metaforce/hecl/lib/Blender/HMDL.cpp

172 lines
5.4 KiB
C++

#include "hecl/Blender/Connection.hpp"
#include <cmath>
#include <cfloat>
#undef min
#undef max
namespace hecl::blender {
atVec3f MtxVecMul4RM(const Matrix4f& mtx, const Vector3f& vec) {
atVec3f res;
athena::simd_floats resf;
athena::simd_floats mtxf[3];
for (int i = 0; i < 3; ++i)
mtx[i].simd.copy_to(mtxf[i]);
athena::simd_floats vecf(vec.val.simd);
resf[0] = mtxf[0][0] * vecf[0] + mtxf[0][1] * vecf[1] + mtxf[0][2] * vecf[2] + mtxf[0][3];
resf[1] = mtxf[1][0] * vecf[0] + mtxf[1][1] * vecf[1] + mtxf[1][2] * vecf[2] + mtxf[1][3];
resf[2] = mtxf[2][0] * vecf[0] + mtxf[2][1] * vecf[1] + mtxf[2][2] * vecf[2] + mtxf[2][3];
res.simd.copy_from(resf);
return res;
}
atVec3f MtxVecMul3RM(const Matrix4f& mtx, const Vector3f& vec) {
atVec3f res;
athena::simd_floats resf;
athena::simd_floats mtxf[3];
for (int i = 0; i < 3; ++i)
mtx[i].simd.copy_to(mtxf[i]);
athena::simd_floats vecf(vec.val.simd);
resf[0] = mtxf[0][0] * vecf[0] + mtxf[0][1] * vecf[1] + mtxf[0][2] * vecf[2];
resf[1] = mtxf[1][0] * vecf[0] + mtxf[1][1] * vecf[1] + mtxf[1][2] * vecf[2];
resf[2] = mtxf[2][0] * vecf[0] + mtxf[2][1] * vecf[1] + mtxf[2][2] * vecf[2];
res.simd.copy_from(resf);
return res;
}
HMDLBuffers Mesh::getHMDLBuffers(bool absoluteCoords, PoolSkinIndex& poolSkinIndex) const {
/* If skinned, compute max weight vec count */
size_t weightCount = 0;
for (const SkinBanks::Bank& bank : skinBanks.banks)
weightCount = std::max(weightCount, bank.m_boneIdxs.size());
size_t weightVecCount = weightCount / 4;
if (weightCount % 4)
++weightVecCount;
/* Prepare HMDL meta */
HMDLMeta metaOut;
metaOut.topology = topology;
metaOut.vertStride = (3 + 3 + colorLayerCount + uvLayerCount * 2 + weightVecCount * 4) * 4;
metaOut.colorCount = colorLayerCount;
metaOut.uvCount = uvLayerCount;
metaOut.weightCount = weightVecCount;
metaOut.bankCount = skinBanks.banks.size();
/* Total all verts from all surfaces (for ibo length) */
size_t boundVerts = 0;
for (const Surface& surf : surfaces)
boundVerts += surf.verts.size();
/* Maintain unique vert pool for VBO */
std::vector<std::pair<const Surface*, const Surface::Vert*>> vertPool;
vertPool.reserve(boundVerts);
/* Target surfaces representation */
std::vector<HMDLBuffers::Surface> outSurfaces;
outSurfaces.reserve(surfaces.size());
/* Index buffer */
std::vector<atUint32> iboData;
iboData.reserve(boundVerts);
for (const Surface& surf : surfaces) {
size_t iboStart = iboData.size();
for (const Surface::Vert& v : surf.verts) {
if (v.iPos == 0xffffffff) {
iboData.push_back(0xffffffff);
continue;
}
size_t ti = 0;
bool found = false;
for (const std::pair<const Surface*, const Surface::Vert*>& tv : vertPool) {
if (v == *tv.second && surf.skinBankIdx == tv.first->skinBankIdx) {
iboData.push_back(ti);
found = true;
break;
}
++ti;
}
if (!found) {
iboData.push_back(vertPool.size());
vertPool.emplace_back(&surf, &v);
}
}
outSurfaces.emplace_back(surf, iboStart, iboData.size() - iboStart);
}
metaOut.vertCount = vertPool.size();
metaOut.indexCount = iboData.size();
size_t vboSz = metaOut.vertCount * metaOut.vertStride;
poolSkinIndex.allocate(vertPool.size());
HMDLBuffers ret(std::move(metaOut), vboSz, iboData, std::move(outSurfaces), skinBanks);
athena::io::MemoryWriter vboW(ret.m_vboData.get(), vboSz);
uint32_t curPoolIdx = 0;
for (const std::pair<const Surface*, const Surface::Vert*>& sv : vertPool) {
const Surface& s = *sv.first;
const Surface::Vert& v = *sv.second;
if (absoluteCoords) {
atVec3f preXfPos = MtxVecMul4RM(sceneXf, pos[v.iPos]);
vboW.writeVec3fLittle(preXfPos);
atVec3f preXfNorm = MtxVecMul3RM(sceneXf, norm[v.iNorm]);
athena::simd_floats f(preXfNorm.simd * preXfNorm.simd);
float mag = f[0] + f[1] + f[2];
if (mag > FLT_EPSILON)
mag = 1.f / std::sqrt(mag);
preXfNorm.simd *= mag;
vboW.writeVec3fLittle(preXfNorm);
} else {
vboW.writeVec3fLittle(pos[v.iPos]);
vboW.writeVec3fLittle(norm[v.iNorm]);
}
for (size_t i = 0; i < colorLayerCount; ++i) {
const Vector3f& c = color[v.iColor[i]];
athena::simd_floats f(c.val.simd);
vboW.writeUByte(std::max(0, std::min(255, int(f[0] * 255))));
vboW.writeUByte(std::max(0, std::min(255, int(f[1] * 255))));
vboW.writeUByte(std::max(0, std::min(255, int(f[2] * 255))));
vboW.writeUByte(255);
}
for (size_t i = 0; i < uvLayerCount; ++i)
vboW.writeVec2fLittle(uv[v.iUv[i]]);
if (weightVecCount) {
const SkinBanks::Bank& bank = skinBanks.banks[s.skinBankIdx];
const auto& binds = skins[v.iSkin];
auto it = bank.m_boneIdxs.cbegin();
for (size_t i = 0; i < weightVecCount; ++i) {
atVec4f vec = {};
for (size_t j = 0; j < 4; ++j) {
if (it == bank.m_boneIdxs.cend())
break;
for (const SkinBind& bind : binds) {
if (!bind.valid())
break;
if (bind.vg_idx == *it) {
vec.simd[j] = bind.weight;
break;
}
}
++it;
}
vboW.writeVec4fLittle(vec);
}
}
/* mapping pool verts to skin indices */
poolSkinIndex.m_poolToSkinIndex[curPoolIdx] = sv.second->iSkin;
++curPoolIdx;
}
return ret;
}
} // namespace hecl::blender