metaforce/DataSpec/DNAMP1/CMDLMaterials.hpp

643 lines
23 KiB
C++

#pragma once
#include "DataSpec/DNACommon/DNACommon.hpp"
#include "DataSpec/DNACommon/GX.hpp"
#include "DataSpec/DNACommon/CMDL.hpp"
#include "DNAMP1.hpp"
#include "hecl/Blender/Connection.hpp"
namespace DataSpec::DNAMP1 {
struct MaterialSet : BigDNA {
static constexpr bool OneSection() { return false; }
AT_DECL_DNA
struct MaterialSetHead : BigDNA {
AT_DECL_DNA
Value<atUint32> textureCount = 0;
Vector<UniqueID32, AT_DNA_COUNT(textureCount)> textureIDs;
Value<atUint32> materialCount = 0;
Vector<atUint32, AT_DNA_COUNT(materialCount)> materialEndOffs;
void addTexture(const UniqueID32& id) {
textureIDs.push_back(id);
++textureCount;
}
void addMaterialEndOff(atUint32 off) {
materialEndOffs.push_back(off);
++materialCount;
}
template <class PAKBRIDGE>
void ensureTexturesExtracted(PAKRouter<PAKBRIDGE>& pakRouter) const {
for (const auto& id : textureIDs) {
const nod::Node* node;
const PAK::Entry* texEntry = pakRouter.lookupEntry(id, &node);
if (!texEntry)
continue;
hecl::ProjectPath txtrPath = pakRouter.getWorking(texEntry);
if (txtrPath.isNone()) {
txtrPath.makeDirChain(false);
PAKEntryReadStream rs = texEntry->beginReadStream(*node);
TXTR::Extract(rs, txtrPath);
}
}
}
} head;
struct Material : BigDNA {
AT_DECL_DNA
struct Flags : BigDNA {
AT_DECL_DNA
Value<atUint32> flags = 0;
bool konstValuesEnabled() const { return (flags & 0x8) != 0; }
void setKonstValuesEnabled(bool enabled) {
flags &= ~0x8;
flags |= atUint32(enabled) << 3;
}
bool depthSorting() const { return (flags & 0x10) != 0; }
void setDepthSorting(bool enabled) {
flags &= ~0x10;
flags |= atUint32(enabled) << 4;
}
bool alphaTest() const { return (flags & 0x20) != 0; }
void setAlphaTest(bool enabled) {
flags &= ~0x20;
flags |= atUint32(enabled) << 5;
}
bool samusReflection() const { return (flags & 0x40) != 0; }
void setSamusReflection(bool enabled) {
flags &= ~0x40;
flags |= atUint32(enabled) << 6;
}
bool depthWrite() const { return (flags & 0x80) != 0; }
void setDepthWrite(bool enabled) {
flags &= ~0x80;
flags |= atUint32(enabled) << 7;
}
bool samusReflectionSurfaceEye() const { return (flags & 0x100) != 0; }
void setSamusReflectionSurfaceEye(bool enabled) {
flags &= ~0x100;
flags |= atUint32(enabled) << 8;
}
bool shadowOccluderMesh() const { return (flags & 0x200) != 0; }
void setShadowOccluderMesh(bool enabled) {
flags &= ~0x200;
flags |= atUint32(enabled) << 9;
}
bool samusReflectionIndirectTexture() const { return (flags & 0x400) != 0; }
void setSamusReflectionIndirectTexture(bool enabled) {
flags &= ~0x400;
flags |= atUint32(enabled) << 10;
}
bool lightmap() const { return (flags & 0x800) != 0; }
void setLightmap(bool enabled) {
flags &= ~0x800;
flags |= atUint32(enabled) << 11;
}
bool lightmapUVArray() const { return (flags & 0x2000) != 0; }
void setLightmapUVArray(bool enabled) {
flags &= ~0x2000;
flags |= atUint32(enabled) << 13;
}
atUint16 textureSlots() const { return (flags >> 16) != 0; }
void setTextureSlots(atUint16 texslots) {
flags &= ~0xffff0000;
flags |= atUint32(texslots) << 16;
}
} flags;
const Flags& getFlags() const { return flags; }
Value<atUint32> textureCount = 0;
Vector<atUint32, AT_DNA_COUNT(textureCount)> textureIdxs;
struct VAFlags : BigDNA {
AT_DECL_DNA
Value<atUint32> vaFlags = 0;
GX::AttrType position() const { return GX::AttrType(vaFlags & 0x3); }
void setPosition(GX::AttrType val) {
vaFlags &= ~0x3;
vaFlags |= atUint32(val);
}
GX::AttrType normal() const { return GX::AttrType(vaFlags >> 2 & 0x3); }
void setNormal(GX::AttrType val) {
vaFlags &= ~0xC;
vaFlags |= atUint32(val) << 2;
}
GX::AttrType color0() const { return GX::AttrType(vaFlags >> 4 & 0x3); }
void setColor0(GX::AttrType val) {
vaFlags &= ~0x30;
vaFlags |= atUint32(val) << 4;
}
GX::AttrType color1() const { return GX::AttrType(vaFlags >> 6 & 0x3); }
void setColor1(GX::AttrType val) {
vaFlags &= ~0xC0;
vaFlags |= atUint32(val) << 6;
}
GX::AttrType tex0() const { return GX::AttrType(vaFlags >> 8 & 0x3); }
void setTex0(GX::AttrType val) {
vaFlags &= ~0x300;
vaFlags |= atUint32(val) << 8;
}
GX::AttrType tex1() const { return GX::AttrType(vaFlags >> 10 & 0x3); }
void setTex1(GX::AttrType val) {
vaFlags &= ~0xC00;
vaFlags |= atUint32(val) << 10;
}
GX::AttrType tex2() const { return GX::AttrType(vaFlags >> 12 & 0x3); }
void setTex2(GX::AttrType val) {
vaFlags &= ~0x3000;
vaFlags |= atUint32(val) << 12;
}
GX::AttrType tex3() const { return GX::AttrType(vaFlags >> 14 & 0x3); }
void setTex3(GX::AttrType val) {
vaFlags &= ~0xC000;
vaFlags |= atUint32(val) << 14;
}
GX::AttrType tex4() const { return GX::AttrType(vaFlags >> 16 & 0x3); }
void setTex4(GX::AttrType val) {
vaFlags &= ~0x30000;
vaFlags |= atUint32(val) << 16;
}
GX::AttrType tex5() const { return GX::AttrType(vaFlags >> 18 & 0x3); }
void setTex5(GX::AttrType val) {
vaFlags &= ~0xC0000;
vaFlags |= atUint32(val) << 18;
}
GX::AttrType tex6() const { return GX::AttrType(vaFlags >> 20 & 0x3); }
void setTex6(GX::AttrType val) {
vaFlags &= ~0x300000;
vaFlags |= atUint32(val) << 20;
}
GX::AttrType pnMatIdx() const { return GX::AttrType(vaFlags >> 24 & 0x1); }
void setPnMatIdx(GX::AttrType val) {
vaFlags &= ~0x1000000;
vaFlags |= atUint32(val & 0x1) << 24;
}
GX::AttrType tex0MatIdx() const { return GX::AttrType(vaFlags >> 25 & 0x1); }
void setTex0MatIdx(GX::AttrType val) {
vaFlags &= ~0x2000000;
vaFlags |= atUint32(val & 0x1) << 25;
}
GX::AttrType tex1MatIdx() const { return GX::AttrType(vaFlags >> 26 & 0x1); }
void setTex1MatIdx(GX::AttrType val) {
vaFlags &= ~0x4000000;
vaFlags |= atUint32(val & 0x1) << 26;
}
GX::AttrType tex2MatIdx() const { return GX::AttrType(vaFlags >> 27 & 0x1); }
void setTex2MatIdx(GX::AttrType val) {
vaFlags &= ~0x8000000;
vaFlags |= atUint32(val & 0x1) << 27;
}
GX::AttrType tex3MatIdx() const { return GX::AttrType(vaFlags >> 28 & 0x1); }
void setTex3MatIdx(GX::AttrType val) {
vaFlags &= ~0x10000000;
vaFlags |= atUint32(val & 0x1) << 28;
}
GX::AttrType tex4MatIdx() const { return GX::AttrType(vaFlags >> 29 & 0x1); }
void setTex4MatIdx(GX::AttrType val) {
vaFlags &= ~0x20000000;
vaFlags |= atUint32(val & 0x1) << 29;
}
GX::AttrType tex5MatIdx() const { return GX::AttrType(vaFlags >> 30 & 0x1); }
void setTex5MatIdx(GX::AttrType val) {
vaFlags &= ~0x40000000;
vaFlags |= atUint32(val & 0x1) << 30;
}
GX::AttrType tex6MatIdx() const { return GX::AttrType(vaFlags >> 31 & 0x1); }
void setTex6MatIdx(GX::AttrType val) {
vaFlags &= ~0x80000000;
vaFlags |= atUint32(val & 0x1) << 31;
}
size_t vertDLSize() const {
static size_t ATTR_SZ[] = {0, 1, 1, 2};
size_t ret = 0;
ret += ATTR_SZ[position()];
ret += ATTR_SZ[normal()];
ret += ATTR_SZ[color0()];
ret += ATTR_SZ[color1()];
ret += ATTR_SZ[tex0()];
ret += ATTR_SZ[tex1()];
ret += ATTR_SZ[tex2()];
ret += ATTR_SZ[tex3()];
ret += ATTR_SZ[tex4()];
ret += ATTR_SZ[tex5()];
ret += ATTR_SZ[tex6()];
ret += ATTR_SZ[pnMatIdx()];
ret += ATTR_SZ[tex0MatIdx()];
ret += ATTR_SZ[tex1MatIdx()];
ret += ATTR_SZ[tex2MatIdx()];
ret += ATTR_SZ[tex3MatIdx()];
ret += ATTR_SZ[tex4MatIdx()];
ret += ATTR_SZ[tex5MatIdx()];
ret += ATTR_SZ[tex6MatIdx()];
return ret;
}
} vaFlags;
const VAFlags& getVAFlags() const { return vaFlags; }
Value<atUint32> uniqueIdx;
Vector<atUint32, AT_DNA_COUNT(flags.konstValuesEnabled())> konstCount;
Vector<GX::Color, AT_DNA_COUNT(flags.konstValuesEnabled() ? konstCount[0] : 0)> konstColors;
using BlendFactor = GX::BlendFactor;
Value<BlendFactor> blendDstFac;
Value<BlendFactor> blendSrcFac;
Vector<atUint32, AT_DNA_COUNT(flags.samusReflectionIndirectTexture())> indTexSlot;
Value<atUint32> colorChannelCount = 0;
struct ColorChannel : BigDNA {
AT_DECL_DNA
Value<atUint32> flags = 0;
bool lighting() const { return (flags & 0x1) != 0; }
void setLighting(bool enabled) {
flags &= ~0x1;
flags |= atUint32(enabled);
}
bool useAmbient() const { return (flags & 0x2) != 0; }
void setUseAmbient(bool enabled) {
flags &= ~0x2;
flags |= atUint32(enabled) << 1;
}
bool useMaterial() const { return (flags & 0x4) != 0; }
void setUseMaterial(bool enabled) {
flags &= ~0x4;
flags |= atUint32(enabled) << 2;
}
atUint8 lightmask() const { return atUint8(flags >> 3 & 0xff); }
void setLightmask(atUint8 mask) {
flags &= ~0x7f8;
flags |= atUint32(mask) << 3;
}
GX::DiffuseFn diffuseFn() const { return GX::DiffuseFn(flags >> 11 & 0x3); }
void setDiffuseFn(GX::DiffuseFn fn) {
flags &= ~0x1800;
flags |= atUint32(fn) << 11;
}
GX::AttnFn attenuationFn() const { return GX::AttnFn(flags >> 13 & 0x3); }
void setAttenuationFn(GX::AttnFn fn) {
flags &= ~0x6000;
flags |= atUint32(fn) << 13;
}
};
Vector<ColorChannel, AT_DNA_COUNT(colorChannelCount)> colorChannels;
Value<atUint32> tevStageCount = 0;
struct TEVStage : BigDNA {
AT_DECL_DNA
Value<atUint32> ciFlags = 0;
Value<atUint32> aiFlags = 0;
Value<atUint32> ccFlags = 0;
Value<atUint32> acFlags = 0;
Value<atUint8> pad = 0;
Value<atUint8> kaInput = 0;
Value<atUint8> kcInput = 0;
Value<atUint8> rascInput = 0;
GX::TevColorArg colorInA() const { return GX::TevColorArg(ciFlags & 0xf); }
void setColorInA(GX::TevColorArg val) {
ciFlags &= ~0x1f;
ciFlags |= atUint32(val);
}
GX::TevColorArg colorInB() const { return GX::TevColorArg(ciFlags >> 5 & 0xf); }
void setColorInB(GX::TevColorArg val) {
ciFlags &= ~0x3e0;
ciFlags |= atUint32(val) << 5;
}
GX::TevColorArg colorInC() const { return GX::TevColorArg(ciFlags >> 10 & 0xf); }
void setColorInC(GX::TevColorArg val) {
ciFlags &= ~0x7c00;
ciFlags |= atUint32(val) << 10;
}
GX::TevColorArg colorInD() const { return GX::TevColorArg(ciFlags >> 15 & 0xf); }
void setColorInD(GX::TevColorArg val) {
ciFlags &= ~0xf8000;
ciFlags |= atUint32(val) << 15;
}
GX::TevAlphaArg alphaInA() const { return GX::TevAlphaArg(aiFlags & 0x7); }
void setAlphaInA(GX::TevAlphaArg val) {
aiFlags &= ~0x1f;
aiFlags |= atUint32(val);
}
GX::TevAlphaArg alphaInB() const { return GX::TevAlphaArg(aiFlags >> 5 & 0x7); }
void setAlphaInB(GX::TevAlphaArg val) {
aiFlags &= ~0x3e0;
aiFlags |= atUint32(val) << 5;
}
GX::TevAlphaArg alphaInC() const { return GX::TevAlphaArg(aiFlags >> 10 & 0x7); }
void setAlphaInC(GX::TevAlphaArg val) {
aiFlags &= ~0x7c00;
aiFlags |= atUint32(val) << 10;
}
GX::TevAlphaArg alphaInD() const { return GX::TevAlphaArg(aiFlags >> 15 & 0x7); }
void setAlphaInD(GX::TevAlphaArg val) {
aiFlags &= ~0xf8000;
aiFlags |= atUint32(val) << 15;
}
GX::TevOp colorOp() const { return GX::TevOp(ccFlags & 0xf); }
void setColorOp(GX::TevOp val) {
ccFlags &= ~0x1;
ccFlags |= atUint32(val);
}
GX::TevBias colorOpBias() const { return GX::TevBias(ccFlags >> 4 & 0x3); }
void setColorOpBias(GX::TevBias val) {
ccFlags &= ~0x30;
ccFlags |= atUint32(val) << 4;
}
GX::TevScale colorOpScale() const { return GX::TevScale(ccFlags >> 6 & 0x3); }
void setColorOpScale(GX::TevScale val) {
ccFlags &= ~0xc0;
ccFlags |= atUint32(val) << 6;
}
bool colorOpClamp() const { return ccFlags >> 8 & 0x1; }
void setColorOpClamp(bool val) {
ccFlags &= ~0x100;
ccFlags |= atUint32(val) << 8;
}
GX::TevRegID colorOpOutReg() const { return GX::TevRegID(ccFlags >> 9 & 0x3); }
void setColorOpOutReg(GX::TevRegID val) {
ccFlags &= ~0x600;
ccFlags |= atUint32(val) << 9;
}
GX::TevOp alphaOp() const { return GX::TevOp(acFlags & 0xf); }
void setAlphaOp(GX::TevOp val) {
acFlags &= ~0x1;
acFlags |= atUint32(val);
}
GX::TevBias alphaOpBias() const { return GX::TevBias(acFlags >> 4 & 0x3); }
void setAlphaOpBias(GX::TevBias val) {
acFlags &= ~0x30;
acFlags |= atUint32(val) << 4;
}
GX::TevScale alphaOpScale() const { return GX::TevScale(acFlags >> 6 & 0x3); }
void setAlphaOpScale(GX::TevScale val) {
acFlags &= ~0xc0;
acFlags |= atUint32(val) << 6;
}
bool alphaOpClamp() const { return acFlags >> 8 & 0x1; }
void setAlphaOpClamp(bool val) {
acFlags &= ~0x100;
acFlags |= atUint32(val) << 8;
}
GX::TevRegID alphaOpOutReg() const { return GX::TevRegID(acFlags >> 9 & 0x3); }
void setAlphaOpOutReg(GX::TevRegID val) {
acFlags &= ~0x600;
acFlags |= atUint32(val) << 9;
}
GX::TevKColorSel kColorIn() const { return GX::TevKColorSel(kcInput); }
void setKColorIn(GX::TevKColorSel val) { kcInput = val; }
GX::TevKAlphaSel kAlphaIn() const { return GX::TevKAlphaSel(kaInput); }
void setKAlphaIn(GX::TevKAlphaSel val) { kaInput = val; }
GX::ChannelID rasIn() const { return GX::ChannelID(rascInput); }
void setRASIn(GX::ChannelID id) { rascInput = id; }
};
Vector<TEVStage, AT_DNA_COUNT(tevStageCount)> tevStages;
struct TEVStageTexInfo : BigDNA {
AT_DECL_DNA
Value<atUint16> pad = 0;
Value<atUint8> texSlot = 0xff;
Value<atUint8> tcgSlot = 0xff;
};
Vector<TEVStageTexInfo, AT_DNA_COUNT(tevStageCount)> tevStageTexInfo;
Value<atUint32> tcgCount = 0;
struct TexCoordGen : BigDNA {
AT_DECL_DNA
Value<atUint32> flags = 0;
GX::TexGenType type() const { return GX::TexGenType(flags & 0xf); }
void setType(GX::TexGenType val) {
flags &= ~0xf;
flags |= atUint32(val);
}
GX::TexGenSrc source() const { return GX::TexGenSrc(flags >> 4 & 0x1f); }
void setSource(GX::TexGenSrc val) {
flags &= ~0x1f0;
flags |= atUint32(val) << 4;
}
GX::TexMtx mtx() const { return GX::TexMtx((flags >> 9 & 0x1f) + 30); }
void setMtx(GX::TexMtx val) {
flags &= ~0x3e00;
flags |= (atUint32(val) - 30) << 9;
}
bool normalize() const { return flags >> 14 & 0x1; }
void setNormalize(bool val) {
flags &= ~0x4000;
flags |= atUint32(val) << 14;
}
GX::PTTexMtx postMtx() const { return GX::PTTexMtx((flags >> 15 & 0x3f) + 64); }
void setPostMtx(GX::PTTexMtx val) {
flags &= ~0x1f8000;
flags |= (atUint32(val) - 64) << 15;
}
};
Vector<TexCoordGen, AT_DNA_COUNT(tcgCount)> tcgs;
Value<atUint32> uvAnimsSize = 4;
Value<atUint32> uvAnimsCount = 0;
struct UVAnimation : BigDNA {
AT_DECL_EXPLICIT_DNA
enum class Mode {
MvInvNoTranslation,
MvInv,
Scroll,
Rotation,
HStrip,
VStrip,
Model,
CylinderEnvironment,
Eight
} mode;
float vals[9];
UVAnimation() = default;
UVAnimation(const std::string& gameFunction, const std::vector<atVec4f>& gameArgs);
};
Vector<UVAnimation, AT_DNA_COUNT(uvAnimsCount)> uvAnims;
static void AddTexture(hecl::blender::PyOutStream& out, GX::TexGenSrc type, int mtxIdx, uint32_t texIdx,
bool diffuse);
static void AddTextureAnim(hecl::blender::PyOutStream& out, MaterialSet::Material::UVAnimation::Mode type,
unsigned idx, const float* vals);
static void AddKcolor(hecl::blender::PyOutStream& out, const GX::Color& col, unsigned idx);
static void AddDynamicColor(hecl::blender::PyOutStream& out, unsigned idx);
static void AddDynamicAlpha(hecl::blender::PyOutStream& out, unsigned idx);
Material() = default;
Material(const hecl::blender::Material& material,
std::vector<hecl::ProjectPath>& texPathsOut,
int colorCount, bool lightmapUVs, bool matrixSkinning);
};
Vector<Material, AT_DNA_COUNT(head.materialCount)> materials;
static void RegisterMaterialProps(hecl::blender::PyOutStream& out);
static void ConstructMaterial(hecl::blender::PyOutStream& out, const MaterialSet::Material& material,
unsigned groupIdx, unsigned matIdx);
void readToBlender(hecl::blender::PyOutStream& os, const PAKRouter<PAKBridge>& pakRouter,
const PAKRouter<PAKBridge>::EntryType& entry, unsigned setIdx) {
DNACMDL::ReadMaterialSetToBlender_1_2(os, *this, pakRouter, entry, setIdx);
}
template <class PAKRouter>
void nameTextures(PAKRouter& pakRouter, const char* prefix, int setIdx) const {
int matIdx = 0;
for (const Material& mat : materials) {
int stageIdx = 0;
for (const Material::TEVStage& stage : mat.tevStages) {
(void)stage;
const Material::TEVStageTexInfo& texInfo = mat.tevStageTexInfo[stageIdx];
if (texInfo.texSlot == 0xff) {
++stageIdx;
continue;
}
const nod::Node* node;
typename PAKRouter::EntryType* texEntry = (typename PAKRouter::EntryType*)pakRouter.lookupEntry(
head.textureIDs[mat.textureIdxs[texInfo.texSlot]], &node);
if (texEntry->name.size()) {
if (texEntry->name.size() < 5 || texEntry->name.compare(0, 5, "mult_"))
texEntry->name = "mult_" + texEntry->name;
++stageIdx;
continue;
}
if (setIdx < 0)
texEntry->name = fmt::format(fmt("{}_{}_{}"), prefix, matIdx, stageIdx);
else
texEntry->name = fmt::format(fmt("{}_{}_{}_{}"), prefix, setIdx, matIdx, stageIdx);
if (mat.flags.lightmap() && stageIdx == 0) {
texEntry->name += "light";
++stageIdx;
continue;
}
++stageIdx;
}
++matIdx;
}
}
void ensureTexturesExtracted(PAKRouter<PAKBridge>& pakRouter) const { head.ensureTexturesExtracted(pakRouter); }
};
struct HMDLMaterialSet : BigDNA {
static constexpr bool OneSection() { return false; }
AT_DECL_DNA
Value<atUint32> materialCount = 0;
Vector<atUint32, AT_DNA_COUNT(materialCount)> materialEndOffs;
struct Material : BigDNA {
AT_DECL_DNA
MaterialSet::Material::Flags flags;
using BlendMaterial = hecl::blender::Material;
struct PASS : hecl::TypedRecordBigDNA<BlendMaterial::ChunkType::TexturePass> {
AT_DECL_EXPLICIT_DNA
Value<BlendMaterial::PassType> type;
UniqueID32 texId;
Value<BlendMaterial::TexCoordSource> source;
Value<BlendMaterial::UVAnimType> uvAnimType;
Value<float> uvAnimParms[9] = {};
Value<bool> alpha;
PASS() = default;
explicit PASS(const BlendMaterial::PASS& pass)
: type(pass.type), texId(pass.tex), source(pass.source), uvAnimType(pass.uvAnimType), alpha(pass.alpha) {
std::copy(pass.uvAnimParms.begin(), pass.uvAnimParms.end(), std::begin(uvAnimParms));
}
bool shouldNormalizeUv() const {
switch (uvAnimType) {
case BlendMaterial::UVAnimType::MvInvNoTranslation:
case BlendMaterial::UVAnimType::MvInv:
case BlendMaterial::UVAnimType::Model:
case BlendMaterial::UVAnimType::CylinderEnvironment:
return true;
default:
return false;
}
}
size_t uvAnimParamsCount() const {
switch (uvAnimType) {
default:
return 0;
case BlendMaterial::UVAnimType::Scroll:
case BlendMaterial::UVAnimType::HStrip:
case BlendMaterial::UVAnimType::VStrip:
return 4;
case BlendMaterial::UVAnimType::Rotation:
case BlendMaterial::UVAnimType::CylinderEnvironment:
return 2;
case BlendMaterial::UVAnimType::Eight:
return 9;
}
}
};
struct CLR : hecl::TypedRecordBigDNA<BlendMaterial::ChunkType::ColorPass> {
AT_DECL_DNA
Value<BlendMaterial::PassType> type;
Value<atVec4f> color;
CLR() = default;
explicit CLR(const BlendMaterial::CLR& clr) : type(clr.type), color(clr.color.val) {}
};
using Chunk = hecl::TypedVariantBigDNA<PASS, CLR>;
static unsigned TexMapIdx(BlendMaterial::PassType type) {
switch (type) {
case BlendMaterial::PassType::Lightmap:
return 0;
case BlendMaterial::PassType::Diffuse:
return 1;
case BlendMaterial::PassType::Emissive:
return 2;
case BlendMaterial::PassType::Specular:
return 3;
case BlendMaterial::PassType::ExtendedSpecular:
return 4;
case BlendMaterial::PassType::Reflection:
return 5;
case BlendMaterial::PassType::Alpha:
return 6;
case BlendMaterial::PassType::IndirectTex:
return 7;
default:
assert(false && "Unknown pass type");
return 0;
}
}
Value<atUint64> hash;
Value<BlendMaterial::ShaderType> shaderType;
Value<atUint32> chunkCount;
Vector<Chunk, AT_DNA_COUNT(chunkCount)> chunks;
Value<BlendMaterial::BlendMode> blendMode = BlendMaterial::BlendMode::Opaque;
std::pair<hecl::Backend::BlendFactor, hecl::Backend::BlendFactor>
blendFactors() const {
switch (blendMode) {
case BlendMaterial::BlendMode::Opaque:
default:
return {hecl::Backend::BlendFactor::One, hecl::Backend::BlendFactor::Zero};
case BlendMaterial::BlendMode::Alpha:
return {hecl::Backend::BlendFactor::SrcAlpha, hecl::Backend::BlendFactor::InvSrcAlpha};
case BlendMaterial::BlendMode::Additive:
return {hecl::Backend::BlendFactor::SrcAlpha, hecl::Backend::BlendFactor::One};
}
}
Material() = default;
Material(const hecl::blender::Material& mat);
};
Vector<Material, AT_DNA_COUNT(materialCount)> materials;
};
} // namespace DataSpec::DNAMP1
AT_SPECIALIZE_TYPED_VARIANT_BIGDNA(DataSpec::DNAMP1::HMDLMaterialSet::Material::PASS,
DataSpec::DNAMP1::HMDLMaterialSet::Material::CLR)