mirror of https://github.com/AxioDL/metaforce.git
132 lines
4.8 KiB
C++
132 lines
4.8 KiB
C++
/* -*- c++ -*- (enables emacs c++ mode) */
|
|
/*===========================================================================
|
|
|
|
Copyright (C) 2003-2017 Yves Renard
|
|
|
|
This file is a part of GetFEM++
|
|
|
|
GetFEM++ is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version along with the GCC Runtime Library
|
|
Exception either version 3.1 or (at your option) any later version.
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License and GCC Runtime Library Exception for more details.
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
As a special exception, you may use this file as it is a part of a free
|
|
software library without restriction. Specifically, if other files
|
|
instantiate templates or use macros or inline functions from this file,
|
|
or you compile this file and link it with other files to produce an
|
|
executable, this file does not by itself cause the resulting executable
|
|
to be covered by the GNU Lesser General Public License. This exception
|
|
does not however invalidate any other reasons why the executable file
|
|
might be covered by the GNU Lesser General Public License.
|
|
|
|
===========================================================================*/
|
|
|
|
/**@file gmm_opt.h
|
|
@author Yves Renard <Yves.Renard@insa-lyon.fr>
|
|
@date July 9, 2003.
|
|
@brief Optimization for some small cases (inversion of 2x2 matrices etc.)
|
|
*/
|
|
#ifndef GMM_OPT_H__
|
|
#define GMM_OPT_H__
|
|
|
|
#include <gmm/gmm_dense_lu.h>
|
|
|
|
namespace gmm {
|
|
|
|
/* ********************************************************************* */
|
|
/* Optimized determinant and inverse for small matrices (2x2 and 3x3) */
|
|
/* with dense_matrix<T>. */
|
|
/* ********************************************************************* */
|
|
|
|
template <typename T> T lu_det(const dense_matrix<T> &A) {
|
|
size_type n(mat_nrows(A));
|
|
if (n) {
|
|
const T *p = &(A(0,0));
|
|
switch (n) {
|
|
case 1 : return (*p);
|
|
case 2 : return (*p) * (*(p+3)) - (*(p+1)) * (*(p+2));
|
|
// Not stable for nearly singular matrices
|
|
// case 3 : return (*p) * ((*(p+4)) * (*(p+8)) - (*(p+5)) * (*(p+7)))
|
|
// - (*(p+1)) * ((*(p+3)) * (*(p+8)) - (*(p+5)) * (*(p+6)))
|
|
// + (*(p+2)) * ((*(p+3)) * (*(p+7)) - (*(p+4)) * (*(p+6)));
|
|
default :
|
|
{
|
|
dense_matrix<T> B(mat_nrows(A), mat_ncols(A));
|
|
lapack_ipvt ipvt(mat_nrows(A));
|
|
gmm::copy(A, B);
|
|
lu_factor(B, ipvt);
|
|
return lu_det(B, ipvt);
|
|
}
|
|
}
|
|
}
|
|
return T(1);
|
|
}
|
|
|
|
|
|
template <typename T> T lu_inverse(const dense_matrix<T> &A_,
|
|
bool doassert = true) {
|
|
dense_matrix<T>& A = const_cast<dense_matrix<T> &>(A_);
|
|
size_type N = mat_nrows(A);
|
|
T det(1);
|
|
if (N) {
|
|
T *p = &(A(0,0));
|
|
switch (N) {
|
|
case 1 : {
|
|
det = *p;
|
|
if (doassert) GMM_ASSERT1(det!=T(0), "non invertible matrix");
|
|
if (det == T(0)) break;
|
|
*p = T(1) / det;
|
|
} break;
|
|
case 2 : {
|
|
det = (*p) * (*(p+3)) - (*(p+1)) * (*(p+2));
|
|
if (doassert) GMM_ASSERT1(det!=T(0), "non invertible matrix");
|
|
if (det == T(0)) break;
|
|
std::swap(*p, *(p+3));
|
|
*p++ /= det; *p++ /= -det; *p++ /= -det; *p++ /= det;
|
|
} break;
|
|
case 3 : { // not stable for nearly singular matrices
|
|
T a, b, c, d, e, f, g, h, i;
|
|
a = (*(p+4)) * (*(p+8)) - (*(p+5)) * (*(p+7));
|
|
b = - (*(p+1)) * (*(p+8)) + (*(p+2)) * (*(p+7));
|
|
c = (*(p+1)) * (*(p+5)) - (*(p+2)) * (*(p+4));
|
|
d = - (*(p+3)) * (*(p+8)) + (*(p+5)) * (*(p+6));
|
|
e = (*(p+0)) * (*(p+8)) - (*(p+2)) * (*(p+6));
|
|
f = - (*(p+0)) * (*(p+5)) + (*(p+2)) * (*(p+3));
|
|
g = (*(p+3)) * (*(p+7)) - (*(p+4)) * (*(p+6));
|
|
h = - (*(p+0)) * (*(p+7)) + (*(p+1)) * (*(p+6));
|
|
i = (*(p+0)) * (*(p+4)) - (*(p+1)) * (*(p+3));
|
|
det = (*p) * a + (*(p+1)) * d + (*(p+2)) * g;
|
|
if (std::abs(det) > 1e-5) {
|
|
*p++ = a / det; *p++ = b / det; *p++ = c / det;
|
|
*p++ = d / det; *p++ = e / det; *p++ = f / det;
|
|
*p++ = g / det; *p++ = h / det; *p++ = i / det;
|
|
break;
|
|
}
|
|
}
|
|
default : {
|
|
dense_matrix<T> B(mat_nrows(A), mat_ncols(A));
|
|
lapack_ipvt ipvt(mat_nrows(A));
|
|
gmm::copy(A, B);
|
|
size_type info = lu_factor(B, ipvt);
|
|
GMM_ASSERT1(!info, "non invertible matrix");
|
|
lu_inverse(B, ipvt, A);
|
|
return lu_det(B, ipvt);
|
|
}
|
|
}
|
|
}
|
|
return det;
|
|
}
|
|
|
|
|
|
}
|
|
|
|
#endif // GMM_OPT_H__
|