mirror of https://github.com/AxioDL/metaforce.git
242 lines
9.3 KiB
C++
242 lines
9.3 KiB
C++
/* -*- c++ -*- (enables emacs c++ mode) */
|
|
/*===========================================================================
|
|
|
|
Copyright (C) 2003-2017 Yves Renard
|
|
|
|
This file is a part of GetFEM++
|
|
|
|
GetFEM++ is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version along with the GCC Runtime Library
|
|
Exception either version 3.1 or (at your option) any later version.
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License and GCC Runtime Library Exception for more details.
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
As a special exception, you may use this file as it is a part of a free
|
|
software library without restriction. Specifically, if other files
|
|
instantiate templates or use macros or inline functions from this file,
|
|
or you compile this file and link it with other files to produce an
|
|
executable, this file does not by itself cause the resulting executable
|
|
to be covered by the GNU Lesser General Public License. This exception
|
|
does not however invalidate any other reasons why the executable file
|
|
might be covered by the GNU Lesser General Public License.
|
|
|
|
===========================================================================*/
|
|
|
|
// This file is a modified version of cholesky.h from ITL.
|
|
// See http://osl.iu.edu/research/itl/
|
|
// Following the corresponding Copyright notice.
|
|
//===========================================================================
|
|
//
|
|
// Copyright (c) 1998-2001, University of Notre Dame. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of the University of Notre Dame nor the
|
|
// names of its contributors may be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE TRUSTEES OF INDIANA UNIVERSITY AND
|
|
// CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
|
|
// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE TRUSTEES
|
|
// OF INDIANA UNIVERSITY AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
//===========================================================================
|
|
|
|
#ifndef GMM_PRECOND_ILDLT_H
|
|
#define GMM_PRECOND_ILDLT_H
|
|
|
|
/**@file gmm_precond_ildlt.h
|
|
@author Andrew Lumsdaine <lums@osl.iu.edu>
|
|
@author Lie-Quan Lee <llee@osl.iu.edu>
|
|
@author Yves Renard <yves.renard@insa-lyon.fr>
|
|
@date June 5, 2003.
|
|
@brief Incomplete Level 0 ILDLT Preconditioner.
|
|
*/
|
|
|
|
#include "gmm_precond.h"
|
|
|
|
namespace gmm {
|
|
|
|
/** Incomplete Level 0 LDLT Preconditioner.
|
|
|
|
For use with symmetric real or hermitian complex sparse matrices.
|
|
|
|
Notes: The idea under a concrete Preconditioner such as Incomplete
|
|
Cholesky is to create a Preconditioner object to use in iterative
|
|
methods.
|
|
|
|
|
|
Y. Renard : Transformed in LDLT for stability reason.
|
|
|
|
U=LT is stored in csr format. D is stored on the diagonal of U.
|
|
*/
|
|
template <typename Matrix>
|
|
class ildlt_precond {
|
|
|
|
public :
|
|
typedef typename linalg_traits<Matrix>::value_type value_type;
|
|
typedef typename number_traits<value_type>::magnitude_type magnitude_type;
|
|
typedef csr_matrix_ref<value_type *, size_type *, size_type *, 0> tm_type;
|
|
|
|
tm_type U;
|
|
|
|
protected :
|
|
std::vector<value_type> Tri_val;
|
|
std::vector<size_type> Tri_ind, Tri_ptr;
|
|
|
|
template<typename M> void do_ildlt(const M& A, row_major);
|
|
void do_ildlt(const Matrix& A, col_major);
|
|
|
|
public:
|
|
|
|
size_type nrows(void) const { return mat_nrows(U); }
|
|
size_type ncols(void) const { return mat_ncols(U); }
|
|
value_type &D(size_type i) { return Tri_val[Tri_ptr[i]]; }
|
|
const value_type &D(size_type i) const { return Tri_val[Tri_ptr[i]]; }
|
|
ildlt_precond(void) {}
|
|
void build_with(const Matrix& A) {
|
|
Tri_ptr.resize(mat_nrows(A)+1);
|
|
do_ildlt(A, typename principal_orientation_type<typename
|
|
linalg_traits<Matrix>::sub_orientation>::potype());
|
|
}
|
|
ildlt_precond(const Matrix& A) { build_with(A); }
|
|
size_type memsize() const {
|
|
return sizeof(*this) +
|
|
Tri_val.size() * sizeof(value_type) +
|
|
(Tri_ind.size()+Tri_ptr.size()) * sizeof(size_type);
|
|
}
|
|
};
|
|
|
|
template <typename Matrix> template<typename M>
|
|
void ildlt_precond<Matrix>::do_ildlt(const M& A, row_major) {
|
|
typedef typename linalg_traits<Matrix>::storage_type store_type;
|
|
typedef value_type T;
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
|
|
size_type Tri_loc = 0, n = mat_nrows(A), d, g, h, i, j, k;
|
|
if (n == 0) return;
|
|
T z, zz;
|
|
Tri_ptr[0] = 0;
|
|
R prec = default_tol(R());
|
|
R max_pivot = gmm::abs(A(0,0)) * prec;
|
|
|
|
for (int count = 0; count < 2; ++count) {
|
|
if (count) { Tri_val.resize(Tri_loc); Tri_ind.resize(Tri_loc); }
|
|
for (Tri_loc = 0, i = 0; i < n; ++i) {
|
|
typedef typename linalg_traits<M>::const_sub_row_type row_type;
|
|
row_type row = mat_const_row(A, i);
|
|
typename linalg_traits<typename org_type<row_type>::t>::const_iterator
|
|
it = vect_const_begin(row), ite = vect_const_end(row);
|
|
|
|
if (count) { Tri_val[Tri_loc] = T(0); Tri_ind[Tri_loc] = i; }
|
|
++Tri_loc; // diagonal element
|
|
|
|
for (k = 0; it != ite; ++it, ++k) {
|
|
j = index_of_it(it, k, store_type());
|
|
if (i == j) {
|
|
if (count) Tri_val[Tri_loc-1] = *it;
|
|
}
|
|
else if (j > i) {
|
|
if (count) { Tri_val[Tri_loc] = *it; Tri_ind[Tri_loc]=j; }
|
|
++Tri_loc;
|
|
}
|
|
}
|
|
Tri_ptr[i+1] = Tri_loc;
|
|
}
|
|
}
|
|
|
|
if (A(0,0) == T(0)) {
|
|
Tri_val[Tri_ptr[0]] = T(1);
|
|
GMM_WARNING2("pivot 0 is too small");
|
|
}
|
|
|
|
for (k = 0; k < n; k++) {
|
|
d = Tri_ptr[k];
|
|
z = T(gmm::real(Tri_val[d])); Tri_val[d] = z;
|
|
if (gmm::abs(z) <= max_pivot) {
|
|
Tri_val[d] = z = T(1);
|
|
GMM_WARNING2("pivot " << k << " is too small [" << gmm::abs(z) << "]");
|
|
}
|
|
max_pivot = std::max(max_pivot, std::min(gmm::abs(z) * prec, R(1)));
|
|
|
|
for (i = d + 1; i < Tri_ptr[k+1]; ++i) Tri_val[i] /= z;
|
|
for (i = d + 1; i < Tri_ptr[k+1]; ++i) {
|
|
zz = gmm::conj(Tri_val[i] * z);
|
|
h = Tri_ind[i];
|
|
g = i;
|
|
|
|
for (j = Tri_ptr[h] ; j < Tri_ptr[h+1]; ++j)
|
|
for ( ; g < Tri_ptr[k+1] && Tri_ind[g] <= Tri_ind[j]; ++g)
|
|
if (Tri_ind[g] == Tri_ind[j])
|
|
Tri_val[j] -= zz * Tri_val[g];
|
|
}
|
|
}
|
|
U = tm_type(&(Tri_val[0]), &(Tri_ind[0]), &(Tri_ptr[0]),
|
|
n, mat_ncols(A));
|
|
}
|
|
|
|
template <typename Matrix>
|
|
void ildlt_precond<Matrix>::do_ildlt(const Matrix& A, col_major)
|
|
{ do_ildlt(gmm::conjugated(A), row_major()); }
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
|
|
gmm::copy(v1, v2);
|
|
gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
|
|
for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
|
|
gmm::upper_tri_solve(P.U, v2, true);
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void transposed_mult(const ildlt_precond<Matrix>& P,const V1 &v1,V2 &v2)
|
|
{ mult(P, v1, v2); }
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void left_mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2) {
|
|
copy(v1, v2);
|
|
gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true);
|
|
for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void right_mult(const ildlt_precond<Matrix>& P, const V1 &v1, V2 &v2)
|
|
{ copy(v1, v2); gmm::upper_tri_solve(P.U, v2, true); }
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void transposed_left_mult(const ildlt_precond<Matrix>& P, const V1 &v1,
|
|
V2 &v2) {
|
|
copy(v1, v2);
|
|
gmm::upper_tri_solve(P.U, v2, true);
|
|
for (size_type i = 0; i < mat_nrows(P.U); ++i) v2[i] /= P.D(i);
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void transposed_right_mult(const ildlt_precond<Matrix>& P, const V1 &v1,
|
|
V2 &v2)
|
|
{ copy(v1, v2); gmm::lower_tri_solve(gmm::conjugated(P.U), v2, true); }
|
|
|
|
|
|
}
|
|
|
|
#endif
|
|
|