metaforce/hecl/blender/addon/hmdl/__init__.py

320 lines
11 KiB
Python

'''
HMDL Export Blender Addon
By Jack Andersen <jackoalan@gmail.com>
This Python module provides a generator implementation for
the 'HMDL' mesh format designed for use with HECL.
The format features three main sections:
* Shader table
* Skin-binding table
* Mesh table (VBOs [array,element], VAO attribs, drawing index)
The Shader table provides index-referenced binding points
for mesh-portions to use for rendering.
The Skin-binding table provides the runtime with identifiers
to use in ensuring the correct bone-transformations are bound
to the shader when rendering a specific primitive.
The Mesh table contains Vertex and Element buffers with interleaved
Positions, Normals, UV coordinates, and Weight Vectors
'''
import struct, bpy, bmesh
from mathutils import Vector
from . import HMDLShader, HMDLSkin, HMDLMesh, HMDLTxtr
def get_3d_context(object_):
window = bpy.context.window_manager.windows[0]
screen = window.screen
for area in screen.areas:
if area.type == "VIEW_3D":
area3d = area
break
for region in area3d.regions:
if region.type == "WINDOW":
region3d = region
break
override = {
"window": window,
"screen": screen,
"area": area3d,
"region": region3d,
"object": object_
}
return override
# Generate Skeleton Info structure (free-form tree structure)
def generate_skeleton_info(armature, endian_char='<'):
bones = []
for bone in armature.data.bones:
bone_bytes = bytearray()
# Write bone hash
bone_bytes += struct.pack(endian_char + 'I', hmdl_anim.hashbone(bone.name))
for comp in bone.head_local:
bone_bytes += struct.pack(endian_char + 'f', comp)
parent_idx = -1
if bone.parent:
parent_idx = armature.data.bones.find(bone.parent.name)
bone_bytes += struct.pack(endian_char + 'i', parent_idx)
bone_bytes += struct.pack(endian_char + 'I', len(bone.children))
for child in bone.children:
child_idx = armature.data.bones.find(child.name)
bone_bytes += struct.pack(endian_char + 'I', child_idx)
bones.append(bone_bytes)
# Generate bone tree data
info_bytes = bytearray()
info_bytes += struct.pack(endian_char + 'I', len(bones))
cur_offset = len(bones) * 4 + 4
for bone in bones:
info_bytes += struct.pack(endian_char + 'I', cur_offset)
cur_offset += len(bone)
for bone in bones:
info_bytes += bone
return info_bytes
# Takes a Blender 'Mesh' object (not the datablock)
# and performs a one-shot conversion process to HMDL; packaging
# into the HECL data-pipeline and returning a hash once complete
def cook(writebuffunc, platform, endianchar):
print('COOKING HMDL')
return True
mesh_obj = bpy.data.objects[bpy.context.scene.hecl_mesh_obj]
if mesh_obj.type != 'MESH':
raise RuntimeError("%s is not a mesh" % mesh_obj.name)
# Partial meshes
part_meshes = set()
# Start with shader, mesh and rigging-info generation.
# Use SHA1 hashing to determine what the ID-hash will be when
# shaders are packaged; strip out duplicates
shader_set = []
rigger = None
# Normalize all vertex weights
override = get_3d_context(mesh_obj)
try:
bpy.ops.object.vertex_group_normalize_all(override, lock_active=False)
except:
pass
# Copy mesh (and apply mesh modifiers)
copy_name = mesh_obj.name + "_hmdltri"
copy_mesh = bpy.data.meshes.new(copy_name)
copy_obj = bpy.data.objects.new(copy_name, copy_mesh)
copy_obj.data = mesh_obj.to_mesh(bpy.context.scene, True, 'RENDER')
copy_obj.scale = mesh_obj.scale
bpy.context.scene.objects.link(copy_obj)
# If skinned, establish rigging generator
if len(mesh_obj.vertex_groups):
rigger = hmdl_skin.hmdl_skin(max_bone_count, mesh_obj.vertex_groups)
# Determine count of transformation matricies to deliver to shader set
actual_max_bone_counts = [1] * len(mesh_obj.data.materials)
max_bone_count = 1
for mat_idx in range(len(mesh_obj.data.materials)):
mat = mesh_obj.data.materials[mat_idx]
count = hmdl_shader.max_transform_counter(mat, mesh_obj)
if count > 1:
actual_max_bone_counts[mat_idx] = count
if count > max_bone_count:
max_bone_count = count
# Sort materials by pass index first
sorted_material_idxs = []
source_mat_set = set(range(len(mesh_obj.data.materials)))
while len(source_mat_set):
min_mat_idx = source_mat_set.pop()
source_mat_set.add(min_mat_idx)
for mat_idx in source_mat_set:
if mesh_obj.data.materials[mat_idx].pass_index < mesh_obj.data.materials[min_mat_idx].pass_index:
min_mat_idx = mat_idx
sorted_material_idxs.append(min_mat_idx)
source_mat_set.discard(min_mat_idx)
# Generate shaders
actual_max_texmtx_count = 0
for mat_idx in sorted_material_idxs:
shader_hashes = []
shader_uv_count = 0
if mesh_obj.data.hecl_material_count > 0:
for grp_idx in range(mesh_obj.data.hecl_material_count):
for mat in bpy.data.materials:
if mat.name.endswith('_%u_%u' % (grp_idx, mat_idx)):
hecl_str = hmdl_shader.shader(mat, mesh_obj, bpy.data.filepath)
else:
mat = mesh_obj.data.materials[mat_idx]
hecl_str = hmdl_shader.shader(mat, mesh_obj, bpy.data.filepath)
mesh_maker = hmdl_mesh.hmdl_mesh()
# Make special version of mesh with just the relevant material;
# Also perform triangulation
mesh = bpy.data.meshes.new(copy_obj.name + '_' + str(mat_idx))
part_meshes.add(mesh)
bm = bmesh.new()
bm.from_mesh(copy_obj.data)
to_remove = []
shader_center = Vector((0,0,0))
shader_center_count = 0
for face in bm.faces:
if face.material_index != mat_idx:
to_remove.append(face)
else:
shader_center += face.calc_center_bounds()
shader_center_count += 1
shader_center /= shader_center_count
bmesh.ops.delete(bm, geom=to_remove, context=5)
bmesh.ops.triangulate(bm, faces=bm.faces)
bm.to_mesh(mesh)
bm.free()
# Optimise mesh
if rigger:
mesh_maker.add_mesh(mesh, rigger, shader_uv_count)
else:
mesh_maker.add_mesh(mesh, None, shader_uv_count)
shader_set.append((shader_hashes, mesh_maker, shader_center))
# Filter out useless AABB points and generate data array
aabb = bytearray()
for comp in copy_obj.bound_box[0]:
aabb += struct.pack(endian_char + 'f', comp)
for comp in copy_obj.bound_box[6]:
aabb += struct.pack(endian_char + 'f', comp)
# Delete copied mesh from scene
bpy.context.scene.objects.unlink(copy_obj)
bpy.data.objects.remove(copy_obj)
bpy.data.meshes.remove(copy_mesh)
# Count total collections
total_collections = 0
for shader in shader_set:
total_collections += len(shader[1].collections)
# Start writing master buffer
output_data = bytearray()
output_data += aabb
output_data += struct.pack(endian_char + 'III', mesh_obj.data.hecl_material_count, len(shader_set), total_collections)
# Shader Reference Data (truncated SHA1 hashes)
if mesh_obj.data.hecl_material_count > 0:
for grp_idx in range(mesh_obj.data.hecl_material_count):
for shader in shader_set:
output_data += shader[0][grp_idx]
else:
for shader in shader_set:
for subshader in shader[0]:
output_data += subshader
# Generate mesh data
for shader in shader_set:
mesh_maker = shader[1]
output_data += struct.pack(endian_char + 'Ifff', len(mesh_maker.collections), shader[2][0], shader[2][1], shader[2][2])
for coll_idx in range(len(mesh_maker.collections)):
# Vert Buffer
uv_count, max_bones, vert_bytes, vert_arr = mesh_maker.generate_vertex_buffer(coll_idx, endian_char)
output_data += struct.pack(endian_char + 'III', uv_count, max_bones // 4, len(vert_bytes))
output_data += vert_bytes
# Elem Buffer
collection_primitives, element_bytes, elem_arr = mesh_maker.generate_element_buffer(coll_idx, endian_char)
output_data += struct.pack(endian_char + 'I', len(element_bytes))
output_data += element_bytes
# Index Buffer
index_bytes = mesh_maker.generate_index_buffer(collection_primitives, endian_char, rigger)
output_data += struct.pack(endian_char + 'I', len(index_bytes))
output_data += index_bytes
# Generate rigging data
skin_info = None
if rigger:
skin_info = rigger.generate_rigging_info(endian_char)
# Write final buffer
final_data = bytearray()
final_data = b'HMDL'
if rigger:
final_data += struct.pack(endian_char + 'IIII', 1, actual_max_texmtx_count, max_bone_count, len(skin_info))
final_data += skin_info
else:
final_data += struct.pack(endian_char + 'II', 0, actual_max_texmtx_count)
final_data += output_data
# Clean up
for mesh in part_meshes:
bpy.data.meshes.remove(mesh)
# Write final mesh object
if area_db_id is not None:
new_hash = 0
else:
new_hash = heclpak.add_object(final_data, b'HMDL', resource_name)
res_db.update_resource_stats(db_id, new_hash)
return db_id, new_hash, final_data
def draw(layout, context):
layout.prop_search(context.scene, 'hecl_mesh_obj', context.scene, 'objects')
if not len(context.scene.hecl_mesh_obj):
layout.label("Mesh not specified", icon='ERROR')
elif context.scene.hecl_mesh_obj not in context.scene.objects:
layout.label("'"+context.scene.hecl_mesh_obj+"' not in scene", icon='ERROR')
else:
obj = context.scene.objects[context.scene.hecl_mesh_obj]
if obj.type != 'MESH':
layout.label("'"+context.scene.hecl_mesh_obj+"' not a 'MESH'", icon='ERROR')
layout.prop(obj.data, 'hecl_active_material')
layout.prop(obj.data, 'hecl_material_count')
# Material update
def material_update(self, context):
target_idx = self.hecl_active_material
if target_idx >= self.hecl_material_count or target_idx < 0:
return
slot_count = len(self.materials)
for mat_idx in range(slot_count):
for mat in bpy.data.materials:
if mat.name.endswith('_%u_%u' % (target_idx, mat_idx)):
self.materials[mat_idx] = mat
import bpy
def register():
bpy.types.Scene.hecl_mesh_obj = bpy.props.StringProperty(
name='HECL Mesh Object',
description='Blender Mesh Object to export during HECL\'s cook process')
bpy.types.Scene.hecl_actor_obj = bpy.props.StringProperty(
name='HECL Actor Object',
description='Blender Empty Object to export during HECL\'s cook process')
bpy.types.Mesh.hecl_material_count = bpy.props.IntProperty(name='HECL Material Count', default=0, min=0)
bpy.types.Mesh.hecl_active_material = bpy.props.IntProperty(name='HECL Active Material', default=0, min=0, update=material_update)
bpy.utils.register_class(HMDLShader.hecl_shader_operator)
pass
def unregister():
bpy.utils.unregister_class(HMDLShader.hecl_shader_operator)
pass