metaforce/Runtime/Graphics/CTextureBoo.cpp

741 lines
22 KiB
C++

#include "Runtime/Graphics/CTexture.hpp"
#include <array>
#include "Runtime/CSimplePool.hpp"
#include "Runtime/CToken.hpp"
#include "Runtime/Graphics/CGraphics.hpp"
#include "Runtime/CTextureCache.hpp"
#include "Runtime/GameGlobalObjects.hpp"
namespace urde {
namespace {
logvisor::Module Log("urde::CTextureBoo");
/* GX uses this upsampling technique to extract full 8-bit range */
constexpr u8 Convert3To8(u8 v) {
/* Swizzle bits: 00000123 -> 12312312 */
return static_cast<u8>((u32{v} << 5) | (u32{v} << 2) | (u32{v} >> 1));
}
constexpr u8 Convert4To8(u8 v) {
/* Swizzle bits: 00001234 -> 12341234 */
return static_cast<u8>((u32{v} << 4) | u32{v});
}
constexpr u8 Convert5To8(u8 v) {
/* Swizzle bits: 00012345 -> 12345123 */
return static_cast<u8>((u32{v} << 3) | (u32{v} >> 2));
}
constexpr u8 Convert6To8(u8 v) {
/* Swizzle bits: 00123456 -> 12345612 */
return static_cast<u8>((u32{v} << 2) | (u32{v} >> 4));
}
} // Anonymous namespace
size_t CTexture::ComputeMippedTexelCount() const {
size_t w = x4_w;
size_t h = x6_h;
size_t ret = w * h;
for (u32 i = x8_mips; i > 1; --i) {
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
ret += w * h;
}
return ret;
}
size_t CTexture::ComputeMippedBlockCountDXT1() const {
size_t w = x4_w / 4;
size_t h = x6_h / 4;
size_t ret = w * h;
for (u32 i = x8_mips; i > 1; --i) {
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
ret += w * h;
}
return ret;
}
void CTexture::BuildI4FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 7) / 8;
int bheight = (h + 7) / 8;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 8;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 8;
for (int y = 0; y < 8; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
u8 source[4];
in.readBytesToBuf(source, 4);
for (int x = 0; x < 8; ++x) {
target[x].r = Convert4To8(source[x / 2] >> ((x & 1) ? 0 : 4) & 0xf);
target[x].g = target[x].r;
target[x].b = target[x].r;
target[x].a = target[x].r;
}
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
void CTexture::BuildI8FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 7) / 8;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 8;
for (int y = 0; y < 4; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
u8 source[8];
in.readBytesToBuf(source, 8);
for (int x = 0; x < 8; ++x) {
target[x].r = source[x];
target[x].g = source[x];
target[x].b = source[x];
target[x].a = source[x];
}
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
void CTexture::BuildIA4FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 7) / 8;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 8;
for (int y = 0; y < 4; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
u8 source[8];
in.readBytesToBuf(source, 8);
for (int x = 0; x < 8; ++x) {
u8 intensity = Convert4To8(source[x] >> 4 & 0xf);
target[x].r = intensity;
target[x].g = intensity;
target[x].b = intensity;
target[x].a = Convert4To8(source[x] & 0xf);
}
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
void CTexture::BuildIA8FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 3) / 4;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 4;
for (int y = 0; y < 4; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
u16 source[4];
in.readBytesToBuf(source, 8);
for (int x = 0; x < 4; ++x) {
u8 intensity = source[x] >> 8;
target[x].r = intensity;
target[x].g = intensity;
target[x].b = intensity;
target[x].a = source[x] & 0xff;
}
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
static std::vector<RGBA8> DecodePalette(int numEntries, CInputStream& in) {
std::vector<RGBA8> ret;
ret.reserve(numEntries);
enum class EPaletteType { IA8, RGB565, RGB5A3 };
EPaletteType format = EPaletteType(in.readUint32Big());
in.readUint32Big();
switch (format) {
case EPaletteType::IA8: {
for (int e = 0; e < numEntries; ++e) {
u8 intensity = in.readUByte();
u8 alpha = in.readUByte();
ret.push_back({intensity, intensity, intensity, alpha});
}
break;
}
case EPaletteType::RGB565: {
for (int e = 0; e < numEntries; ++e) {
u16 texel = in.readUint16Big();
ret.push_back({Convert5To8(texel >> 11 & 0x1f), Convert6To8(texel >> 5 & 0x3f), Convert5To8(texel & 0x1f), 0xff});
}
break;
}
case EPaletteType::RGB5A3: {
for (int e = 0; e < numEntries; ++e) {
u16 texel = in.readUint16Big();
if (texel & 0x8000) {
ret.push_back(
{Convert5To8(texel >> 10 & 0x1f), Convert5To8(texel >> 5 & 0x1f), Convert5To8(texel & 0x1f), 0xff});
} else {
ret.push_back({Convert4To8(texel >> 8 & 0xf), Convert4To8(texel >> 4 & 0xf), Convert4To8(texel & 0xf),
Convert3To8(texel >> 12 & 0x7)});
}
}
break;
}
}
return ret;
}
void CTexture::BuildC4FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
std::vector<RGBA8> palette = DecodePalette(16, in);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 7) / 8;
int bheight = (h + 7) / 8;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 8;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 8;
for (int y = 0; y < 8; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
u8 source[4];
in.readBytesToBuf(source, 4);
for (int x = 0; x < 8; ++x)
target[x] = palette[source[x / 2] >> ((x & 1) ? 0 : 4) & 0xf];
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
void CTexture::BuildC8FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
std::vector<RGBA8> palette = DecodePalette(256, in);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 7) / 8;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 8;
for (int y = 0; y < 4; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
u8 source[8];
in.readBytesToBuf(source, 8);
for (int x = 0; x < 8; ++x)
target[x] = palette[source[x]];
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
void CTexture::BuildC14X2FromGCN(CInputStream& in) {}
void CTexture::BuildRGB565FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
std::vector<RGBA8> palette = DecodePalette(256, in);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 3) / 4;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 4;
for (int y = 0; y < 4; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
for (int x = 0; x < 4; ++x) {
u16 texel = in.readUint16Big();
target[x].r = Convert5To8(texel >> 11 & 0x1f);
target[x].g = Convert6To8(texel >> 5 & 0x3f);
target[x].b = Convert5To8(texel & 0x1f);
target[x].a = 0xff;
}
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
void CTexture::BuildRGB5A3FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
std::vector<RGBA8> palette = DecodePalette(256, in);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 3) / 4;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 4;
for (int y = 0; y < 4; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
for (int x = 0; x < 4; ++x) {
u16 texel = in.readUint16Big();
if (texel & 0x8000) {
target[x].r = Convert5To8(texel >> 10 & 0x1f);
target[x].g = Convert5To8(texel >> 5 & 0x1f);
target[x].b = Convert5To8(texel & 0x1f);
target[x].a = 0xff;
} else {
target[x].r = Convert4To8(texel >> 8 & 0xf);
target[x].g = Convert4To8(texel >> 4 & 0xf);
target[x].b = Convert4To8(texel & 0xf);
target[x].a = Convert3To8(texel >> 12 & 0x7);
}
}
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
void CTexture::BuildRGBA8FromGCN(CInputStream& in) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
RGBA8* buf = reinterpret_cast<RGBA8*>(data);
std::vector<RGBA8> palette = DecodePalette(256, in);
int w = x4_w;
int h = x6_h;
RGBA8* targetMip = buf;
for (u32 mip = 0; mip < x8_mips; ++mip) {
int bwidth = (w + 3) / 4;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 4;
for (int c = 0; c < 2; ++c) {
for (int y = 0; y < 4; ++y) {
RGBA8* target = targetMip + (baseY + y) * w + baseX;
u8 source[8];
in.readBytesToBuf(source, 8);
for (int x = 0; x < 4; ++x) {
if (c) {
target[x].g = source[x * 2];
target[x].b = source[x * 2 + 1];
} else {
target[x].a = source[x * 2];
target[x].r = source[x * 2 + 1];
}
}
}
}
}
}
targetMip += w * h;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
});
}
void CTexture::BuildRGBA8(const void* dataIn, size_t length) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::RGBA8_UNORM, x8_mips, [&](void* data, std::size_t size) {
std::memcpy(data, dataIn, length);
});
}
void CTexture::BuildC8(const void* data, size_t length) {
uint32_t nentries = hecl::SBig(*reinterpret_cast<const uint32_t*>(data));
const u8* paletteTexels = reinterpret_cast<const u8*>(data) + 4;
const u8* texels = reinterpret_cast<const u8*>(data) + 4 + nentries * 4;
m_paletteTex = hsh::create_texture2d({nentries, 1}, hsh::RGBA8_UNORM, 1, [&](void* data, std::size_t size) {
std::memcpy(data, paletteTexels, nentries * 4);
});
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::R8_UNORM, x8_mips, [&](void* data, std::size_t size) {
std::memcpy(data, texels, size);
});
}
void CTexture::BuildC8Font(const void* data, EFontType ftype) {
size_t texelCount = ComputeMippedTexelCount();
size_t layerCount = 1;
switch (ftype) {
case EFontType::OneLayer:
case EFontType::OneLayerOutline:
layerCount = 1;
break;
case EFontType::FourLayers:
layerCount = 4;
break;
case EFontType::TwoLayersOutlines:
case EFontType::TwoLayers:
case EFontType::TwoLayersOutlines2:
layerCount = 2;
break;
default:
break;
}
const uint32_t nentries = hecl::SBig(*reinterpret_cast<const uint32_t*>(data));
const u8* texels = reinterpret_cast<const u8*>(data) + 4 + nentries * 4;
auto buf = std::make_unique<RGBA8[]>(texelCount * layerCount);
size_t w = x4_w;
size_t h = x6_h;
RGBA8* bufCur = buf.get();
for (size_t i = 0; i < x8_mips; ++i) {
size_t tCount = w * h;
RGBA8* l0 = bufCur;
RGBA8* l1 = bufCur + tCount;
RGBA8* l2 = bufCur + tCount * 2;
RGBA8* l3 = bufCur + tCount * 3;
for (size_t j = 0; j < tCount; ++j) {
u8 texel = texels[j];
switch (ftype) {
case EFontType::OneLayer:
l0[j].r = (texel & 0x1) ? 0xff : 0;
l0[j].a = 0xff;
break;
case EFontType::OneLayerOutline:
l0[j].r = (texel & 0x1) ? 0xff : 0;
l0[j].g = (texel & 0x2) ? 0xff : 0;
l0[j].a = 0xff;
break;
case EFontType::FourLayers:
l0[j].r = (texel & 0x1) ? 0xff : 0;
l0[j].a = 0xff;
l1[j].r = (texel & 0x2) ? 0xff : 0;
l1[j].a = 0xff;
l2[j].r = (texel & 0x4) ? 0xff : 0;
l2[j].a = 0xff;
l3[j].r = (texel & 0x8) ? 0xff : 0;
l3[j].a = 0xff;
break;
case EFontType::TwoLayersOutlines:
l0[j].r = (texel & 0x1) ? 0xff : 0;
l0[j].g = (texel & 0x2) ? 0xff : 0;
l0[j].a = 0xff;
l1[j].r = (texel & 0x4) ? 0xff : 0;
l1[j].g = (texel & 0x8) ? 0xff : 0;
l1[j].a = 0xff;
break;
case EFontType::TwoLayers:
l0[j].r = (texel & 0x1) ? 0xff : 0;
l0[j].a = 0xff;
l1[j].r = (texel & 0x2) ? 0xff : 0;
l1[j].a = 0xff;
break;
case EFontType::TwoLayersOutlines2:
l0[j].r = (texel & 0x4) ? 0xff : 0;
l0[j].g = (texel & 0x1) ? 0xff : 0;
l0[j].a = 0xff;
l1[j].r = (texel & 0x8) ? 0xff : 0;
l1[j].g = (texel & 0x2) ? 0xff : 0;
l1[j].a = 0xff;
break;
default:
break;
}
}
texels += tCount;
bufCur += tCount * layerCount;
if (w > 1)
w /= 2;
if (h > 1)
h /= 2;
}
m_booTex = hsh::create_texture2d_array({x4_w, x6_h}, layerCount, hsh::R8_UNORM, x8_mips, [&](void* data, std::size_t size) {
std::memcpy(data, texels, size);
});
}
void CTexture::BuildDXT1(const void* dataIn, size_t length) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::BC1_UNORM, x8_mips, [&](void* data, std::size_t size) {
std::memcpy(data, dataIn, size);
});
}
void CTexture::BuildDXT3(const void* dataIn, size_t length) {
m_booTex = hsh::create_texture2d({x4_w, x6_h}, hsh::BC2_UNORM, x8_mips, [&](void* data, std::size_t size) {
std::memcpy(data, dataIn, size);
});
}
CTexture::CTexture(ETexelFormat fmt, s16 w, s16 h, s32 mips) : x0_fmt(fmt), x4_w(w), x6_h(h), x8_mips(mips) {
/*
x64_ = sMangleMipmaps;
InitBitmapBuffers(fmt, w, h, mips);
InitTextureObjs();
*/
}
CTexture::CTexture(std::unique_ptr<u8[]>&& in, u32 length, bool otex, const CTextureInfo* inf) {
m_textureInfo = inf;
std::unique_ptr<u8[]> owned = std::move(in);
athena::io::MemoryReader r(owned.get(), length);
x0_fmt = ETexelFormat(r.readUint32Big());
x4_w = r.readUint16Big();
x6_h = r.readUint16Big();
x8_mips = r.readUint32Big();
switch (x0_fmt) {
case ETexelFormat::I4:
BuildI4FromGCN(r);
break;
case ETexelFormat::I8:
BuildI8FromGCN(r);
break;
case ETexelFormat::IA4:
BuildIA4FromGCN(r);
break;
case ETexelFormat::IA8:
BuildIA8FromGCN(r);
break;
case ETexelFormat::C4:
BuildC4FromGCN(r);
break;
case ETexelFormat::C8:
BuildC8FromGCN(r);
break;
case ETexelFormat::C14X2:
BuildC14X2FromGCN(r);
break;
case ETexelFormat::RGB565:
BuildRGB565FromGCN(r);
break;
case ETexelFormat::RGB5A3:
BuildRGB5A3FromGCN(r);
break;
case ETexelFormat::RGBA8:
BuildRGBA8FromGCN(r);
break;
case ETexelFormat::CMPR:
BuildDXT1FromGCN(r);
break;
case ETexelFormat::RGBA8PC:
BuildRGBA8(owned.get() + 12, length - 12);
break;
case ETexelFormat::C8PC:
BuildC8(owned.get() + 12, length - 12);
otex = true;
break;
case ETexelFormat::CMPRPC:
BuildDXT1(owned.get() + 12, length - 12);
break;
case ETexelFormat::CMPRPCA:
BuildDXT3(owned.get() + 12, length - 12);
break;
default:
Log.report(logvisor::Fatal, FMT_STRING("invalid texture type {} for boo"), int(x0_fmt));
}
if (otex)
m_otex = std::move(owned);
}
void CTexture::Load(int slot, EClampMode clamp) const {}
std::unique_ptr<u8[]> CTexture::BuildMemoryCardTex(u32& sizeOut, ETexelFormat& fmtOut,
std::unique_ptr<u8[]>& paletteOut) const {
if (!m_otex)
Log.report(logvisor::Fatal, FMT_STRING("MemoryCard TXTR not loaded with 'otex'"));
size_t texelCount = x4_w * x6_h;
std::unique_ptr<u8[]> ret;
if (x0_fmt == ETexelFormat::RGBA8PC) {
sizeOut = texelCount * 2;
fmtOut = ETexelFormat::RGB5A3;
ret.reset(new u8[sizeOut]);
u16* texel = reinterpret_cast<u16*>(ret.get());
int w = x4_w;
int h = x6_h;
const RGBA8* sourceMip = reinterpret_cast<const RGBA8*>(m_otex.get() + 12);
int bwidth = (w + 3) / 4;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 4;
for (int y = 0; y < 4; ++y) {
const RGBA8* source = sourceMip + (x6_h - (baseY + y) - 1) * w + baseX;
for (int x = 0; x < 4; ++x) {
if (source[x].a == 0xff) {
*texel++ = hecl::SBig(u16((source[x].r >> 3 << 10) | (source[x].g >> 3 << 5) | (source[x].b >> 3)));
} else {
*texel++ = hecl::SBig(u16((source[x].r >> 4 << 8) | (source[x].g >> 4 << 4) | (source[x].b >> 4) |
(source[x].a >> 5 << 12)));
}
}
}
}
}
} else if (x0_fmt == ETexelFormat::C8PC) {
sizeOut = texelCount;
fmtOut = ETexelFormat::C8;
ret.reset(new u8[sizeOut]);
paletteOut.reset(new u8[512]);
u8* texel = ret.get();
u16* paletteColors = reinterpret_cast<u16*>(paletteOut.get());
int w = x4_w;
int h = x6_h;
const u8* data = m_otex.get() + 12;
u32 nentries = hecl::SBig(*reinterpret_cast<const u32*>(data));
const RGBA8* paletteTexels = reinterpret_cast<const RGBA8*>(data + 4);
const u8* sourceMip = data + 4 + nentries * 4;
for (u32 i = 0; i < 256; ++i) {
u16& color = paletteColors[i];
if (i >= nentries) {
color = 0;
} else {
const RGBA8& colorIn = paletteTexels[i];
if (colorIn.a == 0xff) {
color = hecl::SBig(u16((colorIn.r >> 3 << 10) | (colorIn.g >> 3 << 5) | (colorIn.b >> 3) | 0x8000));
} else {
color = hecl::SBig(
u16((colorIn.r >> 4 << 8) | (colorIn.g >> 4 << 4) | (colorIn.b >> 4) | (colorIn.a >> 5 << 12)));
}
}
}
int bwidth = (w + 7) / 8;
int bheight = (h + 3) / 4;
for (int by = 0; by < bheight; ++by) {
int baseY = by * 4;
for (int bx = 0; bx < bwidth; ++bx) {
int baseX = bx * 8;
for (int y = 0; y < 4; ++y) {
const u8* source = sourceMip + (x6_h - (baseY + y) - 1) * w + baseX;
for (int x = 0; x < 8; ++x)
*texel++ = source[x];
}
}
}
} else
Log.report(logvisor::Fatal, FMT_STRING("MemoryCard texture may only use RGBA8PC or C8PC format"));
return ret;
}
hsh::texture_typeless CTexture::GetFontTexture(EFontType tp) {
if (m_ftype != tp && x0_fmt == ETexelFormat::C8PC) {
m_ftype = tp;
BuildC8Font(m_otex.get() + 12, m_ftype);
}
return m_booTex.get();
}
CFactoryFnReturn FTextureFactory(const urde::SObjectTag& tag, std::unique_ptr<u8[]>&& in, u32 len,
const urde::CVParamTransfer& vparms, CObjectReference* selfRef) {
u32 u32Owned = vparms.GetOwnedObj<u32>();
const CTextureInfo* inf = nullptr;
if (g_TextureCache)
inf = g_TextureCache->GetTextureInfo(tag.id);
return TToken<CTexture>::GetIObjObjectFor(
std::make_unique<CTexture>(std::move(in), len, u32Owned == SBIG('OTEX'), inf));
}
} // namespace urde