metaforce/aurora/lib/gfx/common.cpp

793 lines
27 KiB
C++

#include "common.hpp"
#include "../gpu.hpp"
#include "model/shader.hpp"
#include "movie_player/shader.hpp"
#include "stream/shader.hpp"
#include <absl/container/flat_hash_map.h>
#include <condition_variable>
#include <deque>
#include <fstream>
#include <logvisor/logvisor.hpp>
#include <thread>
namespace aurora {
extern std::string g_configPath;
} // namespace aurora
namespace aurora::gfx {
static logvisor::Module Log("aurora::gfx");
using gpu::g_device;
using gpu::g_queue;
#ifdef AURORA_GFX_DEBUG_GROUPS
std::vector<std::string> g_debugGroupStack;
#endif
constexpr uint64_t UniformBufferSize = 3145728; // 3mb
constexpr uint64_t VertexBufferSize = 3145728; // 3mb
constexpr uint64_t IndexBufferSize = 1048576; // 1mb
constexpr uint64_t StorageBufferSize = 8388608; // 8mb
constexpr uint64_t TextureUploadSize = 25165824; // 24mb
constexpr uint64_t StagingBufferSize =
UniformBufferSize + VertexBufferSize + IndexBufferSize + StorageBufferSize + TextureUploadSize;
struct ShaderState {
movie_player::State moviePlayer;
stream::State stream;
model::State model;
};
struct ShaderDrawCommand {
ShaderType type;
union {
movie_player::DrawData moviePlayer;
stream::DrawData stream;
model::DrawData model;
};
};
enum class CommandType {
SetViewport,
SetScissor,
Draw,
};
struct Command {
CommandType type;
#ifdef AURORA_GFX_DEBUG_GROUPS
std::vector<std::string> debugGroupStack;
#endif
union Data {
struct SetViewportCommand {
float left;
float top;
float width;
float height;
float znear;
float zfar;
bool operator==(const SetViewportCommand& rhs) const {
return left == rhs.left && top == rhs.top && width == rhs.width && height == rhs.height && znear == rhs.znear &&
zfar == rhs.zfar;
}
} setViewport;
struct SetScissorCommand {
uint32_t x;
uint32_t y;
uint32_t w;
uint32_t h;
bool operator==(const SetScissorCommand& rhs) const {
return x == rhs.x && y == rhs.y && w == rhs.w && h == rhs.h;
}
} setScissor;
ShaderDrawCommand draw;
} data;
};
} // namespace aurora::gfx
namespace aurora {
// For types that we can't ensure are safe to hash with has_unique_object_representations,
// we create specialized methods to handle them. Note that these are highly dependent on
// the structure definition, which could easily change with Dawn updates.
template <>
inline XXH64_hash_t xxh3_hash(const wgpu::BindGroupDescriptor& input, XXH64_hash_t seed) {
constexpr auto offset = sizeof(void*) * 2; // skip nextInChain, label
const auto hash = xxh3_hash_s(reinterpret_cast<const u8*>(&input) + offset,
sizeof(wgpu::BindGroupDescriptor) - offset - sizeof(void*) /* skip entries */, seed);
return xxh3_hash_s(input.entries, sizeof(wgpu::BindGroupEntry) * input.entryCount, hash);
}
template <>
inline XXH64_hash_t xxh3_hash(const wgpu::SamplerDescriptor& input, XXH64_hash_t seed) {
constexpr auto offset = sizeof(void*) * 2; // skip nextInChain, label
return xxh3_hash_s(reinterpret_cast<const u8*>(&input) + offset,
sizeof(wgpu::SamplerDescriptor) - offset - 2 /* skip padding */, seed);
}
} // namespace aurora
namespace aurora::gfx {
using NewPipelineCallback = std::function<wgpu::RenderPipeline()>;
std::mutex g_pipelineMutex;
static bool g_hasPipelineThread = false;
static std::thread g_pipelineThread;
static std::atomic_bool g_pipelineThreadEnd;
static std::condition_variable g_pipelineCv;
static absl::flat_hash_map<PipelineRef, wgpu::RenderPipeline> g_pipelines;
static std::deque<std::pair<PipelineRef, NewPipelineCallback>> g_queuedPipelines;
static absl::flat_hash_map<BindGroupRef, wgpu::BindGroup> g_cachedBindGroups;
static absl::flat_hash_map<SamplerRef, wgpu::Sampler> g_cachedSamplers;
std::atomic_uint32_t queuedPipelines;
std::atomic_uint32_t createdPipelines;
static ByteBuffer g_verts;
static ByteBuffer g_uniforms;
static ByteBuffer g_indices;
static ByteBuffer g_storage;
static ByteBuffer g_staticStorage;
static ByteBuffer g_textureUpload;
wgpu::Buffer g_vertexBuffer;
wgpu::Buffer g_uniformBuffer;
wgpu::Buffer g_indexBuffer;
wgpu::Buffer g_storageBuffer;
size_t g_staticStorageLastSize = 0;
static std::array<wgpu::Buffer, 3> g_stagingBuffers;
static wgpu::SupportedLimits g_cachedLimits;
static ShaderState g_state;
static PipelineRef g_currentPipeline;
using CommandList = std::vector<Command>;
struct RenderPass {
u32 resolveTarget = UINT32_MAX;
ClipRect resolveRect;
zeus::CColor clearColor{0.f, 0.f};
CommandList commands;
bool clear = true;
};
static std::vector<RenderPass> g_renderPasses;
static u32 g_currentRenderPass;
std::vector<TextureHandle> g_resolvedTextures;
std::vector<TextureUpload> g_textureUploads;
static ByteBuffer g_serializedPipelines{};
static u32 g_serializedPipelineCount = 0;
template <typename PipelineConfig>
static void serialize_pipeline_config(ShaderType type, const PipelineConfig& config) {
static_assert(std::has_unique_object_representations_v<PipelineConfig>);
g_serializedPipelines.append(&type, sizeof(type));
const u32 configSize = sizeof(config);
g_serializedPipelines.append(&configSize, sizeof(configSize));
g_serializedPipelines.append(&config, configSize);
++g_serializedPipelineCount;
}
template <typename PipelineConfig>
static PipelineRef find_pipeline(ShaderType type, const PipelineConfig& config, NewPipelineCallback&& cb,
bool serialize = true) {
PipelineRef hash = xxh3_hash(config, static_cast<XXH64_hash_t>(type));
bool found = false;
{
std::scoped_lock guard{g_pipelineMutex};
found = g_pipelines.contains(hash);
if (!found) {
if (g_hasPipelineThread) {
const auto ref =
std::find_if(g_queuedPipelines.begin(), g_queuedPipelines.end(), [=](auto v) { return v.first == hash; });
if (ref != g_queuedPipelines.end()) {
found = true;
}
} else {
g_pipelines.try_emplace(hash, cb());
if (serialize) {
serialize_pipeline_config(type, config);
}
found = true;
}
}
if (!found) {
g_queuedPipelines.emplace_back(std::pair{hash, std::move(cb)});
if (serialize) {
serialize_pipeline_config(type, config);
}
}
}
if (!found) {
g_pipelineCv.notify_one();
queuedPipelines++;
}
return hash;
}
static inline void push_command(CommandType type, const Command::Data& data) {
g_renderPasses[g_currentRenderPass].commands.push_back({
.type = type,
#ifdef AURORA_GFX_DEBUG_GROUPS
.debugGroupStack = g_debugGroupStack,
#endif
.data = data,
});
}
static void push_draw_command(ShaderDrawCommand data) { push_command(CommandType::Draw, Command::Data{.draw = data}); }
static Command::Data::SetViewportCommand g_cachedViewport;
void set_viewport(float left, float top, float width, float height, float znear, float zfar) noexcept {
Command::Data::SetViewportCommand cmd{left, top, width, height, znear, zfar};
if (cmd != g_cachedViewport) {
push_command(CommandType::SetViewport, Command::Data{.setViewport = cmd});
g_cachedViewport = cmd;
}
}
static Command::Data::SetScissorCommand g_cachedScissor;
void set_scissor(uint32_t x, uint32_t y, uint32_t w, uint32_t h) noexcept {
Command::Data::SetScissorCommand cmd{x, y, w, h};
if (cmd != g_cachedScissor) {
push_command(CommandType::SetScissor, Command::Data{.setScissor = cmd});
g_cachedScissor = cmd;
}
}
bool operator==(const wgpu::Extent3D& lhs, const wgpu::Extent3D& rhs) {
return lhs.width == rhs.width && lhs.height == rhs.height && lhs.depthOrArrayLayers == rhs.depthOrArrayLayers;
}
void resolve_color(const ClipRect& rect, uint32_t bind, GX::TextureFormat fmt, bool clear_depth) noexcept {
if (g_resolvedTextures.size() < bind + 1) {
g_resolvedTextures.resize(bind + 1);
}
const wgpu::Extent3D size{
.width = static_cast<uint32_t>(rect.width),
.height = static_cast<uint32_t>(rect.height),
};
if (!g_resolvedTextures[bind] || g_resolvedTextures[bind]->size != size) {
g_resolvedTextures[bind] = new_render_texture(rect.width, rect.height, fmt, "Resolved Texture");
}
auto& currentPass = g_renderPasses[g_currentRenderPass];
currentPass.resolveTarget = bind;
currentPass.resolveRect = rect;
auto& newPass = g_renderPasses.emplace_back();
newPass.clearColor = gx::g_gxState.clearColor;
newPass.clear = false; // TODO
++g_currentRenderPass;
}
void resolve_depth(const ClipRect& rect, uint32_t bind, GX::TextureFormat fmt) noexcept {
// TODO
}
void queue_movie_player(const TextureHandle& tex_y, const TextureHandle& tex_u, const TextureHandle& tex_v, float h_pad,
float v_pad) noexcept {
auto data = movie_player::make_draw_data(g_state.moviePlayer, tex_y, tex_u, tex_v, h_pad, v_pad);
push_draw_command({.type = ShaderType::MoviePlayer, .moviePlayer = data});
}
template <>
PipelineRef pipeline_ref(movie_player::PipelineConfig config) {
return find_pipeline(ShaderType::MoviePlayer, config, [=]() { return create_pipeline(g_state.moviePlayer, config); });
}
template <>
const stream::State& get_state() {
return g_state.stream;
}
template <>
void push_draw_command(stream::DrawData data) {
push_draw_command(ShaderDrawCommand{.type = ShaderType::Stream, .stream = data});
}
template <>
PipelineRef pipeline_ref(stream::PipelineConfig config) {
return find_pipeline(ShaderType::Stream, config, [=]() { return create_pipeline(g_state.stream, config); });
}
template <>
void push_draw_command(model::DrawData data) {
push_draw_command(ShaderDrawCommand{.type = ShaderType::Model, .model = data});
}
template <>
PipelineRef pipeline_ref(model::PipelineConfig config) {
return find_pipeline(ShaderType::Model, config, [=]() { return create_pipeline(g_state.model, config); });
}
static void pipeline_worker() {
bool hasMore = false;
while (true) {
std::pair<PipelineRef, NewPipelineCallback> cb;
{
std::unique_lock lock{g_pipelineMutex};
if (!hasMore) {
g_pipelineCv.wait(lock, [] { return !g_queuedPipelines.empty() || g_pipelineThreadEnd; });
}
if (g_pipelineThreadEnd) {
break;
}
cb = std::move(g_queuedPipelines.front());
}
auto result = cb.second();
// std::this_thread::sleep_for(std::chrono::milliseconds{1500});
{
std::scoped_lock lock{g_pipelineMutex};
if (!g_pipelines.try_emplace(cb.first, std::move(result)).second) {
Log.report(logvisor::Fatal, FMT_STRING("Duplicate pipeline {}"), cb.first);
unreachable();
}
g_queuedPipelines.pop_front();
hasMore = !g_queuedPipelines.empty();
}
createdPipelines++;
queuedPipelines--;
}
}
void initialize() {
// No async pipelines for OpenGL (ES)
if (gpu::g_backendType == wgpu::BackendType::OpenGL || gpu::g_backendType == wgpu::BackendType::OpenGLES) {
g_hasPipelineThread = false;
} else {
g_pipelineThreadEnd = false;
g_pipelineThread = std::thread(pipeline_worker);
g_hasPipelineThread = true;
}
// For uniform & storage buffer offset alignments
g_device.GetLimits(&g_cachedLimits);
const auto createBuffer = [](wgpu::Buffer& out, wgpu::BufferUsage usage, uint64_t size, const char* label) {
const wgpu::BufferDescriptor descriptor{
.label = label,
.usage = usage,
.size = size,
};
out = g_device.CreateBuffer(&descriptor);
};
createBuffer(g_uniformBuffer, wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, UniformBufferSize,
"Shared Uniform Buffer");
createBuffer(g_vertexBuffer, wgpu::BufferUsage::Vertex | wgpu::BufferUsage::CopyDst, VertexBufferSize,
"Shared Vertex Buffer");
createBuffer(g_indexBuffer, wgpu::BufferUsage::Index | wgpu::BufferUsage::CopyDst, IndexBufferSize,
"Shared Index Buffer");
createBuffer(g_storageBuffer, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopyDst, StorageBufferSize,
"Shared Storage Buffer");
for (int i = 0; i < g_stagingBuffers.size(); ++i) {
const auto label = fmt::format(FMT_STRING("Staging Buffer {}"), i);
createBuffer(g_stagingBuffers[i], wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, StagingBufferSize,
label.c_str());
}
map_staging_buffer();
g_state.moviePlayer = movie_player::construct_state();
g_state.stream = stream::construct_state();
g_state.model = model::construct_state();
{
// Load serialized pipeline cache
std::string path = g_configPath + "pipeline_cache.bin";
std::ifstream file(path, std::ios::in | std::ios::binary | std::ios::ate);
if (file) {
const size_t size = file.tellg();
file.seekg(0, std::ios::beg);
constexpr size_t headerSize = sizeof(g_serializedPipelineCount);
if (size != -1 && size > headerSize) {
g_serializedPipelines.append_zeroes(size - headerSize);
file.read(reinterpret_cast<char*>(&g_serializedPipelineCount), headerSize);
file.read(reinterpret_cast<char*>(g_serializedPipelines.data()), size - headerSize);
}
}
}
if (g_serializedPipelineCount > 0) {
size_t offset = 0;
while (offset < g_serializedPipelines.size()) {
ShaderType type = *reinterpret_cast<const ShaderType*>(g_serializedPipelines.data() + offset);
offset += sizeof(ShaderType);
u32 size = *reinterpret_cast<const u32*>(g_serializedPipelines.data() + offset);
offset += sizeof(u32);
switch (type) {
case ShaderType::MoviePlayer: {
if (size != sizeof(movie_player::PipelineConfig)) {
break;
}
const auto config =
*reinterpret_cast<const movie_player::PipelineConfig*>(g_serializedPipelines.data() + offset);
find_pipeline(
type, config, [=]() { return movie_player::create_pipeline(g_state.moviePlayer, config); }, false);
} break;
case ShaderType::Stream: {
if (size != sizeof(stream::PipelineConfig)) {
break;
}
const auto config = *reinterpret_cast<const stream::PipelineConfig*>(g_serializedPipelines.data() + offset);
if (config.version != gx::GXPipelineConfigVersion) {
break;
}
find_pipeline(
type, config, [=]() { return stream::create_pipeline(g_state.stream, config); }, false);
} break;
case ShaderType::Model: {
if (size != sizeof(model::PipelineConfig)) {
break;
}
const auto config = *reinterpret_cast<const model::PipelineConfig*>(g_serializedPipelines.data() + offset);
if (config.version != gx::GXPipelineConfigVersion) {
break;
}
find_pipeline(
type, config, [=]() { return model::create_pipeline(g_state.model, config); }, false);
} break;
default:
Log.report(logvisor::Warning, FMT_STRING("Unknown pipeline type {}"), type);
break;
}
offset += size;
}
}
}
void shutdown() {
if (g_hasPipelineThread) {
g_pipelineThreadEnd = true;
g_pipelineCv.notify_all();
g_pipelineThread.join();
}
{
// Write serialized pipelines to file
std::ofstream file(g_configPath + "pipeline_cache.bin", std::ios::out | std::ios::trunc | std::ios::binary);
if (file) {
file.write(reinterpret_cast<const char*>(&g_serializedPipelineCount), sizeof(g_serializedPipelineCount));
file.write(reinterpret_cast<const char*>(g_serializedPipelines.data()), g_serializedPipelines.size());
}
g_serializedPipelines.clear();
g_serializedPipelineCount = 0;
}
gx::shutdown();
g_resolvedTextures.clear();
g_textureUploads.clear();
g_cachedBindGroups.clear();
g_cachedSamplers.clear();
g_pipelines.clear();
g_queuedPipelines.clear();
g_vertexBuffer = {};
g_uniformBuffer = {};
g_indexBuffer = {};
g_storageBuffer = {};
g_stagingBuffers.fill({});
g_renderPasses.clear();
g_currentRenderPass = 0;
g_state = {};
queuedPipelines = 0;
createdPipelines = 0;
}
static size_t currentStagingBuffer = 0;
static bool bufferMapped = false;
void map_staging_buffer() {
bufferMapped = false;
g_stagingBuffers[currentStagingBuffer].MapAsync(
wgpu::MapMode::Write, 0, StagingBufferSize,
[](WGPUBufferMapAsyncStatus status, void* userdata) {
if (status == WGPUBufferMapAsyncStatus_DestroyedBeforeCallback) {
return;
} else if (status != WGPUBufferMapAsyncStatus_Success) {
Log.report(logvisor::Fatal, FMT_STRING("Buffer mapping failed: {}"), status);
unreachable();
}
*static_cast<bool*>(userdata) = true;
},
&bufferMapped);
}
void begin_frame() {
while (!bufferMapped) {
g_device.Tick();
}
size_t bufferOffset = 0;
auto& stagingBuf = g_stagingBuffers[currentStagingBuffer];
const auto mapBuffer = [&](ByteBuffer& buf, uint64_t size) {
buf = ByteBuffer{static_cast<u8*>(stagingBuf.GetMappedRange(bufferOffset, size)), size};
bufferOffset += size;
};
mapBuffer(g_verts, VertexBufferSize);
mapBuffer(g_uniforms, UniformBufferSize);
mapBuffer(g_indices, IndexBufferSize);
mapBuffer(g_storage, StorageBufferSize);
mapBuffer(g_textureUpload, TextureUploadSize);
g_renderPasses.emplace_back();
g_currentRenderPass = 0;
}
// for imgui debug
size_t g_lastVertSize;
size_t g_lastUniformSize;
size_t g_lastIndexSize;
size_t g_lastStorageSize;
void end_frame(const wgpu::CommandEncoder& cmd) {
uint64_t bufferOffset = 0;
const auto writeBuffer = [&](ByteBuffer& buf, wgpu::Buffer& out, uint64_t size, std::string_view label) {
const auto writeSize = buf.size(); // Only need to copy this many bytes
if (writeSize > 0) {
cmd.CopyBufferToBuffer(g_stagingBuffers[currentStagingBuffer], bufferOffset, out, 0, writeSize);
buf.clear();
}
bufferOffset += size;
return writeSize;
};
g_stagingBuffers[currentStagingBuffer].Unmap();
g_lastVertSize = writeBuffer(g_verts, g_vertexBuffer, VertexBufferSize, "Vertex");
g_lastUniformSize = writeBuffer(g_uniforms, g_uniformBuffer, UniformBufferSize, "Uniform");
g_lastIndexSize = writeBuffer(g_indices, g_indexBuffer, IndexBufferSize, "Index");
g_lastStorageSize = writeBuffer(g_storage, g_storageBuffer, StorageBufferSize, "Storage");
{
// Perform texture copies
for (const auto& item : g_textureUploads) {
const wgpu::ImageCopyBuffer buf{
.layout =
wgpu::TextureDataLayout{
.offset = item.layout.offset + bufferOffset,
.bytesPerRow = ALIGN(item.layout.bytesPerRow, 256),
.rowsPerImage = item.layout.rowsPerImage,
},
.buffer = g_stagingBuffers[currentStagingBuffer],
};
cmd.CopyBufferToTexture(&buf, &item.tex, &item.size);
}
g_textureUploads.clear();
g_textureUpload.clear();
}
currentStagingBuffer = (currentStagingBuffer + 1) % g_stagingBuffers.size();
map_staging_buffer();
}
void render(wgpu::CommandEncoder& cmd) {
for (u32 i = 0; i < g_renderPasses.size(); ++i) {
const auto& passInfo = g_renderPasses[i];
bool finalPass = i == g_renderPasses.size() - 1;
if (finalPass && passInfo.resolveTarget != UINT32_MAX) {
Log.report(logvisor::Fatal, FMT_STRING("Final render pass must not have resolve target"));
unreachable();
}
const std::array attachments{
wgpu::RenderPassColorAttachment{
.view = gpu::g_frameBuffer.view,
.resolveTarget = gpu::g_graphicsConfig.msaaSamples > 1 ? gpu::g_frameBufferResolved.view : nullptr,
.loadOp = passInfo.clear ? wgpu::LoadOp::Clear : wgpu::LoadOp::Load,
.storeOp = wgpu::StoreOp::Store,
.clearValue =
{
.r = passInfo.clearColor.r(),
.g = passInfo.clearColor.g(),
.b = passInfo.clearColor.b(),
.a = passInfo.clearColor.a(),
},
},
};
const wgpu::RenderPassDepthStencilAttachment depthStencilAttachment{
.view = gpu::g_depthBuffer.view,
.depthLoadOp = wgpu::LoadOp::Clear,
.depthStoreOp = wgpu::StoreOp::Discard,
.depthClearValue = 1.f,
};
const auto label = fmt::format(FMT_STRING("Render pass {}"), i);
const wgpu::RenderPassDescriptor renderPassDescriptor{
.label = label.c_str(),
.colorAttachmentCount = attachments.size(),
.colorAttachments = attachments.data(),
.depthStencilAttachment = &depthStencilAttachment,
};
auto pass = cmd.BeginRenderPass(&renderPassDescriptor);
render_pass(pass, i);
pass.End();
if (passInfo.resolveTarget != UINT32_MAX) {
wgpu::ImageCopyTexture src{
.origin =
wgpu::Origin3D{
.x = static_cast<uint32_t>(passInfo.resolveRect.x),
.y = static_cast<uint32_t>(passInfo.resolveRect.y),
},
};
if (gpu::g_graphicsConfig.msaaSamples > 1) {
src.texture = gpu::g_frameBufferResolved.texture;
} else {
src.texture = gpu::g_frameBuffer.texture;
}
auto& target = g_resolvedTextures[passInfo.resolveTarget];
const wgpu::ImageCopyTexture dst{
.texture = target->texture,
};
const wgpu::Extent3D size{
.width = static_cast<uint32_t>(passInfo.resolveRect.width),
.height = static_cast<uint32_t>(passInfo.resolveRect.height),
};
cmd.CopyTextureToTexture(&src, &dst, &size);
}
}
g_renderPasses.clear();
}
void render_pass(const wgpu::RenderPassEncoder& pass, u32 idx) {
g_currentPipeline = UINT64_MAX;
#ifdef AURORA_GFX_DEBUG_GROUPS
std::vector<std::string> lastDebugGroupStack;
#endif
for (const auto& cmd : g_renderPasses[idx].commands) {
#ifdef AURORA_GFX_DEBUG_GROUPS
{
size_t firstDiff = lastDebugGroupStack.size();
for (size_t i = 0; i < lastDebugGroupStack.size(); ++i) {
if (i >= cmd.debugGroupStack.size() || cmd.debugGroupStack[i] != lastDebugGroupStack[i]) {
firstDiff = i;
break;
}
}
for (size_t i = firstDiff; i < lastDebugGroupStack.size(); ++i) {
pass.PopDebugGroup();
}
for (size_t i = firstDiff; i < cmd.debugGroupStack.size(); ++i) {
pass.PushDebugGroup(cmd.debugGroupStack[i].c_str());
}
lastDebugGroupStack = cmd.debugGroupStack;
}
#endif
switch (cmd.type) {
case CommandType::SetViewport: {
const auto& vp = cmd.data.setViewport;
pass.SetViewport(vp.left, vp.top, vp.width, vp.height, vp.znear, vp.zfar);
} break;
case CommandType::SetScissor: {
const auto& sc = cmd.data.setScissor;
pass.SetScissorRect(sc.x, sc.y, sc.w, sc.h);
} break;
case CommandType::Draw: {
const auto& draw = cmd.data.draw;
switch (draw.type) {
case ShaderType::MoviePlayer:
movie_player::render(g_state.moviePlayer, draw.moviePlayer, pass);
break;
case ShaderType::Stream:
stream::render(g_state.stream, draw.stream, pass);
break;
case ShaderType::Model:
model::render(g_state.model, draw.model, pass);
break;
}
} break;
}
}
#ifdef AURORA_GFX_DEBUG_GROUPS
for (size_t i = 0; i < lastDebugGroupStack.size(); ++i) {
pass.PopDebugGroup();
}
#endif
}
bool bind_pipeline(PipelineRef ref, const wgpu::RenderPassEncoder& pass) {
if (ref == g_currentPipeline) {
return true;
}
std::lock_guard guard{g_pipelineMutex};
const auto it = g_pipelines.find(ref);
if (it == g_pipelines.end()) {
return false;
}
pass.SetPipeline(it->second);
g_currentPipeline = ref;
return true;
}
static inline Range push(ByteBuffer& target, const uint8_t* data, size_t length, size_t alignment) {
size_t padding = 0;
if (alignment != 0) {
padding = alignment - length % alignment;
}
auto begin = target.size();
if (length == 0) {
length = alignment;
target.append_zeroes(alignment);
} else {
target.append(data, length);
if (padding > 0) {
target.append_zeroes(padding);
}
}
return {static_cast<uint32_t>(begin), static_cast<uint32_t>(length + padding)};
}
static inline Range map(ByteBuffer& target, size_t length, size_t alignment) {
size_t padding = 0;
if (alignment != 0) {
padding = alignment - length % alignment;
}
if (length == 0) {
length = alignment;
}
auto begin = target.size();
target.append_zeroes(length + padding);
return {static_cast<uint32_t>(begin), static_cast<uint32_t>(length + padding)};
}
Range push_verts(const uint8_t* data, size_t length) { return push(g_verts, data, length, 4); }
Range push_indices(const uint8_t* data, size_t length) { return push(g_indices, data, length, 4); }
Range push_uniform(const uint8_t* data, size_t length) {
return push(g_uniforms, data, length, g_cachedLimits.limits.minUniformBufferOffsetAlignment);
}
Range push_storage(const uint8_t* data, size_t length) {
return push(g_storage, data, length, g_cachedLimits.limits.minStorageBufferOffsetAlignment);
}
Range push_static_storage(const uint8_t* data, size_t length) {
auto range = push(g_staticStorage, data, length, g_cachedLimits.limits.minStorageBufferOffsetAlignment);
range.isStatic = true;
return range;
}
Range push_texture_data(const uint8_t* data, size_t length, u32 bytesPerRow, u32 rowsPerImage) {
// For CopyBufferToTexture, we need an alignment of 256 per row (see Dawn kTextureBytesPerRowAlignment)
const auto copyBytesPerRow = ALIGN(bytesPerRow, 256);
const auto range = map(g_textureUpload, copyBytesPerRow * rowsPerImage, 0);
u8* dst = g_textureUpload.data() + range.offset;
for (u32 i = 0; i < rowsPerImage; ++i) {
memcpy(dst, data, bytesPerRow);
data += bytesPerRow;
dst += copyBytesPerRow;
}
return range;
}
std::pair<ByteBuffer, Range> map_verts(size_t length) {
const auto range = map(g_verts, length, 4);
return {ByteBuffer{g_verts.data() + range.offset, range.size}, range};
}
std::pair<ByteBuffer, Range> map_indices(size_t length) {
const auto range = map(g_indices, length, 4);
return {ByteBuffer{g_indices.data() + range.offset, range.size}, range};
}
std::pair<ByteBuffer, Range> map_uniform(size_t length) {
const auto range = map(g_uniforms, length, g_cachedLimits.limits.minUniformBufferOffsetAlignment);
return {ByteBuffer{g_uniforms.data() + range.offset, range.size}, range};
}
std::pair<ByteBuffer, Range> map_storage(size_t length) {
const auto range = map(g_storage, length, g_cachedLimits.limits.minStorageBufferOffsetAlignment);
return {ByteBuffer{g_storage.data() + range.offset, range.size}, range};
}
BindGroupRef bind_group_ref(const wgpu::BindGroupDescriptor& descriptor) {
const auto id = xxh3_hash(descriptor);
if (!g_cachedBindGroups.contains(id)) {
g_cachedBindGroups.try_emplace(id, g_device.CreateBindGroup(&descriptor));
}
return id;
}
const wgpu::BindGroup& find_bind_group(BindGroupRef id) {
const auto it = g_cachedBindGroups.find(id);
if (it == g_cachedBindGroups.end()) {
Log.report(logvisor::Fatal, FMT_STRING("get_bind_group: failed to locate {}"), id);
unreachable();
}
return it->second;
}
const wgpu::Sampler& sampler_ref(const wgpu::SamplerDescriptor& descriptor) {
const auto id = xxh3_hash(descriptor);
auto it = g_cachedSamplers.find(id);
if (it == g_cachedSamplers.end()) {
it = g_cachedSamplers.try_emplace(id, g_device.CreateSampler(&descriptor)).first;
}
return it->second;
}
uint32_t align_uniform(uint32_t value) { return ALIGN(value, g_cachedLimits.limits.minUniformBufferOffsetAlignment); }
void push_debug_group(zstring_view label) noexcept {
#ifdef AURORA_GFX_DEBUG_GROUPS
g_debugGroupStack.emplace_back(label);
#endif
}
void pop_debug_group() noexcept {
#ifdef AURORA_GFX_DEBUG_GROUPS
g_debugGroupStack.pop_back();
#endif
}
} // namespace aurora::gfx