metaforce/DataSpec/DNAMP1/ANIM.cpp

606 lines
19 KiB
C++

#include "ANIM.hpp"
#include "zeus/CVector3f.hpp"
namespace DataSpec
{
namespace DNAMP1
{
using ANIMOutStream = hecl::BlenderConnection::PyOutStream::ANIMOutStream;
void ANIM::IANIM::sendANIMToBlender(hecl::BlenderConnection::PyOutStream& os, const DNAANIM::RigInverter<CINF>& rig) const
{
os.format("act.hecl_fps = round(%f)\n", (1.0f / mainInterval));
auto kit = chanKeys.begin();
std::vector<zeus::CQuaternion> fixedRotKeys;
std::vector<zeus::CVector3f> fixedTransKeys;
for (const std::pair<atUint32, bool>& bone : bones)
{
const std::string* bName = rig.getCINF().getBoneNameFromId(bone.first);
if (!bName)
continue;
os.format("bone_string = '%s'\n", bName->c_str());
os << "action_group = act.groups.new(bone_string)\n"
"\n"
"rotCurves = []\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=0, action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=1, action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=2, action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=3, action_group=bone_string))\n"
"\n";
if (bone.second)
os << "transCurves = []\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=0, action_group=bone_string))\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=1, action_group=bone_string))\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=2, action_group=bone_string))\n"
"\n";
ANIMOutStream ao = os.beginANIMCurve();
{
const std::vector<DNAANIM::Value>& rotKeys = *kit++;
fixedRotKeys.clear();
fixedRotKeys.resize(rotKeys.size());
for (int c=0 ; c<4 ; ++c)
{
size_t idx = 0;
for (const DNAANIM::Value& val : rotKeys)
fixedRotKeys[idx++][c] = val.v4.vec[c];
}
for (zeus::CQuaternion& rot : fixedRotKeys)
rot = rig.invertRotation(bone.first, rot);
for (int c=0 ; c<4 ; ++c)
{
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Rotate, c, rotKeys.size());
for (const zeus::CQuaternion& val : fixedRotKeys)
ao.write(*frameit++, val[c]);
}
}
if (bone.second)
{
const std::vector<DNAANIM::Value>& transKeys = *kit++;
fixedTransKeys.clear();
fixedTransKeys.resize(transKeys.size());
for (int c=0 ; c<3 ; ++c)
{
size_t idx = 0;
for (const DNAANIM::Value& val : transKeys)
fixedTransKeys[idx++][c] = val.v3.vec[c];
}
for (zeus::CVector3f& t : fixedTransKeys)
t = rig.invertPosition(bone.first, t, true);
for (int c=0 ; c<3 ; ++c)
{
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Translate, c, fixedTransKeys.size());
for (const zeus::CVector3f& val : fixedTransKeys)
ao.write(*frameit++, val[c]);
}
}
}
}
void ANIM::ANIM0::read(athena::io::IStreamReader& reader)
{
Header head;
head.read(reader);
mainInterval = head.interval;
frames.clear();
frames.reserve(head.keyCount);
for (size_t k=0 ; k<head.keyCount ; ++k)
frames.push_back(k);
std::map<atUint8, atUint32> boneMap;
for (size_t b=0 ; b<head.boneSlotCount ; ++b)
{
atUint8 idx = reader.readUByte();
if (idx == 0xff)
continue;
boneMap[idx] = b;
}
atUint32 boneCount = reader.readUint32Big();
bones.clear();
bones.reserve(boneCount);
channels.clear();
for (size_t b=0 ; b<boneCount ; ++b)
{
bones.emplace_back(boneMap[b], false);
atUint8 idx = reader.readUByte();
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Rotation;
if (idx != 0xff)
{
bones.back().second = true;
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
}
}
reader.readUint32Big();
chanKeys.clear();
chanKeys.reserve(channels.size());
for (const std::pair<atUint32, bool>& bone : bones)
{
chanKeys.emplace_back();
std::vector<DNAANIM::Value>& keys = chanKeys.back();
for (size_t k=0 ; k<head.keyCount ; ++k)
keys.emplace_back(reader.readVec4fBig());
if (bone.second)
chanKeys.emplace_back();
}
reader.readUint32Big();
auto kit = chanKeys.begin();
for (const std::pair<atUint32, bool>& bone : bones)
{
++kit;
if (bone.second)
{
std::vector<DNAANIM::Value>& keys = *kit++;
for (size_t k=0 ; k<head.keyCount ; ++k)
keys.emplace_back(reader.readVec3fBig());
}
}
evnt.read(reader);
}
void ANIM::ANIM0::write(athena::io::IStreamWriter& writer) const
{
Header head;
head.unk0 = 0;
head.unk1 = 0;
head.unk2 = 0;
head.keyCount = frames.size();
head.duration = head.keyCount * mainInterval;
head.interval = mainInterval;
atUint32 maxId = 0;
for (const std::pair<atUint32, bool>& bone : bones)
maxId = std::max(maxId, bone.first);
head.boneSlotCount = maxId + 1;
head.write(writer);
for (size_t s=0 ; s<head.boneSlotCount ; ++s)
{
size_t boneIdx = 0;
bool found = false;
for (const std::pair<atUint32, bool>& bone : bones)
{
if (s == bone.first)
{
writer.writeUByte(boneIdx);
found = true;
break;
}
++boneIdx;
}
if (!found)
writer.writeUByte(0xff);
}
writer.writeUint32Big(bones.size());
size_t boneIdx = 0;
for (const std::pair<atUint32, bool>& bone : bones)
{
if (bone.second)
writer.writeUByte(boneIdx);
else
writer.writeUByte(0xff);
++boneIdx;
}
writer.writeUint32Big(bones.size() * head.keyCount);
auto cit = chanKeys.begin();
atUint32 transKeyCount = 0;
for (const std::pair<atUint32, bool>& bone : bones)
{
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k=0 ; k<head.keyCount ; ++k)
writer.writeVec4fBig((*kit++).v4);
if (bone.second)
{
transKeyCount += head.keyCount;
++cit;
}
}
writer.writeUint32Big(transKeyCount);
cit = chanKeys.begin();
for (const std::pair<atUint32, bool>& bone : bones)
{
++cit;
if (bone.second)
{
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k=0 ; k<head.keyCount ; ++k)
writer.writeVec3fBig((*kit++).v3);
}
}
evnt.write(writer);
}
size_t ANIM::ANIM0::binarySize(size_t __isz) const
{
Header head;
atUint32 maxId = 0;
for (const std::pair<atUint32, bool>& bone : bones)
maxId = std::max(maxId, bone.first);
__isz = head.binarySize(__isz);
__isz += maxId + 1;
__isz += bones.size() + 4;
__isz += 8;
for (const std::pair<atUint32, bool>& bone : bones)
{
__isz += head.keyCount * 16;
if (bone.second)
__isz += head.keyCount * 12;
}
return __isz + 4;
}
void ANIM::ANIM2::read(athena::io::IStreamReader& reader)
{
Header head;
head.read(reader);
evnt = head.evnt;
mainInterval = head.interval;
WordBitmap keyBmp;
keyBmp.read(reader, head.keyBitmapBitCount);
frames.clear();
atUint32 frameAccum = 0;
for (bool bit : keyBmp)
{
if (bit)
frames.push_back(frameAccum);
++frameAccum;
}
reader.seek(8);
bones.clear();
bones.reserve(head.boneChannelCount);
channels.clear();
channels.reserve(head.boneChannelCount);
atUint32 keyframeCount = 0;
if (m_version == 3)
{
for (size_t b=0 ; b<head.boneChannelCount ; ++b)
{
ChannelDescPC desc;
desc.read(reader);
bones.emplace_back(desc.id, desc.keyCount2 != 0);
if (desc.keyCount1)
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Rotation;
chan.id = desc.id;
chan.i[0] = atInt32(desc.QinitRX) >> 8;
chan.q[0] = desc.QinitRX & 0xff;
chan.i[1] = atInt32(desc.QinitRY) >> 8;
chan.q[1] = desc.QinitRY & 0xff;
chan.i[2] = atInt32(desc.QinitRZ) >> 8;
chan.q[2] = desc.QinitRZ & 0xff;
}
keyframeCount = std::max(keyframeCount, desc.keyCount1);
if (desc.keyCount2)
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
chan.id = desc.id;
chan.i[0] = atInt32(desc.QinitTX) >> 8;
chan.q[0] = desc.QinitTX & 0xff;
chan.i[1] = atInt32(desc.QinitTY) >> 8;
chan.q[1] = desc.QinitTY & 0xff;
chan.i[2] = atInt32(desc.QinitTZ) >> 8;
chan.q[2] = desc.QinitTZ & 0xff;
}
}
}
else
{
for (size_t b=0 ; b<head.boneChannelCount ; ++b)
{
ChannelDesc desc;
desc.read(reader);
bones.emplace_back(desc.id, desc.keyCount2 != 0);
if (desc.keyCount1)
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Rotation;
chan.id = desc.id;
chan.i[0] = desc.initRX;
chan.q[0] = desc.qRX;
chan.i[1] = desc.initRY;
chan.q[1] = desc.qRY;
chan.i[2] = desc.initRZ;
chan.q[2] = desc.qRZ;
}
keyframeCount = std::max(keyframeCount, atUint32(desc.keyCount1));
if (desc.keyCount2)
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
chan.id = desc.id;
chan.i[0] = desc.initTX;
chan.q[0] = desc.qTX;
chan.i[1] = desc.initTY;
chan.q[1] = desc.qTY;
chan.i[2] = desc.initTZ;
chan.q[2] = desc.qTZ;
}
}
}
size_t bsSize = DNAANIM::ComputeBitstreamSize(keyframeCount, channels);
std::unique_ptr<atUint8[]> bsData = reader.readUBytes(bsSize);
DNAANIM::BitstreamReader bsReader;
chanKeys = bsReader.read(bsData.get(), keyframeCount, channels, head.rotDiv, head.translationMult, 0.f);
}
void ANIM::ANIM2::write(athena::io::IStreamWriter& writer) const
{
Header head;
head.evnt = evnt;
head.unk0 = 1;
head.interval = mainInterval;
head.rootBoneId = 3;
head.looping = 0;
head.unk3 = 1;
WordBitmap keyBmp;
size_t frameCount = 0;
for (atUint32 frame : frames)
{
if (!keyBmp.getBit(frame))
{
keyBmp.setBit(frame);
frameCount += 1;
}
}
head.keyBitmapBitCount = frameCount;
head.duration = frameCount * mainInterval;
head.boneChannelCount = bones.size();
size_t keyframeCount = frameCount - 1;
std::vector<DNAANIM::Channel> qChannels = channels;
DNAANIM::BitstreamWriter bsWriter;
size_t bsSize;
float scaleMult;
std::unique_ptr<atUint8[]> bsData = bsWriter.write(chanKeys, keyframeCount, qChannels,
m_version == 3 ? 0x7fffff : 0x7fff,
head.rotDiv, head.translationMult, scaleMult, bsSize);
/* Tally up buffer size */
head.scratchSize = head.binarySize(0) + keyBmp.binarySize(0) + bsSize;
if (m_version == 3)
{
for (const std::pair<atUint32, bool>& bone : bones)
{
ChannelDescPC desc;
desc.keyCount1 = keyframeCount;
if (bone.second)
desc.keyCount2 = keyframeCount;
head.scratchSize = desc.binarySize(head.scratchSize);
}
}
else
{
for (const std::pair<atUint32, bool>& bone : bones)
{
ChannelDesc desc;
desc.keyCount1 = keyframeCount;
if (bone.second)
desc.keyCount2 = keyframeCount;
head.scratchSize = desc.binarySize(head.scratchSize);
}
}
head.write(writer);
keyBmp.write(writer);
writer.writeUint32Big(head.boneChannelCount);
writer.writeUint32Big(head.boneChannelCount);
auto cit = qChannels.begin();
if (m_version == 3)
{
for (const std::pair<atUint32, bool>& bone : bones)
{
ChannelDescPC desc;
desc.id = bone.first;
DNAANIM::Channel& chan = *cit++;
desc.keyCount1 = keyframeCount;
desc.QinitRX = (chan.i[0] << 8) | chan.q[0];
desc.QinitRY = (chan.i[1] << 8) | chan.q[1];
desc.QinitRZ = (chan.i[2] << 8) | chan.q[2];
if (bone.second)
{
DNAANIM::Channel& chan = *cit++;
desc.keyCount2 = keyframeCount;
desc.QinitTX = (chan.i[0] << 8) | chan.q[0];
desc.QinitTY = (chan.i[1] << 8) | chan.q[1];
desc.QinitTZ = (chan.i[2] << 8) | chan.q[2];
}
desc.write(writer);
}
}
else
{
for (const std::pair<atUint32, bool>& bone : bones)
{
ChannelDesc desc;
desc.id = bone.first;
DNAANIM::Channel& chan = *cit++;
desc.keyCount1 = keyframeCount;
desc.initRX = chan.i[0];
desc.qRX = chan.q[0];
desc.initRY = chan.i[1];
desc.qRY = chan.q[1];
desc.initRZ = chan.i[2];
desc.qRZ = chan.q[2];
if (bone.second)
{
DNAANIM::Channel& chan = *cit++;
desc.keyCount2 = keyframeCount;
desc.initTX = chan.i[0];
desc.qTX = chan.q[0];
desc.initTY = chan.i[1];
desc.qTY = chan.q[1];
desc.initTZ = chan.i[2];
desc.qTZ = chan.q[2];
}
desc.write(writer);
}
}
writer.writeUBytes(bsData.get(), bsSize);
}
size_t ANIM::ANIM2::binarySize(size_t __isz) const
{
Header head;
WordBitmap keyBmp;
for (atUint32 frame : frames)
keyBmp.setBit(frame);
__isz = head.binarySize(__isz);
__isz = keyBmp.binarySize(__isz);
__isz += 8;
if (m_version == 3)
{
for (const std::pair<atUint32, bool>& bone : bones)
{
__isz += 24;
if (bone.second)
__isz += 12;
}
}
else
{
for (const std::pair<atUint32, bool>& bone : bones)
{
__isz += 17;
if (bone.second)
__isz += 9;
}
}
return __isz + DNAANIM::ComputeBitstreamSize(frames.size(), channels);
}
ANIM::ANIM(const BlenderAction& act,
const std::unordered_map<std::string, atInt32>& idMap,
const DNAANIM::RigInverter<CINF>& rig,
bool pc)
{
m_anim.reset(new struct ANIM2(pc));
IANIM& newAnim = *m_anim;
newAnim.bones.reserve(act.channels.size());
size_t extChanCount = 0;
std::unordered_set<atInt32> addedBones;
addedBones.reserve(act.channels.size());
for (const BlenderAction::Channel& chan : act.channels)
{
auto search = idMap.find(chan.boneName);
if (search == idMap.cend())
{
Log.report(logvisor::Warning, "unable to find id for bone '%s'", chan.boneName.c_str());
continue;
}
if (addedBones.find(search->second) != addedBones.cend())
continue;
addedBones.insert(search->second);
extChanCount += std::max(zeus::PopCount(chan.attrMask), 2);
newAnim.bones.emplace_back(search->second, (chan.attrMask & 0x2) != 0);
}
newAnim.frames.reserve(act.frames.size());
for (int32_t frame : act.frames)
newAnim.frames.push_back(frame);
newAnim.channels.reserve(extChanCount);
newAnim.chanKeys.reserve(extChanCount);
for (const BlenderAction::Channel& chan : act.channels)
{
auto search = idMap.find(chan.boneName);
if (search == idMap.cend())
continue;
newAnim.channels.emplace_back();
DNAANIM::Channel& newChan = newAnim.channels.back();
newChan.type = DNAANIM::Channel::Type::Rotation;
newChan.id = search->second;
newAnim.chanKeys.emplace_back();
std::vector<DNAANIM::Value>& rotVals = newAnim.chanKeys.back();
rotVals.reserve(chan.keys.size());
for (const BlenderAction::Channel::Key& key : chan.keys)
{
zeus::CQuaternion q(key.rotation.val);
q = rig.restoreRotation(newChan.id, q);
rotVals.emplace_back(q.w, q.x, q.y, q.z);
}
if (chan.attrMask & 0x2)
{
newAnim.channels.emplace_back();
DNAANIM::Channel& newChan = newAnim.channels.back();
newChan.type = DNAANIM::Channel::Type::Translation;
newChan.id = search->second;
newAnim.chanKeys.emplace_back();
std::vector<DNAANIM::Value>& transVals = newAnim.chanKeys.back();
transVals.reserve(chan.keys.size());
for (const BlenderAction::Channel::Key& key : chan.keys)
{
zeus::CVector3f pos(key.position.val);
pos = rig.restorePosition(newChan.id, pos, true);
transVals.emplace_back(pos.x, pos.y, pos.z);
}
}
}
newAnim.mainInterval = act.interval;
}
}
}