg_traits<MAT1>::value_type value_type;
|
|
if (compute_Q) gmm::copy(identity_matrix(), Q);
|
|
size_type n = mat_nrows(A); if (n < 2) return;
|
|
std::vector<value_type> v(n), w(n);
|
|
sub_interval SUBK(0,n);
|
|
for (size_type k = 1; k+1 < n; ++k) {
|
|
sub_interval SUBI(k, n-k), SUBJ(k-1,n-k+1);
|
|
v.resize(n-k);
|
|
for (size_type j = k; j < n; ++j) v[j-k] = A(j, k-1);
|
|
house_vector(v);
|
|
row_house_update(sub_matrix(A, SUBI, SUBJ), v, sub_vector(w, SUBJ));
|
|
col_house_update(sub_matrix(A, SUBK, SUBI), v, w);
|
|
// is it possible to "unify" the two on the common part of the matrix?
|
|
if (compute_Q) col_house_update(sub_matrix(Q, SUBK, SUBI), v, w);
|
|
}
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
/* Householder tridiagonalization for symmetric matrices */
|
|
/* ********************************************************************* */
|
|
|
|
template <typename MAT1, typename MAT2>
|
|
void Householder_tridiagonalization(const MAT1 &AA, const MAT2 &QQ,
|
|
bool compute_q) {
|
|
MAT1 &A = const_cast<MAT1 &>(AA); MAT2 &Q = const_cast<MAT2 &>(QQ);
|
|
typedef typename linalg_traits<MAT1>::value_type T;
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
|
|
size_type n = mat_nrows(A); if (n < 2) return;
|
|
std::vector<T> v(n), p(n), w(n), ww(n);
|
|
sub_interval SUBK(0,n);
|
|
|
|
for (size_type k = 1; k+1 < n; ++k) { // not optimized ...
|
|
sub_interval SUBI(k, n-k);
|
|
v.resize(n-k); p.resize(n-k); w.resize(n-k);
|
|
for (size_type l = k; l < n; ++l)
|
|
{ v[l-k] = w[l-k] = A(l, k-1); A(l, k-1) = A(k-1, l) = T(0); }
|
|
house_vector(v);
|
|
R norm = vect_norm2_sqr(v);
|
|
A(k-1, k) = gmm::conj(A(k, k-1) = w[0] - T(2)*v[0]*vect_hp(w, v)/norm);
|
|
|
|
gmm::mult(sub_matrix(A, SUBI), gmm::scaled(v, T(-2) / norm), p);
|
|
gmm::add(p, gmm::scaled(v, -vect_hp(v, p) / norm), w);
|
|
rank_two_update(sub_matrix(A, SUBI), v, w);
|
|
// it should be possible to compute only the upper or lower part
|
|
|
|
if (compute_q) col_house_update(sub_matrix(Q, SUBK, SUBI), v, ww);
|
|
}
|
|
}
|
|
|
|
/* ********************************************************************* */
|
|
/* Real and complex Givens rotations */
|
|
/* ********************************************************************* */
|
|
|
|
template <typename T> void Givens_rotation(T a, T b, T &c, T &s) {
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
R aa = gmm::abs(a), bb = gmm::abs(b);
|
|
if (bb == R(0)) { c = T(1); s = T(0); return; }
|
|
if (aa == R(0)) { c = T(0); s = b / bb; return; }
|
|
if (bb > aa)
|
|
{ T t = -safe_divide(a,b); s = T(R(1) / (sqrt(R(1)+gmm::abs_sqr(t)))); c = s * t; }
|
|
else
|
|
{ T t = -safe_divide(b,a); c = T(R(1) / (sqrt(R(1)+gmm::abs_sqr(t)))); s = c * t; }
|
|
}
|
|
|
|
// Apply Q* v
|
|
template <typename T> inline
|
|
void Apply_Givens_rotation_left(T &x, T &y, T c, T s)
|
|
{ T t1=x, t2=y; x = gmm::conj(c)*t1 - gmm::conj(s)*t2; y = c*t2 + s*t1; }
|
|
|
|
// Apply v^T Q
|
|
template <typename T> inline
|
|
void Apply_Givens_rotation_right(T &x, T &y, T c, T s)
|
|
{ T t1=x, t2=y; x = c*t1 - s*t2; y = gmm::conj(c)*t2 + gmm::conj(s)*t1; }
|
|
|
|
template <typename MAT, typename T>
|
|
void row_rot(const MAT &AA, T c, T s, size_type i, size_type k) {
|
|
MAT &A = const_cast<MAT &>(AA); // can be specialized for row matrices
|
|
for (size_type j = 0; j < mat_ncols(A); ++j)
|
|
Apply_Givens_rotation_left(A(i,j), A(k,j), c, s);
|
|
}
|
|
|
|
template <typename MAT, typename T>
|
|
void col_rot(const MAT &AA, T c, T s, size_type i, size_type k) {
|
|
MAT &A = const_cast<MAT &>(AA); // can be specialized for column matrices
|
|
for (size_type j = 0; j < mat_nrows(A); ++j)
|
|
Apply_Givens_rotation_right(A(j,i), A(j,k), c, s);
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|