metaforce/Runtime/Collision/CMetroidAreaCollider.cpp

1135 lines
48 KiB
C++

#include "CMetroidAreaCollider.hpp"
#include "CMaterialFilter.hpp"
#include "CollisionUtil.hpp"
#include "CCollisionInfoList.hpp"
namespace urde
{
u32 CMetroidAreaCollider::g_CalledClip = 0;
u32 CMetroidAreaCollider::g_RejectedByClip = 0;
u32 CMetroidAreaCollider::g_TrianglesProcessed = 0;
u32 CMetroidAreaCollider::g_DupTrianglesProcessed = 0;
u16 CMetroidAreaCollider::g_DupPrimitiveCheckCount = 0;
u16 CMetroidAreaCollider::g_DupVertexList[0x5000] = {};
u16 CMetroidAreaCollider::g_DupEdgeList[0xC000] = {};
u16 CMetroidAreaCollider::g_DupTriangleList[0x4000] = {};
CAABoxAreaCache::CAABoxAreaCache(const zeus::CAABox& aabb, const zeus::CPlane* pl, const CMaterialFilter& filter,
const CMaterialList& material, CCollisionInfoList& collisionList)
: x0_aabb(aabb), x4_planes(pl), x8_filter(filter), xc_material(material), x10_collisionList(collisionList),
x14_center(aabb.center()), x20_halfExtent(aabb.extents())
{}
CBooleanAABoxAreaCache::CBooleanAABoxAreaCache(const zeus::CAABox& aabb, const CMaterialFilter& filter)
: x0_aabb(aabb), x4_filter(filter), x8_center(aabb.center()), x14_halfExtent(aabb.extents())
{}
CSphereAreaCache::CSphereAreaCache(const zeus::CAABox& aabb, const zeus::CSphere& sphere, const CMaterialFilter& filter,
const CMaterialList& material, CCollisionInfoList& collisionList)
: x0_aabb(aabb), x4_sphere(sphere), x8_filter(filter), xc_material(material), x10_collisionList(collisionList)
{}
CBooleanSphereAreaCache::CBooleanSphereAreaCache(const zeus::CAABox& aabb, const zeus::CSphere& sphere,
const CMaterialFilter& filter)
: x0_aabb(aabb), x4_sphere(sphere), x8_filter(filter)
{}
SBoxEdge::SBoxEdge(const zeus::CAABox& aabb, int idx, const zeus::CVector3f& dir)
: x0_seg(aabb.getEdge(zeus::CAABox::EBoxEdgeId(idx))), x28_start(x0_seg.x0_start), x40_end(x0_seg.x18_end),
x58_delta(x40_end - x28_start), x70_coDir(x58_delta.cross(dir).asNormalized()),
x88_dirCoDirDot(x28_start.dot(x70_coDir))
{}
static void FlagEdgeIndicesForFace(int face, bool edgeFlags[12])
{
switch (face)
{
case 0:
edgeFlags[10] = true;
edgeFlags[11] = true;
edgeFlags[2] = true;
edgeFlags[4] = true;
return;
case 1:
edgeFlags[8] = true;
edgeFlags[9] = true;
edgeFlags[0] = true;
edgeFlags[6] = true;
return;
case 2:
edgeFlags[4] = true;
edgeFlags[5] = true;
edgeFlags[6] = true;
edgeFlags[7] = true;
return;
case 3:
edgeFlags[0] = true;
edgeFlags[1] = true;
edgeFlags[2] = true;
edgeFlags[3] = true;
return;
case 4:
edgeFlags[7] = true;
edgeFlags[8] = true;
edgeFlags[3] = true;
edgeFlags[11] = true;
return;
case 5:
edgeFlags[1] = true;
edgeFlags[5] = true;
edgeFlags[9] = true;
edgeFlags[10] = true;
return;
default: break;
}
}
static void FlagVertexIndicesForFace(int face, bool vertFlags[8])
{
switch (face)
{
case 0:
vertFlags[1] = true;
vertFlags[3] = true;
vertFlags[5] = true;
vertFlags[7] = true;
return;
case 1:
vertFlags[0] = true;
vertFlags[2] = true;
vertFlags[4] = true;
vertFlags[6] = true;
return;
case 2:
vertFlags[2] = true;
vertFlags[3] = true;
vertFlags[6] = true;
vertFlags[7] = true;
return;
case 3:
vertFlags[0] = true;
vertFlags[1] = true;
vertFlags[4] = true;
vertFlags[5] = true;
return;
case 4:
vertFlags[4] = true;
vertFlags[5] = true;
vertFlags[6] = true;
vertFlags[7] = true;
return;
case 5:
vertFlags[0] = true;
vertFlags[1] = true;
vertFlags[2] = true;
vertFlags[3] = true;
return;
default: break;
}
}
CMovingAABoxComponents::CMovingAABoxComponents(const zeus::CAABox& aabb, const zeus::CVector3f& dir)
: x6e8_aabb(aabb)
{
bool edgeFlags[12] = {};
bool vertFlags[8] = {};
int useFaces = 0;
for (int i=0 ; i<3 ; ++i)
{
if (dir[i] != 0.f)
{
int face = i * 2 + (dir[i] < 0.f);
FlagEdgeIndicesForFace(face, edgeFlags);
FlagVertexIndicesForFace(face, vertFlags);
useFaces += 1;
}
}
for (int i=0 ; i<12 ; ++i)
if (edgeFlags[i])
x0_edges.push_back(SBoxEdge(aabb, i, dir));
for (int i=0 ; i<8 ; ++i)
if (vertFlags[i])
x6c4_vertIdxs.push_back(i);
if (useFaces == 1)
{
x6e8_aabb = zeus::CAABox::skInvertedBox;
x6e8_aabb.accumulateBounds(aabb.getPoint(x6c4_vertIdxs[0]));
x6e8_aabb.accumulateBounds(aabb.getPoint(x6c4_vertIdxs[1]));
x6e8_aabb.accumulateBounds(aabb.getPoint(x6c4_vertIdxs[2]));
x6e8_aabb.accumulateBounds(aabb.getPoint(x6c4_vertIdxs[3]));
}
}
CMetroidAreaCollider::COctreeLeafCache::COctreeLeafCache(const CAreaOctTree& octTree)
: x0_octTree(octTree)
{
x908_24_overflow = false;
}
void CMetroidAreaCollider::COctreeLeafCache::AddLeaf(const CAreaOctTree::Node& node)
{
if (x4_nodeCache.size() == 64)
{
x908_24_overflow = true;
return;
}
x4_nodeCache.push_back(node);
}
void CMetroidAreaCollider::BuildOctreeLeafCache(const CAreaOctTree::Node& node, const zeus::CAABox& aabb,
CMetroidAreaCollider::COctreeLeafCache& cache)
{
for (int i=0 ; i<8 ; ++i)
{
u16 flags = (node.GetChildFlags() >> (i * 2)) & 0x3;
if (flags)
{
CAreaOctTree::Node ch = node.GetChild(i);
if (aabb.intersects(ch.GetBoundingBox()))
{
if (flags == 0x2)
cache.AddLeaf(ch);
else
BuildOctreeLeafCache(ch, aabb, cache);
}
}
}
}
static zeus::CVector3f ClipRayToPlane(const zeus::CVector3f& a, const zeus::CVector3f& b,
const zeus::CPlane& plane)
{
return (1.f - -plane.pointToPlaneDist(a) / (b - a).dot(plane.vec)) * (a - b) + b;
}
bool CMetroidAreaCollider::ConvexPolyCollision(const zeus::CPlane* planes, const zeus::CVector3f* verts,
zeus::CAABox& aabb)
{
rstl::reserved_vector<zeus::CVector3f, 20> vecs[2];
g_CalledClip += 1;
g_RejectedByClip -= 1;
vecs[0].push_back(verts[0]);
vecs[0].push_back(verts[1]);
vecs[0].push_back(verts[2]);
int vecIdx = 0;
int otherVecIdx = 1;
for (int i=0 ; i<6 ; ++i)
{
rstl::reserved_vector<zeus::CVector3f, 20>& vec = vecs[vecIdx];
rstl::reserved_vector<zeus::CVector3f, 20>& otherVec = vecs[otherVecIdx];
otherVec.clear();
bool inFrontOf = planes[i].pointToPlaneDist(vec.front()) >= 0.f;
for (int j=0 ; j<vec.size() ; ++j)
{
const zeus::CVector3f& b = vec[(j + 1) % vec.size()];
if (inFrontOf)
otherVec.push_back(vec[j]);
if ((planes[i].pointToPlaneDist(b) >= 0.f) ^ inFrontOf)
otherVec.push_back(ClipRayToPlane(vec[j], b, planes[i]));
}
if (otherVec.empty())
return false;
vecIdx ^= 1;
otherVecIdx ^= 1;
}
rstl::reserved_vector<zeus::CVector3f, 20>& accumVec = vecs[otherVecIdx ^ 1];
for (const zeus::CVector3f& point : accumVec)
aabb.accumulateBounds(point);
g_RejectedByClip -= 1;
return true;
}
bool CMetroidAreaCollider::AABoxCollisionCheckBoolean_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const CMaterialFilter& filter)
{
CBooleanAABoxAreaCache cache(aabb, filter);
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache)
{
if (cache.x0_aabb.intersects(node.GetBoundingBox()))
{
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
++g_TrianglesProcessed;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(list.GetAt(j));
if (cache.x4_filter.Passes(CMaterialList(surf.GetSurfaceFlags())))
{
if (CollisionUtil::TriBoxOverlap(cache.x8_center, cache.x14_halfExtent,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
return true;
}
}
}
}
return false;
}
bool CMetroidAreaCollider::AABoxCollisionCheckBoolean_Internal(const CAreaOctTree::Node& node,
const CBooleanAABoxAreaCache& cache)
{
for (int i=0 ; i<8 ; ++i)
{
CAreaOctTree::Node::ETreeType type = node.GetChildType(i);
if (type != CAreaOctTree::Node::ETreeType::Invalid)
{
CAreaOctTree::Node ch = node.GetChild(i);
if (cache.x0_aabb.intersects(ch.GetBoundingBox()))
{
if (type == CAreaOctTree::Node::ETreeType::Leaf)
{
CAreaOctTree::TriListReference list = ch.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
++g_TrianglesProcessed;
CCollisionSurface surf = ch.GetOwner().GetMasterListTriangle(list.GetAt(j));
if (cache.x4_filter.Passes(CMaterialList(surf.GetSurfaceFlags())))
{
if (CollisionUtil::TriBoxOverlap(cache.x8_center, cache.x14_halfExtent,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
return true;
}
}
}
else
{
if (AABoxCollisionCheckBoolean_Internal(ch, cache))
return true;
}
}
}
}
return false;
}
bool CMetroidAreaCollider::AABoxCollisionCheckBoolean(const CAreaOctTree& octTree, const zeus::CAABox& aabb,
const CMaterialFilter& filter)
{
CBooleanAABoxAreaCache cache(aabb, filter);
return AABoxCollisionCheckBoolean_Internal(octTree.GetRootNode(), cache);
}
bool CMetroidAreaCollider::SphereCollisionCheckBoolean_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const zeus::CSphere& sphere, const CMaterialFilter& filter)
{
CBooleanSphereAreaCache cache(aabb, sphere, filter);
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache)
{
if (cache.x0_aabb.intersects(node.GetBoundingBox()))
{
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
++g_TrianglesProcessed;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(list.GetAt(j));
if (cache.x8_filter.Passes(CMaterialList(surf.GetSurfaceFlags())))
{
if (CollisionUtil::TriSphereOverlap(cache.x4_sphere,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
return true;
}
}
}
}
return false;
}
bool CMetroidAreaCollider::SphereCollisionCheckBoolean_Internal(const CAreaOctTree::Node& node,
const CBooleanSphereAreaCache& cache)
{
for (int i=0 ; i<8 ; ++i)
{
CAreaOctTree::Node::ETreeType type = node.GetChildType(i);
if (type != CAreaOctTree::Node::ETreeType::Invalid)
{
CAreaOctTree::Node ch = node.GetChild(i);
if (cache.x0_aabb.intersects(ch.GetBoundingBox()))
{
if (type == CAreaOctTree::Node::ETreeType::Leaf)
{
CAreaOctTree::TriListReference list = ch.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
++g_TrianglesProcessed;
CCollisionSurface surf = ch.GetOwner().GetMasterListTriangle(list.GetAt(j));
if (cache.x8_filter.Passes(CMaterialList(surf.GetSurfaceFlags())))
{
if (CollisionUtil::TriSphereOverlap(cache.x4_sphere,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
return true;
}
}
}
else
{
if (SphereCollisionCheckBoolean_Internal(ch, cache))
return true;
}
}
}
}
return false;
}
bool CMetroidAreaCollider::SphereCollisionCheckBoolean(const CAreaOctTree& octTree, const zeus::CAABox& aabb,
const zeus::CSphere& sphere, const CMaterialFilter& filter)
{
CAreaOctTree::Node node = octTree.GetRootNode();
CBooleanSphereAreaCache cache(aabb, sphere, filter);
return SphereCollisionCheckBoolean_Internal(node, cache);
}
bool CMetroidAreaCollider::AABoxCollisionCheck_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const CMaterialFilter& filter, const CMaterialList& matList,
CCollisionInfoList& list)
{
bool ret = false;
zeus::CPlane planes[] =
{
{zeus::CVector3f::skRight, aabb.min.dot(zeus::CVector3f::skRight)},
{zeus::CVector3f::skLeft, aabb.max.dot(zeus::CVector3f::skLeft)},
{zeus::CVector3f::skForward, aabb.min.dot(zeus::CVector3f::skForward)},
{zeus::CVector3f::skBack, aabb.max.dot(zeus::CVector3f::skBack)},
{zeus::CVector3f::skUp, aabb.min.dot(zeus::CVector3f::skUp)},
{zeus::CVector3f::skDown, aabb.max.dot(zeus::CVector3f::skDown)}
};
CAABoxAreaCache cache(aabb, planes, filter, matList, list);
ResetInternalCounters();
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache)
{
if (aabb.intersects(node.GetBoundingBox()))
{
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
++g_TrianglesProcessed;
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount == g_DupTriangleList[triIdx])
{
g_DupTrianglesProcessed += 1;
}
else
{
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(triIdx);
CMaterialList material(surf.GetSurfaceFlags());
if (cache.x8_filter.Passes(material))
{
if (CollisionUtil::TriBoxOverlap(cache.x14_center, cache.x20_halfExtent,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
{
zeus::CAABox aabb = zeus::CAABox::skInvertedBox;
if (ConvexPolyCollision(cache.x4_planes, surf.GetVerts(), aabb))
{
zeus::CPlane plane = surf.GetPlane();
CCollisionInfo collision(aabb, cache.xc_material, material,
plane.normal(), -plane.normal());
cache.x10_collisionList.Add(collision, false);
ret = true;
}
}
}
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::AABoxCollisionCheck_Internal(const CAreaOctTree::Node& node,
const CAABoxAreaCache& cache)
{
bool ret = false;
switch (node.GetTreeType())
{
case CAreaOctTree::Node::ETreeType::Invalid:
return false;
case CAreaOctTree::Node::ETreeType::Branch:
{
for (int i=0 ; i<8 ; ++i)
{
CAreaOctTree::Node ch = node.GetChild(i);
if (ch.GetBoundingBox().intersects(cache.x0_aabb))
if (AABoxCollisionCheck_Internal(ch, cache))
ret = true;
}
break;
}
case CAreaOctTree::Node::ETreeType::Leaf:
{
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
++g_TrianglesProcessed;
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount == g_DupTriangleList[triIdx])
{
g_DupTrianglesProcessed += 1;
}
else
{
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(triIdx);
CMaterialList material(surf.GetSurfaceFlags());
if (cache.x8_filter.Passes(material))
{
if (CollisionUtil::TriBoxOverlap(cache.x14_center, cache.x20_halfExtent,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
{
zeus::CAABox aabb = zeus::CAABox::skInvertedBox;
if (ConvexPolyCollision(cache.x4_planes, surf.GetVerts(), aabb))
{
zeus::CPlane plane = surf.GetPlane();
CCollisionInfo collision(aabb, cache.xc_material, material,
plane.normal(), -plane.normal());
cache.x10_collisionList.Add(collision, false);
ret = true;
}
}
}
}
}
break;
}
default: break;
}
return ret;
}
bool CMetroidAreaCollider::AABoxCollisionCheck(const CAreaOctTree& octTree, const zeus::CAABox& aabb,
const CMaterialFilter& filter, const CMaterialList& matList,
CCollisionInfoList& list)
{
zeus::CPlane planes[] =
{
{zeus::CVector3f::skRight, aabb.min.dot(zeus::CVector3f::skRight)},
{zeus::CVector3f::skLeft, aabb.max.dot(zeus::CVector3f::skLeft)},
{zeus::CVector3f::skForward, aabb.min.dot(zeus::CVector3f::skForward)},
{zeus::CVector3f::skBack, aabb.max.dot(zeus::CVector3f::skBack)},
{zeus::CVector3f::skUp, aabb.min.dot(zeus::CVector3f::skUp)},
{zeus::CVector3f::skDown, aabb.max.dot(zeus::CVector3f::skDown)}
};
CAABoxAreaCache cache(aabb, planes, filter, matList, list);
ResetInternalCounters();
CAreaOctTree::Node node = octTree.GetRootNode();
return AABoxCollisionCheck_Internal(node, cache);
}
bool CMetroidAreaCollider::SphereCollisionCheck_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const zeus::CSphere& sphere, const CMaterialList& matList,
const CMaterialFilter& filter, CCollisionInfoList& clist)
{
ResetInternalCounters();
bool ret = false;
zeus::CVector3f point, normal;
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache)
{
if (aabb.intersects(node.GetBoundingBox()))
{
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
++g_TrianglesProcessed;
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount == g_DupTriangleList[triIdx])
{
g_DupTrianglesProcessed += 1;
}
else
{
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CCollisionSurface surf = node.GetOwner().GetMasterListTriangle(triIdx);
CMaterialList material(surf.GetSurfaceFlags());
if (filter.Passes(material))
{
if (CollisionUtil::TriSphereIntersection(sphere,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2),
point, normal))
{
CCollisionInfo collision(point, matList, material, normal);
clist.Add(collision, false);
ret = true;
}
}
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::SphereCollisionCheck_Internal(const CAreaOctTree::Node& node,
const CSphereAreaCache& cache)
{
bool ret = false;
zeus::CVector3f point, normal;
for (int i=0 ; i<8 ; ++i)
{
CAreaOctTree::Node::ETreeType chTp = node.GetChildType(i);
if (chTp != CAreaOctTree::Node::ETreeType::Invalid)
{
CAreaOctTree::Node ch = node.GetChild(i);
if (cache.x0_aabb.intersects(ch.GetBoundingBox()))
{
if (chTp == CAreaOctTree::Node::ETreeType::Leaf)
{
CAreaOctTree::TriListReference list = ch.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
++g_TrianglesProcessed;
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount == g_DupTriangleList[triIdx])
{
g_DupTrianglesProcessed += 1;
}
else
{
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CCollisionSurface surf = ch.GetOwner().GetMasterListTriangle(triIdx);
CMaterialList material(surf.GetSurfaceFlags());
if (cache.x8_filter.Passes(material))
{
if (CollisionUtil::TriSphereIntersection(cache.x4_sphere,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2),
point, normal))
{
CCollisionInfo collision(point, cache.xc_material, material, normal);
cache.x10_collisionList.Add(collision, false);
ret = true;
}
}
}
}
}
else
{
if (SphereCollisionCheck_Internal(ch, cache))
ret = true;
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::SphereCollisionCheck(const CAreaOctTree& octTree, const zeus::CAABox& aabb,
const zeus::CSphere& sphere, const CMaterialList& matList,
const CMaterialFilter& filter, CCollisionInfoList& list)
{
CSphereAreaCache cache(aabb, sphere, filter, matList, list);
ResetInternalCounters();
CAreaOctTree::Node node = octTree.GetRootNode();
return SphereCollisionCheck_Internal(node, cache);
}
bool CMetroidAreaCollider::MovingAABoxCollisionCheck_BoxVertexTri(const CCollisionSurface& surf, const zeus::CAABox& aabb,
const rstl::reserved_vector<u32, 8>& vertIndices,
const zeus::CVector3f& dir, double& d,
zeus::CVector3f& normalOut, zeus::CVector3f& pointOut)
{
bool ret = false;
for (u32 idx : vertIndices)
{
zeus::CVector3f point = aabb.getPoint(idx);
if (CollisionUtil::RayTriangleIntersection_Double(point, dir, surf.GetVerts(), d))
{
pointOut = float(d) * dir + point;
normalOut = surf.GetNormal();
if (normalOut.z > 100.f)
{
printf("");
normalOut = surf.GetNormal();
}
ret = true;
}
}
return ret;
}
bool CMetroidAreaCollider::MovingAABoxCollisionCheck_TriVertexBox(const zeus::CVector3f& vert, const zeus::CAABox& aabb,
const zeus::CVector3f& dir, double& dOut,
zeus::CVector3f& normal, zeus::CVector3f& point)
{
zeus::CMRay ray(vert, -dir, dOut);
zeus::CVector3f norm;
double d;
if (CollisionUtil::RayAABoxIntersection_Double(ray, aabb, norm, d) == 2)
{
d *= dOut;
if (d < dOut)
{
normal = -norm;
dOut = d;
point = vert;
return true;
}
}
return false;
}
bool CMetroidAreaCollider::MovingAABoxCollisionCheck_Edge(const zeus::CVector3f& ev0, const zeus::CVector3f& ev1,
const rstl::reserved_vector<SBoxEdge, 12>& edges,
const zeus::CVector3f& dir, double& d,
zeus::CVector3f& normal, zeus::CVector3f& point)
{
bool ret = false;
for (const SBoxEdge& edge : edges)
{
zeus::CVector3d ev0d = ev0;
zeus::CVector3d ev1d = ev1;
if ((edge.x70_coDir.dot(ev1d) >= edge.x88_dirCoDirDot) !=
(edge.x70_coDir.dot(ev0d) >= edge.x88_dirCoDirDot))
{
zeus::CVector3d delta = ev0d - ev1d;
zeus::CVector3d cross0 = edge.x58_delta.cross(delta);
if (cross0.magSquared() >= DBL_EPSILON)
{
zeus::CVector3d cross0Norm = cross0.asNormalized();
if (cross0Norm.dot(dir) >= 0.0)
{
ev1d = ev0;
ev0d = ev1;
delta = ev0d - ev1d;
cross0Norm = edge.x58_delta.cross(delta).asNormalized();
}
zeus::CVector3d clipped = ev0d + (-(ev0d.dot(edge.x70_coDir) - edge.x88_dirCoDirDot) /
delta.dot(edge.x70_coDir)) * delta;
int maxCompIdx = (std::fabs(edge.x70_coDir.x) > std::fabs(edge.x70_coDir.y)) ? 0 : 1;
if (std::fabs(edge.x70_coDir[maxCompIdx]) < std::fabs(edge.x70_coDir.z))
maxCompIdx = 2;
int ci0, ci1;
switch (maxCompIdx)
{
case 0:
ci0 = 1;
ci1 = 2;
break;
case 1:
ci0 = 0;
ci1 = 2;
break;
default:
ci0 = 0;
ci1 = 1;
break;
}
double mag = (edge.x58_delta[ci0] * (clipped[ci1] - edge.x28_start[ci1]) -
edge.x58_delta[ci1] * (clipped[ci0] - edge.x28_start[ci0])) /
(edge.x58_delta[ci0] * dir[ci1] - edge.x58_delta[ci1] * dir[ci0]);
if (mag >= 0.0 && mag < d)
{
zeus::CVector3d clippedMag = clipped - mag * zeus::CVector3d(dir);
if ((edge.x28_start - clippedMag).dot(edge.x40_end - clippedMag) < 0.0 && mag < d)
{
normal = cross0Norm.asCVector3f();
d = mag;
point = clipped.asCVector3f();
ret = true;
}
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::MovingAABoxCollisionCheck_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const CMaterialFilter& filter, const CMaterialList& matList,
const zeus::CVector3f& dir, float mag, CCollisionInfo& infoOut,
double& dOut)
{
bool ret = false;
ResetInternalCounters();
dOut = mag;
CMovingAABoxComponents components(aabb, dir);
zeus::CAABox movedAABB = components.x6e8_aabb;
zeus::CVector3f moveVec = mag * dir;
movedAABB.accumulateBounds(aabb.min + moveVec);
movedAABB.accumulateBounds(aabb.max + moveVec);
zeus::CVector3f center = movedAABB.center();
zeus::CVector3f extent = movedAABB.extents();
zeus::CVector3f normal, point;
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache)
{
if (movedAABB.intersects(node.GetBoundingBox()))
{
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount != g_DupTriangleList[triIdx])
{
g_TrianglesProcessed += 1;
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CMaterialList triMat(node.GetOwner().GetTriangleMaterial(triIdx));
if (filter.Passes(triMat))
{
u16 vertIndices[3];
node.GetOwner().GetTriangleVertexIndices(triIdx, vertIndices);
CCollisionSurface surf(node.GetOwner().GetVert(vertIndices[0]),
node.GetOwner().GetVert(vertIndices[1]),
node.GetOwner().GetVert(vertIndices[2]),
triMat.GetValue());
if (CollisionUtil::TriBoxOverlap(center, extent,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
{
bool triRet = false;
double d = dOut;
if (MovingAABoxCollisionCheck_BoxVertexTri(surf, aabb, components.x6c4_vertIdxs,
dir, d, normal, point) && d < dOut)
{
triRet = true;
ret = true;
infoOut = CCollisionInfo(point, matList, triMat, normal);
dOut = d;
}
for (int k=0 ; k<3 ; ++k)
{
u16 vertIdx = vertIndices[k];
zeus::CVector3f vtx = node.GetOwner().GetVert(vertIdx);
if (g_DupPrimitiveCheckCount != g_DupVertexList[vertIdx])
{
g_DupVertexList[vertIdx] = g_DupPrimitiveCheckCount;
if (movedAABB.pointInside(vtx))
{
d = dOut;
if (MovingAABoxCollisionCheck_TriVertexBox(vtx, aabb, dir, d,
normal, point) && d < dOut)
{
CMaterialList vertMat(node.GetOwner().GetVertMaterial(vertIdx));
triRet = true;
ret = true;
infoOut = CCollisionInfo(point, matList, vertMat, normal);
dOut = d;
}
}
}
}
const u16* edgeIndices = node.GetOwner().GetTriangleEdgeIndices(triIdx);
for (int k=0 ; k<3 ; ++k)
{
u16 edgeIdx = edgeIndices[k];
if (g_DupPrimitiveCheckCount != g_DupEdgeList[edgeIdx])
{
g_DupEdgeList[edgeIdx] = g_DupPrimitiveCheckCount;
CMaterialList edgeMat(node.GetOwner().GetEdgeMaterial(edgeIdx));
if (!edgeMat.HasMaterial(EMaterialTypes::NoEdgeCollision))
{
d = dOut;
const CCollisionEdge& edge = node.GetOwner().GetEdge(edgeIdx);
if (MovingAABoxCollisionCheck_Edge(node.GetOwner().GetVert(edge.GetVertIndex1()),
node.GetOwner().GetVert(edge.GetVertIndex2()),
components.x0_edges, dir, d, normal, point) &&
d < dOut)
{
triRet = true;
ret = true;
infoOut = CCollisionInfo(point, matList, edgeMat, normal);
dOut = d;
}
}
}
}
if (triRet)
{
moveVec = float(dOut) * dir;
movedAABB = components.x6e8_aabb;
movedAABB.accumulateBounds(aabb.min + moveVec);
movedAABB.accumulateBounds(aabb.max + moveVec);
center = movedAABB.center();
extent = movedAABB.extents();
}
}
else
{
const u16* edgeIndices = node.GetOwner().GetTriangleEdgeIndices(triIdx);
g_DupEdgeList[edgeIndices[0]] = g_DupPrimitiveCheckCount;
g_DupEdgeList[edgeIndices[1]] = g_DupPrimitiveCheckCount;
g_DupEdgeList[edgeIndices[2]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[0]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[1]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[2]] = g_DupPrimitiveCheckCount;
}
}
}
}
}
}
return ret;
}
bool CMetroidAreaCollider::MovingSphereCollisionCheck_Cached(const COctreeLeafCache& leafCache, const zeus::CAABox& aabb,
const zeus::CSphere& sphere,
const CMaterialFilter& filter, const CMaterialList& matList,
const zeus::CVector3f& dir, float mag, CCollisionInfo& infoOut,
double& dOut)
{
bool ret = false;
ResetInternalCounters();
dOut = mag;
zeus::CAABox movedAABB = aabb;
zeus::CVector3f moveVec = mag * dir;
movedAABB.accumulateBounds(aabb.min + moveVec);
movedAABB.accumulateBounds(aabb.max + moveVec);
zeus::CVector3f center = movedAABB.center();
zeus::CVector3f extent = movedAABB.extents();
for (const CAreaOctTree::Node& node : leafCache.x4_nodeCache)
{
if (movedAABB.intersects(node.GetBoundingBox()))
{
CAreaOctTree::TriListReference list = node.GetTriangleArray();
for (int j=0 ; j<list.GetSize() ; ++j)
{
u16 triIdx = list.GetAt(j);
if (g_DupPrimitiveCheckCount != g_DupTriangleList[triIdx])
{
g_TrianglesProcessed += 1;
g_DupTriangleList[triIdx] = g_DupPrimitiveCheckCount;
CMaterialList triMat(node.GetOwner().GetTriangleMaterial(triIdx));
if (filter.Passes(triMat))
{
u16 vertIndices[3];
node.GetOwner().GetTriangleVertexIndices(triIdx, vertIndices);
CCollisionSurface surf(node.GetOwner().GetVert(vertIndices[0]),
node.GetOwner().GetVert(vertIndices[1]),
node.GetOwner().GetVert(vertIndices[2]),
triMat.GetValue());
if (CollisionUtil::TriBoxOverlap(center, extent,
surf.GetVert(0), surf.GetVert(1), surf.GetVert(2)))
{
zeus::CVector3f surfNormal = surf.GetNormal();
if ((sphere.position + moveVec - surf.GetVert(0)).dot(surfNormal) <= sphere.radius)
{
bool triRet = false;
float mag = (sphere.radius - (sphere.position - surf.GetVert(0)).dot(surfNormal)) / dir.dot(surfNormal);
zeus::CVector3f intersectPoint = sphere.position + mag * dir;
bool outsideEdges[] =
{(intersectPoint - surf.GetVert(0)).dot((surf.GetVert(1) - surf.GetVert(0)).cross(surfNormal)) < 0.f,
(intersectPoint - surf.GetVert(1)).dot((surf.GetVert(2) - surf.GetVert(1)).cross(surfNormal)) < 0.f,
(intersectPoint - surf.GetVert(2)).dot((surf.GetVert(0) - surf.GetVert(2)).cross(surfNormal)) < 0.f};
if (mag >= 0.f && !outsideEdges[0] && !outsideEdges[1] && !outsideEdges[2] && mag < dOut)
{
infoOut = CCollisionInfo(intersectPoint - sphere.radius * surfNormal, matList, triMat, surfNormal);
dOut = mag;
triRet = true;
ret = true;
}
bool intersects = (sphere.position - surf.GetVert(0)).dot(surfNormal) <= sphere.radius;
bool testVert[] = {true, true, true};
const u16* edgeIndices = node.GetOwner().GetTriangleEdgeIndices(triIdx);
for (int k=0 ; k<3 ; ++k)
{
if (intersects || outsideEdges[k])
{
u16 edgeIdx = edgeIndices[k];
if (g_DupPrimitiveCheckCount != g_DupEdgeList[edgeIdx])
{
g_DupEdgeList[edgeIdx] = g_DupPrimitiveCheckCount;
CMaterialList edgeMat(node.GetOwner().GetEdgeMaterial(edgeIdx));
if (!edgeMat.HasMaterial(EMaterialTypes::NoEdgeCollision))
{
int nextIdx = (k + 1) % 3;
zeus::CVector3f edgeVec = surf.GetVert(nextIdx) - surf.GetVert(k);
float edgeVecMag = edgeVec.magnitude();
edgeVec *= zeus::CVector3f(1.f / edgeVecMag);
float dirDotEdge = dir.dot(edgeVec);
zeus::CVector3f edgeRej = dir - dirDotEdge * edgeVec;
float edgeRejMagSq = edgeRej.magSquared();
zeus::CVector3f vertToSphere = sphere.position - surf.GetVert(k);
float vtsDotEdge = vertToSphere.dot(edgeVec);
zeus::CVector3f vtsRej = vertToSphere - vtsDotEdge * edgeVec;
if (edgeRejMagSq > 0.f)
{
float tmp = 2.f * vtsRej.dot(edgeRej);
float tmp2 = 4.f * edgeRejMagSq *
(vtsRej.magSquared() - sphere.radius * sphere.radius) - tmp * tmp;
if (tmp2 >= 0.f)
{
float mag = 0.5f / edgeRejMagSq * (-tmp - std::sqrt(tmp2));
if (mag >= 0.f)
{
float t = mag * dirDotEdge + vtsDotEdge;
if (t >= 0.f && t <= edgeVecMag && mag < dOut)
{
zeus::CVector3f point = surf.GetVert(k) + t * edgeVec;
infoOut = CCollisionInfo(point, matList, edgeMat,
(sphere.position + mag * dir - point).normalized());
dOut = mag;
triRet = true;
ret = true;
testVert[k] = false;
testVert[nextIdx] = false;
}
else if (t < -sphere.radius && dirDotEdge <= 0.f)
{
testVert[k] = false;
}
else if (t > edgeVecMag + sphere.radius && dirDotEdge >= 0.0)
{
testVert[nextIdx] = false;
}
}
}
else
{
testVert[k] = false;
testVert[nextIdx] = false;
}
}
}
}
}
}
for (int k=0 ; k<3 ; ++k)
{
u16 vertIdx = vertIndices[k];
if (testVert[k])
{
if (g_DupPrimitiveCheckCount != g_DupVertexList[vertIdx])
{
g_DupVertexList[vertIdx] = g_DupPrimitiveCheckCount;
double d = dOut;
if (CollisionUtil::RaySphereIntersection_Double(zeus::CSphere(surf.GetVert(k), sphere.radius),
sphere.position, dir, d) && d >= 0.0)
{
infoOut = CCollisionInfo(surf.GetVert(k), matList, node.GetOwner().GetVertMaterial(vertIdx),
(sphere.position + dir * d - surf.GetVert(k)).normalized());
dOut = d;
triRet = true;
ret = true;
}
}
}
else
{
g_DupVertexList[vertIdx] = g_DupPrimitiveCheckCount;
}
}
if (triRet)
{
moveVec = float(dOut) * dir;
movedAABB = aabb;
movedAABB.accumulateBounds(aabb.min + moveVec);
movedAABB.accumulateBounds(aabb.max + moveVec);
center = movedAABB.center();
extent = movedAABB.extents();
}
}
}
else
{
const u16* edgeIndices = node.GetOwner().GetTriangleEdgeIndices(triIdx);
g_DupEdgeList[edgeIndices[0]] = g_DupPrimitiveCheckCount;
g_DupEdgeList[edgeIndices[1]] = g_DupPrimitiveCheckCount;
g_DupEdgeList[edgeIndices[2]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[0]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[1]] = g_DupPrimitiveCheckCount;
g_DupVertexList[vertIndices[2]] = g_DupPrimitiveCheckCount;
}
}
}
}
}
}
return ret;
}
void CMetroidAreaCollider::ResetInternalCounters()
{
g_CalledClip = 0;
g_RejectedByClip = 0;
g_TrianglesProcessed = 0;
g_DupTrianglesProcessed = 0;
if (g_DupPrimitiveCheckCount == 0xffff)
{
memset(g_DupVertexList, 0, 0x5000);
memset(g_DupEdgeList, 0, 0xC000);
memset(g_DupTriangleList, 0, 0x8000);
g_DupPrimitiveCheckCount += 1;
}
g_DupPrimitiveCheckCount += 1;
}
void CAreaCollisionCache::ClearCache()
{
x18_leafCaches.clear();
x1b40_24_leafOverflow = false;
x1b40_25_cacheOverflow = false;
}
void CAreaCollisionCache::AddOctreeLeafCache(const CMetroidAreaCollider::COctreeLeafCache& leafCache)
{
if (!leafCache.GetNumLeaves())
return;
if (leafCache.HasCacheOverflowed())
x1b40_24_leafOverflow = true;
if (x18_leafCaches.size() < 3)
{
x18_leafCaches.push_back(leafCache);
}
else
{
x1b40_24_leafOverflow = true;
x1b40_25_cacheOverflow = true;
}
}
}