metaforce/aurora/lib/gfx/common.cpp

619 lines
22 KiB
C++

#include "common.hpp"
#include "../gpu.hpp"
#include "colored_quad/shader.hpp"
#include "movie_player/shader.hpp"
#include "stream/shader.hpp"
#include "textured_quad/shader.hpp"
#include "model/shader.hpp"
#include <condition_variable>
#include <deque>
#include <logvisor/logvisor.hpp>
#include <thread>
#include <absl/container/flat_hash_map.h>
namespace aurora::gfx {
static logvisor::Module Log("aurora::gfx");
using gpu::g_device;
using gpu::g_queue;
constexpr uint64_t UniformBufferSize = 5242880; // 5mb
constexpr uint64_t VertexBufferSize = 5242880; // 5mb
constexpr uint64_t IndexBufferSize = 2097152; // 2mb
constexpr uint64_t StorageBufferSize = 134217728; // 128mb
constexpr uint64_t StagingBufferSize = UniformBufferSize + VertexBufferSize + IndexBufferSize + StorageBufferSize;
struct ShaderState {
movie_player::State moviePlayer;
colored_quad::State coloredQuad;
textured_quad::State texturedQuad;
stream::State stream;
model::State model;
};
struct ShaderDrawCommand {
ShaderType type;
union {
movie_player::DrawData moviePlayer;
colored_quad::DrawData coloredQuad;
textured_quad::DrawData texturedQuad;
stream::DrawData stream;
model::DrawData model;
};
};
struct PipelineCreateCommand {
ShaderType type;
union {
movie_player::PipelineConfig moviePlayer;
colored_quad::PipelineConfig coloredQuad;
textured_quad::PipelineConfig texturedQuad;
stream::PipelineConfig stream;
model::PipelineConfig model;
};
};
enum class CommandType {
SetViewport,
SetScissor,
Draw,
};
struct Command {
CommandType type;
union Data {
struct SetViewportCommand {
float left;
float top;
float width;
float height;
float znear;
float zfar;
bool operator==(const SetViewportCommand& rhs) const = default;
} setViewport;
struct SetScissorCommand {
uint32_t x;
uint32_t y;
uint32_t w;
uint32_t h;
auto operator<=>(const SetScissorCommand&) const = default;
} setScissor;
ShaderDrawCommand draw;
} data;
};
} // namespace aurora::gfx
namespace aurora {
template <>
inline XXH64_hash_t xxh3_hash(const gfx::PipelineCreateCommand& input, XXH64_hash_t seed) {
constexpr auto typeSize = sizeof(gfx::PipelineCreateCommand::type);
switch (input.type) {
case gfx::ShaderType::Aabb:
// TODO
break;
case gfx::ShaderType::ColoredQuad:
return xxh3_hash_s(&input, typeSize + sizeof(gfx::PipelineCreateCommand::coloredQuad), seed);
case gfx::ShaderType::TexturedQuad:
return xxh3_hash_s(&input, typeSize + sizeof(gfx::PipelineCreateCommand::texturedQuad), seed);
case gfx::ShaderType::MoviePlayer:
return xxh3_hash_s(&input, typeSize + sizeof(gfx::PipelineCreateCommand::moviePlayer), seed);
case gfx::ShaderType::Stream:
return xxh3_hash_s(&input, typeSize + sizeof(gfx::PipelineCreateCommand::stream), seed);
case gfx::ShaderType::Model:
return xxh3_hash_s(&input, typeSize + sizeof(gfx::PipelineCreateCommand::model), seed);
}
return 0;
}
template <>
inline XXH64_hash_t xxh3_hash(const wgpu::BindGroupDescriptor& input, XXH64_hash_t seed) {
constexpr auto offset = sizeof(void*) * 2; // skip nextInChain, label
const auto hash = xxh3_hash_s(reinterpret_cast<const u8*>(&input) + offset,
sizeof(wgpu::BindGroupDescriptor) - offset - sizeof(void*) /* skip entries */, seed);
// // TODO ensure size is zeroed elsewhere
// for (int i = 0; i < input.entryCount; ++i) {
// const wgpu::BindGroupEntry& entry = input.entries[i];
// if (!entry.buffer && entry.size != 0) {
// gfx::Log.report(logvisor::Fatal, FMT_STRING("Size != 0! {}"), entry.size);
// }
// }
return xxh3_hash_s(input.entries, sizeof(wgpu::BindGroupEntry) * input.entryCount, hash);
}
template <>
inline XXH64_hash_t xxh3_hash(const wgpu::SamplerDescriptor& input, XXH64_hash_t seed) {
constexpr auto offset = sizeof(void*) * 2; // skip nextInChain, label
return xxh3_hash_s(reinterpret_cast<const u8*>(&input) + offset,
sizeof(wgpu::SamplerDescriptor) - offset - 2 /* skip padding */, seed);
}
} // namespace aurora
namespace aurora::gfx {
using NewPipelineCallback = std::function<wgpu::RenderPipeline()>;
std::mutex g_pipelineMutex;
static std::thread g_pipelineThread;
static std::atomic_bool g_pipelineThreadEnd;
static std::condition_variable g_pipelineCv;
static absl::flat_hash_map<PipelineRef, wgpu::RenderPipeline> g_pipelines;
static std::deque<std::pair<PipelineRef, NewPipelineCallback>> g_queuedPipelines;
static absl::flat_hash_map<BindGroupRef, wgpu::BindGroup> g_cachedBindGroups;
static absl::flat_hash_map<SamplerRef, wgpu::Sampler> g_cachedSamplers;
std::atomic_uint32_t queuedPipelines;
std::atomic_uint32_t createdPipelines;
static ByteBuffer g_verts;
static ByteBuffer g_uniforms;
static ByteBuffer g_indices;
static ByteBuffer g_storage;
static ByteBuffer g_staticStorage;
wgpu::Buffer g_vertexBuffer;
wgpu::Buffer g_uniformBuffer;
wgpu::Buffer g_indexBuffer;
wgpu::Buffer g_storageBuffer;
size_t g_staticStorageLastSize = 0;
static std::array<wgpu::Buffer, 3> g_stagingBuffers;
static ShaderState g_state;
static PipelineRef g_currentPipeline;
static std::vector<Command> g_commands;
static PipelineRef find_pipeline(PipelineCreateCommand command, NewPipelineCallback&& cb) {
OPTICK_EVENT();
const auto hash = xxh3_hash(command);
bool found = false;
{
std::scoped_lock guard{g_pipelineMutex};
found = g_pipelines.contains(hash);
if (!found) {
const auto ref =
std::find_if(g_queuedPipelines.begin(), g_queuedPipelines.end(), [=](auto v) { return v.first == hash; });
if (ref != g_queuedPipelines.end()) {
found = true;
}
}
if (!found) {
g_queuedPipelines.emplace_back(std::pair{hash, std::move(cb)});
}
}
if (!found) {
g_pipelineCv.notify_one();
queuedPipelines++;
}
return hash;
}
static void push_draw_command(ShaderDrawCommand data) { g_commands.push_back({CommandType::Draw, {.draw = data}}); }
bool get_dxt_compression_supported() noexcept { return g_device.HasFeature(wgpu::FeatureName::TextureCompressionBC); }
static Command::Data::SetViewportCommand g_cachedViewport;
void set_viewport(float left, float top, float width, float height, float znear, float zfar) noexcept {
Command::Data::SetViewportCommand cmd{left, top, width, height, znear, zfar};
if (cmd != g_cachedViewport) {
g_commands.push_back({CommandType::SetViewport, {.setViewport = cmd}});
g_cachedViewport = cmd;
}
}
static Command::Data::SetScissorCommand g_cachedScissor;
void set_scissor(uint32_t x, uint32_t y, uint32_t w, uint32_t h) noexcept {
Command::Data::SetScissorCommand cmd{x, y, w, h};
if (cmd != g_cachedScissor) {
g_commands.push_back({CommandType::SetScissor, {.setScissor = cmd}});
g_cachedScissor = cmd;
}
}
void resolve_color(const ClipRect& rect, uint32_t bind, bool clear_depth) noexcept {
// TODO
}
void resolve_depth(const ClipRect& rect, uint32_t bind) noexcept {
// TODO
}
void add_material_set(/* TODO */) noexcept {}
void add_model(/* TODO */) noexcept {}
void queue_aabb(const zeus::CAABox& aabb, const zeus::CColor& color, bool z_only) noexcept {
// TODO
}
void queue_fog_volume_plane(const ArrayRef<zeus::CVector4f>& verts, uint8_t pass) {
// TODO
}
void queue_fog_volume_filter(const zeus::CColor& color, bool two_way) noexcept {
// TODO
}
void queue_textured_quad_verts(CameraFilterType filter_type, const TextureHandle& texture, ZComp z_comparison,
bool z_test, const zeus::CColor& color, const ArrayRef<zeus::CVector3f>& pos,
const ArrayRef<zeus::CVector2f>& uvs, float lod) noexcept {
auto data = textured_quad::make_draw_data_verts(g_state.texturedQuad, filter_type, texture, z_comparison, z_test,
color, pos, uvs, lod);
push_draw_command({.type = ShaderType::TexturedQuad, .texturedQuad = data});
}
void queue_textured_quad(CameraFilterType filter_type, const TextureHandle& texture, ZComp z_comparison, bool z_test,
const zeus::CColor& color, float uv_scale, const zeus::CRectangle& rect, float z,
float lod) noexcept {
auto data = textured_quad::make_draw_data(g_state.texturedQuad, filter_type, texture, z_comparison, z_test, color,
uv_scale, rect, z, lod);
push_draw_command({.type = ShaderType::TexturedQuad, .texturedQuad = data});
}
template <>
PipelineRef pipeline_ref(textured_quad::PipelineConfig config) {
return find_pipeline({.type = ShaderType::TexturedQuad, .texturedQuad = config},
[=]() { return create_pipeline(g_state.texturedQuad, config); });
}
void queue_colored_quad_verts(CameraFilterType filter_type, ZComp z_comparison, bool z_test, const zeus::CColor& color,
const ArrayRef<zeus::CVector3f>& pos) noexcept {
auto data = colored_quad::make_draw_data_verts(g_state.coloredQuad, filter_type, z_comparison, z_test, color, pos);
push_draw_command({.type = ShaderType::ColoredQuad, .coloredQuad = data});
}
void queue_colored_quad(CameraFilterType filter_type, ZComp z_comparison, bool z_test, const zeus::CColor& color,
const zeus::CRectangle& rect, float z) noexcept {
auto data = colored_quad::make_draw_data(g_state.coloredQuad, filter_type, z_comparison, z_test, color, rect, z);
push_draw_command({.type = ShaderType::ColoredQuad, .coloredQuad = data});
}
template <>
PipelineRef pipeline_ref(colored_quad::PipelineConfig config) {
return find_pipeline({.type = ShaderType::ColoredQuad, .coloredQuad = config},
[=]() { return create_pipeline(g_state.coloredQuad, config); });
}
void queue_movie_player(const TextureHandle& tex_y, const TextureHandle& tex_u, const TextureHandle& tex_v, float h_pad,
float v_pad) noexcept {
auto data = movie_player::make_draw_data(g_state.moviePlayer, tex_y, tex_u, tex_v, h_pad, v_pad);
push_draw_command({.type = ShaderType::MoviePlayer, .moviePlayer = data});
}
template <>
PipelineRef pipeline_ref(movie_player::PipelineConfig config) {
return find_pipeline({.type = ShaderType::MoviePlayer, .moviePlayer = config},
[=]() { return create_pipeline(g_state.moviePlayer, config); });
}
template <>
const stream::State& get_state() {
return g_state.stream;
}
template <>
void push_draw_command(stream::DrawData data) {
push_draw_command({.type = ShaderType::Stream, .stream = data});
}
template <>
PipelineRef pipeline_ref(stream::PipelineConfig config) {
return find_pipeline({.type = ShaderType::Stream, .stream = config},
[=]() { return create_pipeline(g_state.stream, config); });
}
template <>
void push_draw_command(model::DrawData data) {
push_draw_command({.type = ShaderType::Model, .model = data});
}
template <>
PipelineRef pipeline_ref(model::PipelineConfig config) {
return find_pipeline({.type = ShaderType::Model, .model = config},
[=]() { return create_pipeline(g_state.model, config); });
}
static void pipeline_worker() {
OPTICK_THREAD("Pipeline Worker");
bool hasMore = false;
while (true) {
std::pair<PipelineRef, NewPipelineCallback> cb;
{
std::unique_lock lock{g_pipelineMutex};
if (!hasMore) {
g_pipelineCv.wait(lock, [] { return !g_queuedPipelines.empty() || g_pipelineThreadEnd; });
}
if (g_pipelineThreadEnd) {
break;
}
cb = std::move(g_queuedPipelines.front());
}
auto result = cb.second();
// std::this_thread::sleep_for(std::chrono::milliseconds{1500});
{
std::scoped_lock lock{g_pipelineMutex};
if (!g_pipelines.try_emplace(cb.first, std::move(result)).second) {
Log.report(logvisor::Fatal, FMT_STRING("Duplicate pipeline {}"), cb.first);
unreachable();
}
g_queuedPipelines.pop_front();
hasMore = !g_queuedPipelines.empty();
}
createdPipelines++;
queuedPipelines--;
}
}
void initialize() {
gx::initialize();
g_pipelineThread = std::thread(pipeline_worker);
const auto createBuffer = [](wgpu::Buffer& out, wgpu::BufferUsage usage, uint64_t size, const char* label) {
const wgpu::BufferDescriptor descriptor{
.label = label,
.usage = usage,
.size = size,
};
out = g_device.CreateBuffer(&descriptor);
};
createBuffer(g_uniformBuffer, wgpu::BufferUsage::Uniform | wgpu::BufferUsage::CopyDst, UniformBufferSize,
"Shared Uniform Buffer");
createBuffer(g_vertexBuffer, wgpu::BufferUsage::Vertex | wgpu::BufferUsage::CopyDst, VertexBufferSize,
"Shared Vertex Buffer");
createBuffer(g_indexBuffer, wgpu::BufferUsage::Index | wgpu::BufferUsage::CopyDst, IndexBufferSize,
"Shared Index Buffer");
createBuffer(g_storageBuffer, wgpu::BufferUsage::Storage | wgpu::BufferUsage::CopyDst, StorageBufferSize,
"Shared Storage Buffer");
for (int i = 0; i < g_stagingBuffers.size(); ++i) {
createBuffer(g_stagingBuffers[i], wgpu::BufferUsage::MapWrite | wgpu::BufferUsage::CopySrc, StagingBufferSize,
"Staging Buffer");
}
map_staging_buffer();
g_state.moviePlayer = movie_player::construct_state();
g_state.coloredQuad = colored_quad::construct_state();
g_state.texturedQuad = textured_quad::construct_state();
g_state.stream = stream::construct_state();
g_state.model = model::construct_state();
}
void shutdown() {
g_pipelineThreadEnd = true;
g_pipelineCv.notify_all();
g_pipelineThread.join();
gx::shutdown();
g_cachedBindGroups.clear();
g_cachedSamplers.clear();
g_pipelines.clear();
g_vertexBuffer = {};
g_uniformBuffer = {};
g_indexBuffer = {};
g_storageBuffer = {};
g_stagingBuffers.fill({});
g_state = {};
}
static size_t currentStagingBuffer = 0;
static bool bufferMapped = false;
void map_staging_buffer() {
OPTICK_EVENT();
bufferMapped = false;
g_stagingBuffers[currentStagingBuffer].MapAsync(
wgpu::MapMode::Write, 0, StagingBufferSize,
[](WGPUBufferMapAsyncStatus status, void* userdata) {
if (status == WGPUBufferMapAsyncStatus_DestroyedBeforeCallback) {
return;
} else if (status != WGPUBufferMapAsyncStatus_Success) {
Log.report(logvisor::Fatal, FMT_STRING("Buffer mapping failed: {}"), status);
unreachable();
}
*static_cast<bool*>(userdata) = true;
},
&bufferMapped);
}
void begin_frame() {
{
OPTICK_EVENT("Wait for buffer mapping");
while (!bufferMapped) {
g_device.Tick();
}
}
OPTICK_EVENT();
size_t bufferOffset = 0;
auto& stagingBuf = g_stagingBuffers[currentStagingBuffer];
const auto mapBuffer = [&](ByteBuffer& buf, uint64_t size) {
buf = ByteBuffer{static_cast<u8*>(stagingBuf.GetMappedRange(bufferOffset, size)), size};
bufferOffset += size;
};
mapBuffer(g_verts, VertexBufferSize);
mapBuffer(g_uniforms, UniformBufferSize);
mapBuffer(g_indices, IndexBufferSize);
mapBuffer(g_storage, StorageBufferSize);
}
void end_frame(const wgpu::CommandEncoder& cmd) {
OPTICK_EVENT();
uint64_t bufferOffset = 0;
const auto writeBuffer = [&](ByteBuffer& buf, wgpu::Buffer& out, uint64_t size, std::string_view label) {
const auto writeSize = buf.size(); // Only need to copy this many bytes
if (writeSize > 0) {
cmd.CopyBufferToBuffer(g_stagingBuffers[currentStagingBuffer], bufferOffset, out, 0, writeSize);
buf.clear();
}
bufferOffset += size;
};
g_stagingBuffers[currentStagingBuffer].Unmap();
writeBuffer(g_verts, g_vertexBuffer, VertexBufferSize, "Vertex");
writeBuffer(g_uniforms, g_uniformBuffer, UniformBufferSize, "Uniform");
writeBuffer(g_indices, g_indexBuffer, IndexBufferSize, "Index");
writeBuffer(g_storage, g_storageBuffer, StorageBufferSize, "Storage");
currentStagingBuffer = (currentStagingBuffer + 1) % g_stagingBuffers.size();
map_staging_buffer();
}
void render(const wgpu::RenderPassEncoder& pass) {
OPTICK_EVENT();
g_currentPipeline = UINT64_MAX;
for (const auto& cmd : g_commands) {
switch (cmd.type) {
case CommandType::SetViewport: {
const auto& vp = cmd.data.setViewport;
pass.SetViewport(vp.left, vp.top, vp.width, vp.height, vp.znear, vp.zfar);
} break;
case CommandType::SetScissor: {
const auto& sc = cmd.data.setScissor;
pass.SetScissorRect(sc.x, sc.y, sc.w, sc.h);
} break;
case CommandType::Draw: {
const auto& draw = cmd.data.draw;
switch (draw.type) {
case ShaderType::Aabb:
// TODO
break;
case ShaderType::ColoredQuad:
colored_quad::render(g_state.coloredQuad, draw.coloredQuad, pass);
break;
case ShaderType::TexturedQuad:
textured_quad::render(g_state.texturedQuad, draw.texturedQuad, pass);
break;
case ShaderType::MoviePlayer:
movie_player::render(g_state.moviePlayer, draw.moviePlayer, pass);
break;
case ShaderType::Stream:
stream::render(g_state.stream, draw.stream, pass);
break;
case ShaderType::Model:
model::render(g_state.model, draw.model, pass);
break;
}
} break;
}
}
g_commands.clear();
}
bool bind_pipeline(PipelineRef ref, const wgpu::RenderPassEncoder& pass) {
OPTICK_EVENT();
if (ref == g_currentPipeline) {
return true;
}
std::lock_guard guard{g_pipelineMutex};
const auto it = g_pipelines.find(ref);
if (it == g_pipelines.end()) {
return false;
}
pass.SetPipeline(it->second);
g_currentPipeline = ref;
return true;
}
static inline Range push(ByteBuffer& target, const uint8_t* data, size_t length, size_t alignment) {
OPTICK_EVENT();
size_t padding = 0;
if (alignment != 0) {
padding = alignment - length % alignment;
}
auto begin = target.size();
if (length == 0) {
// TODO shared zero buf?
length = alignment;
target.append_zeroes(alignment);
} else {
target.append(data, length);
if (padding > 0) {
target.append_zeroes(padding);
}
}
return {static_cast<uint32_t>(begin), static_cast<uint32_t>(length + padding)};
}
static inline Range map(ByteBuffer& target, size_t length, size_t alignment) {
OPTICK_EVENT();
size_t padding = 0;
if (alignment != 0) {
padding = alignment - length % alignment;
}
if (length == 0) {
length = alignment;
}
auto begin = target.size();
target.append_zeroes(length + padding);
return {static_cast<uint32_t>(begin), static_cast<uint32_t>(length + padding)};
}
Range push_verts(const uint8_t* data, size_t length) {
OPTICK_EVENT();
return push(g_verts, data, length, 0 /* TODO? */);
}
Range push_indices(const uint8_t* data, size_t length) {
OPTICK_EVENT();
return push(g_indices, data, length, 0 /* TODO? */);
}
Range push_uniform(const uint8_t* data, size_t length) {
OPTICK_EVENT();
wgpu::SupportedLimits limits;
g_device.GetLimits(&limits);
return push(g_uniforms, data, length, limits.limits.minUniformBufferOffsetAlignment);
}
Range push_storage(const uint8_t* data, size_t length) {
OPTICK_EVENT();
wgpu::SupportedLimits limits;
g_device.GetLimits(&limits);
return push(g_storage, data, length, limits.limits.minStorageBufferOffsetAlignment);
}
Range push_static_storage(const uint8_t* data, size_t length) {
OPTICK_EVENT();
wgpu::SupportedLimits limits;
g_device.GetLimits(&limits);
auto range = push(g_staticStorage, data, length, limits.limits.minStorageBufferOffsetAlignment);
range.isStatic = true;
return range;
}
std::pair<ByteBuffer, Range> map_verts(size_t length) {
OPTICK_EVENT();
const auto range = map(g_verts, length, 0 /* TODO? */);
return {ByteBuffer{g_verts.data() + range.offset, range.size}, range};
}
std::pair<ByteBuffer, Range> map_indices(size_t length) {
OPTICK_EVENT();
const auto range = map(g_indices, length, 0 /* TODO? */);
return {ByteBuffer{g_indices.data() + range.offset, range.size}, range};
}
std::pair<ByteBuffer, Range> map_uniform(size_t length) {
OPTICK_EVENT();
wgpu::SupportedLimits limits;
g_device.GetLimits(&limits);
const auto range = map(g_uniforms, length, limits.limits.minUniformBufferOffsetAlignment);
return {ByteBuffer{g_uniforms.data() + range.offset, range.size}, range};
}
std::pair<ByteBuffer, Range> map_storage(size_t length) {
OPTICK_EVENT();
wgpu::SupportedLimits limits;
g_device.GetLimits(&limits);
const auto range = map(g_storage, length, limits.limits.minStorageBufferOffsetAlignment);
return {ByteBuffer{g_storage.data() + range.offset, range.size}, range};
}
BindGroupRef bind_group_ref(const wgpu::BindGroupDescriptor& descriptor) {
OPTICK_EVENT();
const auto id = xxh3_hash(descriptor);
if (!g_cachedBindGroups.contains(id)) {
g_cachedBindGroups.try_emplace(id, g_device.CreateBindGroup(&descriptor));
}
return id;
}
const wgpu::BindGroup& find_bind_group(BindGroupRef id) {
OPTICK_EVENT();
const auto it = g_cachedBindGroups.find(id);
if (it == g_cachedBindGroups.end()) {
Log.report(logvisor::Fatal, FMT_STRING("get_bind_group: failed to locate {}"), id);
unreachable();
}
return it->second;
}
const wgpu::Sampler& sampler_ref(const wgpu::SamplerDescriptor& descriptor) {
OPTICK_EVENT();
const auto id = xxh3_hash(descriptor);
auto it = g_cachedSamplers.find(id);
if (it == g_cachedSamplers.end()) {
it = g_cachedSamplers.try_emplace(id, g_device.CreateSampler(&descriptor)).first;
}
return it->second;
}
uint32_t align_uniform(uint32_t value) {
OPTICK_EVENT();
wgpu::SupportedLimits limits;
g_device.GetLimits(&limits); // TODO cache
const auto uniform_alignment = limits.limits.minUniformBufferOffsetAlignment;
return ALIGN(value, uniform_alignment);
}
} // namespace aurora::gfx