metaforce/DataSpec/DNAMP1/ANCS.cpp

882 lines
25 KiB
C++

#include "ANCS.hpp"
namespace Retro
{
namespace DNAMP1
{
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::read(Athena::io::IStreamReader& reader)
{
parmType = reader.readUint32Big();
unk1 = reader.readUint32Big();
unk2 = reader.readFloatBig();
switch (DataType(parmType))
{
case DataType::DTInt32:
parmVals[0].int32 = reader.readInt32Big();
parmVals[1].int32 = reader.readInt32Big();
break;
case DataType::DTUInt32:
case DataType::DTEnum:
parmVals[0].uint32 = reader.readUint32Big();
parmVals[1].uint32 = reader.readUint32Big();
break;
case DataType::DTFloat:
parmVals[0].float32 = reader.readFloatBig();
parmVals[1].float32 = reader.readFloatBig();
break;
case DataType::DTBool:
parmVals[0].bool1 = reader.readBool();
parmVals[1].bool1 = reader.readBool();
break;
}
}
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::write(Athena::io::IStreamWriter& writer) const
{
writer.writeUint32Big(parmType);
writer.writeUint32Big(unk1);
writer.writeFloatBig(unk2);
switch (DataType(parmType))
{
case DataType::DTInt32:
writer.writeInt32Big(parmVals[0].int32);
writer.writeInt32Big(parmVals[1].int32);
break;
case DataType::DTUInt32:
case DataType::DTEnum:
writer.writeUint32Big(parmVals[0].uint32);
writer.writeUint32Big(parmVals[0].uint32);
break;
case DataType::DTFloat:
writer.writeFloatBig(parmVals[0].float32);
writer.writeFloatBig(parmVals[0].float32);
break;
case DataType::DTBool:
writer.writeBool(parmVals[0].bool1);
writer.writeBool(parmVals[0].bool1);
break;
}
}
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::fromYAML(Athena::io::YAMLDocReader& reader)
{
parmType = reader.readUint32("parmType");
unk1 = reader.readUint32("unk1");
unk2 = reader.readFloat("unk2");
reader.enterSubVector("parmVals");
switch (DataType(parmType))
{
case DataType::DTInt32:
parmVals[0].int32 = reader.readInt32(nullptr);
parmVals[1].int32 = reader.readInt32(nullptr);
break;
case DataType::DTUInt32:
case DataType::DTEnum:
parmVals[0].uint32 = reader.readUint32(nullptr);
parmVals[1].uint32 = reader.readUint32(nullptr);
break;
case DataType::DTFloat:
parmVals[0].float32 = reader.readFloat(nullptr);
parmVals[1].float32 = reader.readFloat(nullptr);
break;
case DataType::DTBool:
parmVals[0].bool1 = reader.readBool(nullptr);
parmVals[1].bool1 = reader.readBool(nullptr);
break;
default: break;
}
reader.leaveSubVector();
}
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::toYAML(Athena::io::YAMLDocWriter& writer) const
{
writer.writeUint32("parmType", parmType);
writer.writeUint32("unk1", unk1);
writer.writeFloat("unk2", unk2);
writer.enterSubVector("parmVals");
switch (DataType(parmType))
{
case DataType::DTInt32:
writer.writeInt32(nullptr, parmVals[0].int32);
writer.writeInt32(nullptr, parmVals[1].int32);
break;
case DataType::DTUInt32:
case DataType::DTEnum:
writer.writeUint32(nullptr, parmVals[0].uint32);
writer.writeUint32(nullptr, parmVals[0].uint32);
break;
case DataType::DTFloat:
writer.writeFloat(nullptr, parmVals[0].float32);
writer.writeFloat(nullptr, parmVals[0].float32);
break;
case DataType::DTBool:
writer.writeBool(nullptr, parmVals[0].bool1);
writer.writeBool(nullptr, parmVals[0].bool1);
break;
}
writer.leaveSubVector();
}
const char* ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::DNAType()
{
return "Retro::DNAMP1::ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo";
}
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::read(Athena::io::IStreamReader& reader)
{
id = reader.readUint32Big();
atUint32 parmInfoCount = reader.readUint32Big();
atUint32 animInfoCount = reader.readUint32Big();
reader.enumerate(parmInfos, parmInfoCount);
animInfos.clear();
animInfos.reserve(animInfoCount);
reader.enumerate<AnimInfo>(animInfos, animInfoCount,
[this, parmInfoCount](Athena::io::IStreamReader& reader, AnimInfo& ai)
{
ai.id = reader.readUint32Big();
ai.parmVals.reserve(parmInfoCount);
for (const ParmInfo& pi : parmInfos)
{
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DTInt32:
ai.parmVals.emplace_back(reader.readInt32Big());
break;
case ParmInfo::DTUInt32:
case ParmInfo::DTEnum:
ai.parmVals.emplace_back(reader.readUint32Big());
break;
case ParmInfo::DTFloat:
ai.parmVals.emplace_back(reader.readFloatBig());
break;
case ParmInfo::DTBool:
ai.parmVals.emplace_back(reader.readBool());
break;
default: break;
}
}
});
}
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::write(Athena::io::IStreamWriter& writer) const
{
writer.writeUint32Big(id);
writer.writeUint32Big(parmInfos.size());
writer.writeUint32Big(animInfos.size());
for (const ParmInfo& pi : parmInfos)
pi.write(writer);
for (const AnimInfo& ai : animInfos)
{
writer.writeUint32Big(ai.id);
auto it = ai.parmVals.begin();
for (const ParmInfo& pi : parmInfos)
{
ParmInfo::Parm pVal;
if (it != ai.parmVals.end())
pVal = *it++;
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DTInt32:
writer.writeInt32Big(pVal.int32);
break;
case ParmInfo::DTUInt32:
case ParmInfo::DTEnum:
writer.writeUint32Big(pVal.uint32);
break;
case ParmInfo::DTFloat:
writer.writeFloatBig(pVal.float32);
break;
case ParmInfo::DTBool:
writer.writeBool(pVal.bool1);
break;
default: break;
}
}
}
}
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::fromYAML(Athena::io::YAMLDocReader& reader)
{
id = reader.readUint32("id");
atUint32 parmInfoCount = reader.readUint32("parmInfoCount");
atUint32 animInfoCount = reader.readUint32("animInfoCount");
reader.enumerate("parmInfos", parmInfos, parmInfoCount);
reader.enumerate<AnimInfo>("animInfos", animInfos, animInfoCount,
[this, parmInfoCount](Athena::io::YAMLDocReader& reader, AnimInfo& ai)
{
ai.id = reader.readUint32("id");
ai.parmVals.reserve(parmInfoCount);
reader.enterSubVector("parmVals");
for (const ParmInfo& pi : parmInfos)
{
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DTInt32:
ai.parmVals.emplace_back(reader.readInt32(nullptr));
break;
case ParmInfo::DTUInt32:
case ParmInfo::DTEnum:
ai.parmVals.emplace_back(reader.readUint32(nullptr));
break;
case ParmInfo::DTFloat:
ai.parmVals.emplace_back(reader.readFloat(nullptr));
break;
case ParmInfo::DTBool:
ai.parmVals.emplace_back(reader.readBool(nullptr));
break;
default: break;
}
}
reader.leaveSubVector();
});
}
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::toYAML(Athena::io::YAMLDocWriter& writer) const
{
writer.writeUint32("id", id);
writer.writeUint32("parmInfoCount", parmInfos.size());
writer.writeUint32("animInfoCount", animInfos.size());
writer.enumerate("parmInfos", parmInfos);
writer.enumerate<AnimInfo>("animInfos", animInfos,
[this](Athena::io::YAMLDocWriter& writer, const AnimInfo& ai)
{
writer.writeUint32("id", ai.id);
auto it = ai.parmVals.begin();
writer.enterSubVector("parms");
for (const ParmInfo& pi : parmInfos)
{
ParmInfo::Parm pVal;
if (it != ai.parmVals.end())
pVal = *it++;
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DTInt32:
writer.writeInt32(nullptr, pVal.int32);
break;
case ParmInfo::DTUInt32:
case ParmInfo::DTEnum:
writer.writeUint32(nullptr, pVal.uint32);
break;
case ParmInfo::DTFloat:
writer.writeFloat(nullptr, pVal.float32);
break;
case ParmInfo::DTBool:
writer.writeBool(nullptr, pVal.bool1);
break;
default: break;
}
}
writer.leaveSubVector();
});
}
const char* ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::DNAType()
{
return "Retro::DNAMP1::ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState";
}
void ANCS::CharacterSet::CharacterInfo::read(Athena::io::IStreamReader& reader)
{
idx = reader.readUint32Big();
atUint16 sectionCount = reader.readUint16Big();
name = reader.readString();
cmdl.read(reader);
cskr.read(reader);
cinf.read(reader);
atUint32 animationCount = reader.readUint32Big();
reader.enumerate(animations, animationCount);
pasDatabase.read(reader);
atUint32 partCount = reader.readUint32Big();
reader.enumerate(partResData.part, partCount);
atUint32 swhcCount = reader.readUint32Big();
reader.enumerate(partResData.swhc, swhcCount);
atUint32 unkCount = reader.readUint32Big();
reader.enumerate(partResData.unk, unkCount);
partResData.elsc.clear();
if (sectionCount > 5)
{
atUint32 elscCount = reader.readUint32Big();
reader.enumerate(partResData.elsc, elscCount);
}
unk1 = reader.readUint32Big();
animAABBs.clear();
if (sectionCount > 1)
{
atUint32 aabbCount = reader.readUint32Big();
reader.enumerate(animAABBs, aabbCount);
}
effects.clear();
if (sectionCount > 2)
{
atUint32 effectCount = reader.readUint32Big();
reader.enumerate(effects, effectCount);
}
if (sectionCount > 3)
{
cmdlOverlay.read(reader);
cskrOverlay.read(reader);
}
animIdxs.clear();
if (sectionCount > 4)
{
atUint32 aidxCount = reader.readUint32Big();
reader.enumerateBig(animIdxs, aidxCount);
}
}
void ANCS::CharacterSet::CharacterInfo::write(Athena::io::IStreamWriter& writer) const
{
writer.writeUint32Big(idx);
atUint16 sectionCount;
if (partResData.elsc.size())
sectionCount = 6;
else if (animIdxs.size())
sectionCount = 5;
else if (cmdlOverlay)
sectionCount = 4;
else if (effects.size())
sectionCount = 3;
else if (animAABBs.size())
sectionCount = 2;
else
sectionCount = 1;
writer.writeUint16Big(sectionCount);
writer.writeString(name);
cmdl.write(writer);
cskr.write(writer);
cinf.write(writer);
writer.writeUint32Big(animations.size());
writer.enumerate(animations);
pasDatabase.write(writer);
writer.writeUint32Big(partResData.part.size());
writer.enumerate(partResData.part);
writer.writeUint32Big(partResData.swhc.size());
writer.enumerate(partResData.swhc);
writer.writeUint32Big(partResData.unk.size());
writer.enumerate(partResData.unk);
if (sectionCount > 5)
{
writer.writeUint32Big(partResData.elsc.size());
writer.enumerate(partResData.elsc);
}
writer.writeUint32Big(unk1);
if (sectionCount > 1)
{
writer.writeUint32Big(animAABBs.size());
writer.enumerate(animAABBs);
}
if (sectionCount > 2)
{
writer.writeUint32Big(effects.size());
writer.enumerate(effects);
}
if (sectionCount > 3)
{
cmdlOverlay.write(writer);
cskrOverlay.write(writer);
}
if (sectionCount > 4)
{
writer.writeUint32Big(animIdxs.size());
for (atUint32 idx : animIdxs)
writer.writeUint32Big(idx);
}
}
void ANCS::CharacterSet::CharacterInfo::fromYAML(Athena::io::YAMLDocReader& reader)
{
idx = reader.readUint32("idx");
atUint16 sectionCount = reader.readUint16("sectionCount");
name = reader.readString("name");
reader.enumerate("cmdl", cmdl);
reader.enumerate("cskr", cskr);
reader.enumerate("cinf", cinf);
atUint32 animationCount = reader.readUint32("animationCount");
reader.enumerate("animations", animations, animationCount);
reader.enumerate("pasDatabase", pasDatabase);
atUint32 partCount = reader.readUint32("partCount");
reader.enumerate("part", partResData.part, partCount);
atUint32 swhcCount = reader.readUint32("swhcCount");
reader.enumerate("swhc", partResData.swhc, swhcCount);
atUint32 unkCount = reader.readUint32("unkCount");
reader.enumerate("unk", partResData.unk, unkCount);
partResData.elsc.clear();
if (sectionCount > 5)
{
atUint32 elscCount = reader.readUint32("elscCount");
reader.enumerate("elsc", partResData.elsc, elscCount);
}
unk1 = reader.readUint32("unk1");
animAABBs.clear();
if (sectionCount > 1)
{
atUint32 aabbCount = reader.readUint32("animAABBCount");
reader.enumerate("part", animAABBs, aabbCount);
}
effects.clear();
if (sectionCount > 2)
{
atUint32 effectCount = reader.readUint32("effectCount");
reader.enumerate("effects", effects, effectCount);
}
if (sectionCount > 3)
{
reader.enumerate("cmdlOverride", cmdlOverlay);
reader.enumerate("cskrOverride", cskrOverlay);
}
animIdxs.clear();
if (sectionCount > 4)
{
atUint32 animIdxCount = reader.readUint32("animIdxCount");
reader.enumerate("animIdxs", animIdxs, animIdxCount);
}
}
void ANCS::CharacterSet::CharacterInfo::toYAML(Athena::io::YAMLDocWriter& writer) const
{
writer.writeUint32("idx", idx);
atUint16 sectionCount;
if (partResData.elsc.size())
sectionCount = 6;
else if (animIdxs.size())
sectionCount = 5;
else if (cmdlOverlay)
sectionCount = 4;
else if (effects.size())
sectionCount = 3;
else if (animAABBs.size())
sectionCount = 2;
else
sectionCount = 1;
writer.writeUint16("sectionCount", sectionCount);
writer.writeString("name", name);
writer.enumerate("cmdl", cmdl);
writer.enumerate("cskr", cskr);
writer.enumerate("cinf", cinf);
writer.writeUint32("animationCount", animations.size());
writer.enumerate("animations", animations);
writer.enumerate("pasDatabase", pasDatabase);
writer.writeUint32("partCount", partResData.part.size());
writer.enumerate("part", partResData.part);
writer.writeUint32("swhcCount", partResData.swhc.size());
writer.enumerate("swhc", partResData.swhc);
writer.writeUint32("unkCount", partResData.unk.size());
writer.enumerate("unk", partResData.unk);
if (sectionCount > 5)
{
writer.writeUint32("elscCount", partResData.elsc.size());
writer.enumerate("elsc", partResData.elsc);
}
writer.writeUint32("unk1", unk1);
if (sectionCount > 1)
{
writer.writeUint32("animAABBCount", animAABBs.size());
writer.enumerate("animAABBs", animAABBs);
}
if (sectionCount > 2)
{
writer.writeUint32("effectCount", effects.size());
writer.enumerate("effects", effects);
}
if (sectionCount > 3)
{
writer.enumerate("cmdlOverride", cmdlOverlay);
writer.enumerate("cskrOverride", cskrOverlay);
}
if (sectionCount > 4)
{
writer.writeUint32("animIdxCount", animIdxs.size());
writer.enumerate("animIdxs", animIdxs);
}
}
const char* ANCS::CharacterSet::CharacterInfo::DNAType()
{
return "Retro::DNAMP1::ANCS::CharacterSet::CharacterInfo";
}
void ANCS::AnimationSet::MetaAnimFactory::read(Athena::io::IStreamReader& reader)
{
IMetaAnim::Type type(IMetaAnim::Type(reader.readUint32Big()));
switch (type)
{
case IMetaAnim::MAPrimitive:
m_anim.reset(new struct MetaAnimPrimitive);
m_anim->read(reader);
break;
case IMetaAnim::MABlend:
m_anim.reset(new struct MetaAnimBlend);
m_anim->read(reader);
break;
case IMetaAnim::MAPhaseBlend:
m_anim.reset(new struct MetaAnimPhaseBlend);
m_anim->read(reader);
break;
case IMetaAnim::MARandom:
m_anim.reset(new struct MetaAnimRandom);
m_anim->read(reader);
break;
case IMetaAnim::MASequence:
m_anim.reset(new struct MetaAnimSequence);
m_anim->read(reader);
break;
default:
m_anim.reset(nullptr);
break;
}
}
void ANCS::AnimationSet::MetaAnimFactory::write(Athena::io::IStreamWriter& writer) const
{
if (!m_anim)
return;
writer.writeInt32Big(m_anim->m_type);
m_anim->write(writer);
}
void ANCS::AnimationSet::MetaAnimFactory::fromYAML(Athena::io::YAMLDocReader& reader)
{
std::string type = reader.readString("type");
std::transform(type.begin(), type.end(), type.begin(), tolower);
if (!type.compare("primitive"))
{
m_anim.reset(new struct MetaAnimPrimitive);
m_anim->fromYAML(reader);
}
else if (!type.compare("blend"))
{
m_anim.reset(new struct MetaAnimBlend);
m_anim->fromYAML(reader);
}
else if (!type.compare("phaseblend"))
{
m_anim.reset(new struct MetaAnimPhaseBlend);
m_anim->fromYAML(reader);
}
else if (!type.compare("random"))
{
m_anim.reset(new struct MetaAnimRandom);
m_anim->fromYAML(reader);
}
else if (!type.compare("sequence"))
{
m_anim.reset(new struct MetaAnimSequence);
m_anim->fromYAML(reader);
}
else
{
m_anim.reset(nullptr);
}
}
void ANCS::AnimationSet::MetaAnimFactory::toYAML(Athena::io::YAMLDocWriter& writer) const
{
if (!m_anim)
return;
writer.writeString("type", m_anim->m_typeStr);
m_anim->toYAML(writer);
}
const char* ANCS::AnimationSet::MetaAnimFactory::DNAType()
{
return "Retro::DNAMP1::ANCS::AnimationSet::MetaAnimFactory";
}
void ANCS::AnimationSet::MetaTransFactory::read(Athena::io::IStreamReader& reader)
{
IMetaTrans::Type type(IMetaTrans::Type(reader.readUint32Big()));
switch (type)
{
case IMetaTrans::MTMetaAnim:
m_trans.reset(new struct MetaTransMetaAnim);
m_trans->read(reader);
break;
case IMetaTrans::MTTrans:
m_trans.reset(new struct MetaTransTrans);
m_trans->read(reader);
break;
case IMetaTrans::MTPhaseTrans:
m_trans.reset(new struct MetaTransPhaseTrans);
m_trans->read(reader);
break;
case IMetaTrans::MTNoTrans:
default:
m_trans.reset(nullptr);
break;
}
}
void ANCS::AnimationSet::MetaTransFactory::write(Athena::io::IStreamWriter& writer) const
{
if (!m_trans)
{
writer.writeInt32Big(IMetaTrans::MTNoTrans);
return;
}
writer.writeInt32Big(m_trans->m_type);
m_trans->write(writer);
}
void ANCS::AnimationSet::MetaTransFactory::fromYAML(Athena::io::YAMLDocReader& reader)
{
std::string type = reader.readString("type");
std::transform(type.begin(), type.end(), type.begin(), tolower);
if (!type.compare("metaanim"))
{
m_trans.reset(new struct MetaTransMetaAnim);
m_trans->fromYAML(reader);
}
else if (!type.compare("trans"))
{
m_trans.reset(new struct MetaTransTrans);
m_trans->fromYAML(reader);
}
else if (!type.compare("phasetrans"))
{
m_trans.reset(new struct MetaTransPhaseTrans);
m_trans->fromYAML(reader);
}
else
{
m_trans.reset(nullptr);
}
}
void ANCS::AnimationSet::MetaTransFactory::toYAML(Athena::io::YAMLDocWriter& writer) const
{
if (!m_trans)
{
writer.writeString("type", "NoTrans");
return;
}
writer.writeString("type", m_trans->m_typeStr?m_trans->m_typeStr:"NoTrans");
m_trans->toYAML(writer);
}
const char* ANCS::AnimationSet::MetaTransFactory::DNAType()
{
return "Retro::DNAMP1::ANCS::AnimationSet::MetaTransFactory";
}
void ANCS::AnimationSet::read(Athena::io::IStreamReader& reader)
{
atUint16 sectionCount = reader.readUint16Big();
atUint32 animationCount = reader.readUint32Big();
reader.enumerate(animations, animationCount);
atUint32 transitionCount = reader.readUint32Big();
reader.enumerate(transitions, transitionCount);
defaultTransition.read(reader);
additiveAnims.clear();
if (sectionCount > 1)
{
atUint32 additiveAnimCount = reader.readUint32Big();
reader.enumerate(additiveAnims, additiveAnimCount);
floatA = reader.readFloatBig();
floatB = reader.readFloatBig();
}
halfTransitions.clear();
if (sectionCount > 2)
{
atUint32 halfTransitionCount = reader.readUint32Big();
reader.enumerate(halfTransitions, halfTransitionCount);
}
animResources.clear();
if (sectionCount > 3)
{
atUint32 animResourcesCount = reader.readUint32Big();
reader.enumerate(animResources, animResourcesCount);
}
}
void ANCS::AnimationSet::write(Athena::io::IStreamWriter& writer) const
{
atUint16 sectionCount;
if (animResources.size())
sectionCount = 4;
else if (halfTransitions.size())
sectionCount = 3;
else if (additiveAnims.size())
sectionCount = 2;
else
sectionCount = 1;
writer.writeUint16Big(sectionCount);
writer.writeUint32Big(animations.size());
writer.enumerate(animations);
writer.writeUint32Big(transitions.size());
writer.enumerate(transitions);
defaultTransition.write(writer);
if (sectionCount > 1)
{
writer.writeUint32Big(additiveAnims.size());
writer.enumerate(additiveAnims);
writer.writeFloatBig(floatA);
writer.writeFloatBig(floatB);
}
if (sectionCount > 2)
{
writer.writeUint32Big(halfTransitions.size());
writer.enumerate(halfTransitions);
}
if (sectionCount > 3)
{
writer.writeUint32Big(animResources.size());
writer.enumerate(animResources);
}
}
void ANCS::AnimationSet::fromYAML(Athena::io::YAMLDocReader& reader)
{
atUint16 sectionCount = reader.readUint16("sectionCount");
atUint32 animationCount = reader.readUint32("animationCount");
reader.enumerate("animations", animations, animationCount);
atUint32 transitionCount = reader.readUint32("transitionCount");
reader.enumerate("transitions", transitions, transitionCount);
reader.enumerate("defaultTransition", defaultTransition);
additiveAnims.clear();
if (sectionCount > 1)
{
atUint32 additiveAnimCount = reader.readUint32("additiveAnimCount");
reader.enumerate("additiveAnims", additiveAnims, additiveAnimCount);
floatA = reader.readFloat("floatA");
floatB = reader.readFloat("floatB");
}
halfTransitions.clear();
if (sectionCount > 2)
{
atUint32 halfTransitionCount = reader.readUint32("halfTransitionCount");
reader.enumerate("halfTransitions", halfTransitions, halfTransitionCount);
}
animResources.clear();
if (sectionCount > 3)
{
atUint32 animResourcesCount = reader.readUint32("animResourcesCount");
reader.enumerate("animResources", animResources, animResourcesCount);
}
}
void ANCS::AnimationSet::toYAML(Athena::io::YAMLDocWriter& writer) const
{
atUint16 sectionCount;
if (animResources.size())
sectionCount = 4;
else if (halfTransitions.size())
sectionCount = 3;
else if (additiveAnims.size())
sectionCount = 2;
else
sectionCount = 1;
writer.writeUint16("sectionCount", sectionCount);
writer.writeUint32("animationCount", animations.size());
writer.enumerate("animations", animations);
writer.writeUint32("transitionCount", transitions.size());
writer.enumerate("transitions", transitions);
writer.enumerate("defaultTransition", defaultTransition);
if (sectionCount > 1)
{
writer.writeUint32("additiveAnimCount", additiveAnims.size());
writer.enumerate("additiveAnims", additiveAnims);
writer.writeFloat("floatA", floatA);
writer.writeFloat("floatB", floatB);
}
if (sectionCount > 2)
{
writer.writeUint32("halfTransitionCount", halfTransitions.size());
writer.enumerate("halfTransitions", halfTransitions);
}
if (sectionCount > 3)
{
writer.writeUint32("animResourcesCount", animResources.size());
writer.enumerate("animResources", animResources);
}
}
const char* ANCS::AnimationSet::DNAType()
{
return "Retro::DNAMP1::ANCS::AnimationSet";
}
}
}