metaforce/gmm/gmm_domain_decomp.h

166 lines
5.6 KiB
C++

/* -*- c++ -*- (enables emacs c++ mode) */
/*===========================================================================
Copyright (C) 2004-2017 Yves Renard
This file is a part of GetFEM++
GetFEM++ is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License as published
by the Free Software Foundation; either version 3 of the License, or
(at your option) any later version along with the GCC Runtime Library
Exception either version 3.1 or (at your option) any later version.
This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License and GCC Runtime Library Exception for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
As a special exception, you may use this file as it is a part of a free
software library without restriction. Specifically, if other files
instantiate templates or use macros or inline functions from this file,
or you compile this file and link it with other files to produce an
executable, this file does not by itself cause the resulting executable
to be covered by the GNU Lesser General Public License. This exception
does not however invalidate any other reasons why the executable file
might be covered by the GNU Lesser General Public License.
===========================================================================*/
/** @file gmm_domain_decomp.h
@author Yves Renard <Yves.Renard@insa-lyon.fr>
@date May 21, 2004.
@brief Domain decomposition.
*/
#ifndef GMM_DOMAIN_DECOMP_H__
#define GMM_DOMAIN_DECOMP_H__
#include "gmm_kernel.h"
#include <map>
namespace gmm {
/** This function separates into small boxes of size msize with a ratio
* of overlap (in [0,1[) a set of points. The result is given into a
* vector of sparse matrices vB.
*/
template <typename Matrix, typename Point>
void rudimentary_regular_decomposition(std::vector<Point> pts,
double msize,
double overlap,
std::vector<Matrix> &vB) {
typedef typename linalg_traits<Matrix>::value_type value_type;
typedef abstract_null_type void_type;
typedef std::map<size_type, void_type> map_type;
size_type nbpts = pts.size();
if (!nbpts || pts[0].size() == 0) { vB.resize(0); return; }
int dim = int(pts[0].size());
// computation of the global box and the number of sub-domains
Point pmin = pts[0], pmax = pts[0];
for (size_type i = 1; i < nbpts; ++i)
for (int k = 0; k < dim; ++k) {
pmin[k] = std::min(pmin[k], pts[i][k]);
pmax[k] = std::max(pmax[k], pts[i][k]);
}
std::vector<size_type> nbsub(dim), mult(dim);
std::vector<int> pts1(dim), pts2(dim);
size_type nbtotsub = 1;
for (int k = 0; k < dim; ++k) {
nbsub[k] = size_type((pmax[k] - pmin[k]) / msize)+1;
mult[k] = nbtotsub; nbtotsub *= nbsub[k];
}
std::vector<map_type> subs(nbtotsub);
// points ventilation
std::vector<size_type> ns(dim), na(dim), nu(dim);
for (size_type i = 0; i < nbpts; ++i) {
for (int k = 0; k < dim; ++k) {
double a = (pts[i][k] - pmin[k]) / msize;
ns[k] = size_type(a) - 1; na[k] = 0;
pts1[k] = int(a + overlap); pts2[k] = int(ceil(a-1.0-overlap));
}
size_type sum = 0;
do {
bool ok = 1;
for (int k = 0; k < dim; ++k)
if ((ns[k] >= nbsub[k]) || (pts1[k] < int(ns[k]))
|| (pts2[k] > int(ns[k]))) { ok = false; break; }
if (ok) {
size_type ind = ns[0];
for (int k=1; k < dim; ++k) ind += ns[k]*mult[k];
subs[ind][i] = void_type();
}
for (int k = 0; k < dim; ++k) {
if (na[k] < 2) { na[k]++; ns[k]++; ++sum; break; }
na[k] = 0; ns[k] -= 2; sum -= 2;
}
} while (sum);
}
// delete too small domains.
size_type nbmaxinsub = 0;
for (size_type i = 0; i < nbtotsub; ++i)
nbmaxinsub = std::max(nbmaxinsub, subs[i].size());
std::fill(ns.begin(), ns.end(), size_type(0));
for (size_type i = 0; i < nbtotsub; ++i) {
if (subs[i].size() > 0 && subs[i].size() < nbmaxinsub / 10) {
for (int k = 0; k < dim; ++k) nu[k] = ns[k];
size_type nbmax = 0, imax = 0;
for (int l = 0; l < dim; ++l) {
nu[l]--;
for (int m = 0; m < 2; ++m, nu[l]+=2) {
bool ok = true;
for (int k = 0; k < dim && ok; ++k)
if (nu[k] >= nbsub[k]) ok = false;
if (ok) {
size_type ind = ns[0];
for (int k=1; k < dim; ++k) ind += ns[k]*mult[k];
if (subs[ind].size() > nbmax)
{ nbmax = subs[ind].size(); imax = ind; }
}
}
nu[l]--;
}
if (nbmax > subs[i].size()) {
for (map_type::iterator it=subs[i].begin(); it!=subs[i].end(); ++it)
subs[imax][it->first] = void_type();
subs[i].clear();
}
}
for (int k = 0; k < dim; ++k)
{ ns[k]++; if (ns[k] < nbsub[k]) break; ns[k] = 0; }
}
// delete empty domains.
size_type effnb = 0;
for (size_type i = 0; i < nbtotsub; ++i) {
if (subs[i].size() > 0)
{ if (i != effnb) std::swap(subs[i], subs[effnb]); ++effnb; }
}
// build matrices
subs.resize(effnb);
vB.resize(effnb);
for (size_type i = 0; i < effnb; ++i) {
clear(vB[i]); resize(vB[i], nbpts, subs[i].size());
size_type j = 0;
for (map_type::iterator it=subs[i].begin(); it!=subs[i].end(); ++it, ++j)
vB[i](it->first, j) = value_type(1);
}
}
}
#endif