metaforce/DataSpec/DNACommon/DNACommon.hpp

398 lines
12 KiB
C++

#ifndef __DNA_COMMON_HPP__
#define __DNA_COMMON_HPP__
#include <cstdio>
#include "logvisor/logvisor.hpp"
#include "athena/DNAYaml.hpp"
#include "hecl/Database.hpp"
#include "../SpecBase.hpp"
#include "boo/ThreadLocalPtr.hpp"
#include "zeus/CColor.hpp"
namespace DataSpec
{
struct SpecBase;
extern logvisor::Module LogDNACommon;
extern ThreadLocalPtr<SpecBase> g_curSpec;
extern ThreadLocalPtr<class PAKRouterBase> g_PakRouter;
extern ThreadLocalPtr<hecl::blender::Token> g_ThreadBlenderToken;
/* This comes up a great deal */
typedef athena::io::DNA<athena::Big> BigDNA;
typedef athena::io::DNAV<athena::Big> BigDNAV;
typedef athena::io::DNAVYaml<athena::Big> BigDNAVYaml;
/** FourCC with DNA read/write */
class DNAFourCC final : public BigDNA, public hecl::FourCC
{
public:
DNAFourCC() : hecl::FourCC() {}
DNAFourCC(const hecl::FourCC& other)
: hecl::FourCC() {num = other.toUint32();}
DNAFourCC(const char* name)
: hecl::FourCC(name) {}
DNAFourCC(uint32_t n)
: hecl::FourCC(n) {}
AT_DECL_EXPLICIT_DNA_YAML
};
template <> inline void DNAFourCC::Enumerate<BigDNA::Read>(typename Read::StreamT& r)
{ r.readUBytesToBuf(fcc, 4); }
template <> inline void DNAFourCC::Enumerate<BigDNA::Write>(typename Write::StreamT& w)
{ w.writeUBytes((atUint8*)fcc, 4); }
template <> inline void DNAFourCC::Enumerate<BigDNA::ReadYaml>(typename ReadYaml::StreamT& r)
{ std::string rs = r.readString(nullptr); strncpy(fcc, rs.c_str(), 4); }
template <> inline void DNAFourCC::Enumerate<BigDNA::WriteYaml>(typename WriteYaml::StreamT& w)
{ w.writeString(nullptr, std::string(fcc, 4)); }
template <> inline void DNAFourCC::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s)
{ s += 4; }
class DNAColor final : public BigDNA, public zeus::CColor
{
public:
DNAColor() = default;
DNAColor(const zeus::CColor& color) : zeus::CColor(color) {}
AT_DECL_EXPLICIT_DNA_YAML
};
template <> inline void DNAColor::Enumerate<BigDNA::Read>(typename Read::StreamT& _r)
{ zeus::CColor::readRGBABig(_r); }
template <> inline void DNAColor::Enumerate<BigDNA::Write>(typename Write::StreamT& _w)
{ zeus::CColor::writeRGBABig(_w); }
template <> inline void DNAColor::Enumerate<BigDNA::ReadYaml>(typename ReadYaml::StreamT& _r)
{
size_t count;
if (auto v = _r.enterSubVector(nullptr, count))
{
r = (count >= 1) ? _r.readFloat(nullptr) : 0.f;
g = (count >= 2) ? _r.readFloat(nullptr) : 0.f;
b = (count >= 3) ? _r.readFloat(nullptr) : 0.f;
a = (count >= 4) ? _r.readFloat(nullptr) : 0.f;
}
}
template <> inline void DNAColor::Enumerate<BigDNA::WriteYaml>(typename WriteYaml::StreamT& _w)
{
if (auto v = _w.enterSubVector(nullptr))
{
_w.writeFloat(nullptr, r);
_w.writeFloat(nullptr, g);
_w.writeFloat(nullptr, b);
_w.writeFloat(nullptr, a);
}
}
template <> inline void DNAColor::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& _s)
{ _s += 16; }
using FourCC = hecl::FourCC;
class UniqueID32;
class UniqueID64;
class UniqueID128;
/** Common virtual interface for runtime ambiguity resolution */
class PAKRouterBase
{
protected:
const SpecBase& m_dataSpec;
public:
PAKRouterBase(const SpecBase& dataSpec) : m_dataSpec(dataSpec) {}
hecl::Database::Project& getProject() const {return m_dataSpec.getProject();}
virtual hecl::ProjectPath getWorking(const UniqueID32&, bool silenceWarnings=false) const
{
LogDNACommon.report(logvisor::Fatal,
"PAKRouter IDType mismatch; expected UniqueID32 specialization");
return hecl::ProjectPath();
}
virtual hecl::ProjectPath getWorking(const UniqueID64&, bool silenceWarnings=false) const
{
LogDNACommon.report(logvisor::Fatal,
"PAKRouter IDType mismatch; expected UniqueID64 specialization");
return hecl::ProjectPath();
}
virtual hecl::ProjectPath getWorking(const UniqueID128&, bool silenceWarnings=false) const
{
LogDNACommon.report(logvisor::Fatal,
"PAKRouter IDType mismatch; expected UniqueID128 specialization");
return hecl::ProjectPath();
}
};
/** Globally-accessed manager allowing UniqueID* classes to directly
* lookup destination paths of resources */
class UniqueIDBridge
{
friend class UniqueID32;
friend class UniqueID64;
static ThreadLocalPtr<hecl::Database::Project> s_Project;
public:
template <class IDType>
static hecl::ProjectPath TranslatePakIdToPath(const IDType& id, bool silenceWarnings=false);
template <class IDType>
static hecl::ProjectPath MakePathFromString(std::string_view str);
template <class IDType>
static void TransformOldHashToNewHash(IDType& id);
static void setThreadProject(hecl::Database::Project& project);
};
/** PAK 32-bit Unique ID */
class UniqueID32 : public BigDNA
{
protected:
uint32_t m_id = 0xffffffff;
public:
static UniqueID32 kInvalidId;
AT_DECL_EXPLICIT_DNA_YAML
operator bool() const {return m_id != 0xffffffff && m_id != 0;}
void assign(uint32_t id) { m_id = id ? id : 0xffffffff; }
UniqueID32& operator=(const hecl::ProjectPath& path)
{assign(path.hash().val32()); return *this;}
bool operator!=(const UniqueID32& other) const {return m_id != other.m_id;}
bool operator==(const UniqueID32& other) const {return m_id == other.m_id;}
bool operator<(const UniqueID32& other) const {return m_id < other.m_id;}
uint32_t toUint32() const {return m_id;}
uint64_t toUint64() const {return m_id;}
std::string toString() const;
void clear() {m_id = 0xffffffff;}
UniqueID32() = default;
UniqueID32(uint32_t idin) {assign(idin);}
UniqueID32(athena::io::IStreamReader& reader) {read(reader);}
UniqueID32(const hecl::ProjectPath& path) {*this = path;}
UniqueID32(const char* hexStr)
{
char copy[9];
strncpy(copy, hexStr, 8);
copy[8] = '\0';
assign(strtoul(copy, nullptr, 16));
}
UniqueID32(const wchar_t* hexStr)
{
wchar_t copy[9];
wcsncpy(copy, hexStr, 8);
copy[8] = L'\0';
assign(wcstoul(copy, nullptr, 16));
}
static constexpr size_t BinarySize() {return 4;}
};
class AuxiliaryID32 : public UniqueID32
{
const hecl::SystemChar* m_auxStr;
const hecl::SystemChar* m_addExtension;
UniqueID32 m_baseId;
public:
AT_DECL_DNA
Delete __d2;
AuxiliaryID32(const hecl::SystemChar* auxStr,
const hecl::SystemChar* addExtension=nullptr)
: m_auxStr(auxStr), m_addExtension(addExtension) {}
AuxiliaryID32& operator=(const hecl::ProjectPath& path);
AuxiliaryID32& operator=(const UniqueID32& id);
const UniqueID32& getBaseId() const {return m_baseId;}
};
/** PAK 64-bit Unique ID */
class UniqueID64 : public BigDNA
{
uint64_t m_id = 0xffffffffffffffff;
public:
AT_DECL_EXPLICIT_DNA_YAML
operator bool() const {return m_id != 0xffffffffffffffff && m_id != 0;}
void assign(uint64_t id) { m_id = id ? id : 0xffffffffffffffff; }
UniqueID64& operator=(const hecl::ProjectPath& path)
{assign(path.hash().val64()); return *this;}
bool operator!=(const UniqueID64& other) const {return m_id != other.m_id;}
bool operator==(const UniqueID64& other) const {return m_id == other.m_id;}
bool operator<(const UniqueID64& other) const {return m_id < other.m_id;}
uint64_t toUint64() const {return m_id;}
std::string toString() const;
void clear() {m_id = 0xffffffffffffffff;}
UniqueID64() = default;
UniqueID64(uint64_t idin) {assign(idin);}
UniqueID64(athena::io::IStreamReader& reader) {read(reader);}
UniqueID64(const hecl::ProjectPath& path) {*this = path;}
UniqueID64(const char* hexStr)
{
char copy[17];
strncpy(copy, hexStr, 16);
copy[16] = '\0';
#if _WIN32
assign(_strtoui64(copy, nullptr, 16));
#else
assign(strtouq(copy, nullptr, 16));
#endif
}
UniqueID64(const wchar_t* hexStr)
{
wchar_t copy[17];
wcsncpy(copy, hexStr, 16);
copy[16] = L'\0';
#if _WIN32
assign(_wcstoui64(copy, nullptr, 16));
#else
assign(wcstoull(copy, nullptr, 16));
#endif
}
static constexpr size_t BinarySize() {return 8;}
};
/** PAK 128-bit Unique ID */
class UniqueID128 : public BigDNA
{
union
{
uint64_t m_id[2];
#if __SSE__
__m128i m_id128;
#endif
};
public:
AT_DECL_EXPLICIT_DNA_YAML
UniqueID128() {m_id[0]=0xffffffffffffffff; m_id[1]=0xffffffffffffffff;}
operator bool() const
{return m_id[0] != 0xffffffffffffffff && m_id[0] != 0 && m_id[1] != 0xffffffffffffffff && m_id[1] != 0;}
UniqueID128& operator=(const hecl::ProjectPath& path)
{
m_id[0] = path.hash().val64();
m_id[1] = 0;
return *this;
}
UniqueID128(const hecl::ProjectPath& path) {*this = path;}
bool operator!=(const UniqueID128& other) const
{
#if __SSE__
__m128i vcmp = _mm_cmpeq_epi32(m_id128, other.m_id128);
int vmask = _mm_movemask_epi8(vcmp);
return vmask != 0xffff;
#else
return (m_id[0] != other.m_id[0]) || (m_id[1] != other.m_id[1]);
#endif
}
bool operator==(const UniqueID128& other) const
{
#if __SSE__
__m128i vcmp = _mm_cmpeq_epi32(m_id128, other.m_id128);
int vmask = _mm_movemask_epi8(vcmp);
return vmask == 0xffff;
#else
return (m_id[0] == other.m_id[0]) && (m_id[1] == other.m_id[1]);
#endif
}
void clear() {m_id[0] = 0xffffffffffffffff; m_id[1] = 0xffffffffffffffff;}
uint64_t toUint64() const {return m_id[0];}
uint64_t toHighUint64() const {return m_id[0];}
uint64_t toLowUint64() const {return m_id[1];}
std::string toString() const;
static constexpr size_t BinarySize() {return 16;}
};
/** Word Bitmap reader/writer */
class WordBitmap
{
std::vector<atUint32> m_words;
size_t m_bitCount = 0;
public:
void read(athena::io::IStreamReader& reader, size_t bitCount);
void write(athena::io::IStreamWriter& writer) const;
void reserve(size_t bitCount) { m_words.reserve((bitCount + 31) / 32); }
size_t binarySize(size_t __isz) const;
size_t getBitCount() const {return m_bitCount;}
bool getBit(size_t idx) const
{
size_t wordIdx = idx / 32;
if (wordIdx >= m_words.size())
return false;
size_t wordCur = idx % 32;
return (m_words[wordIdx] >> wordCur) & 0x1;
}
void setBit(size_t idx)
{
size_t wordIdx = idx / 32;
while (wordIdx >= m_words.size())
m_words.push_back(0);
size_t wordCur = idx % 32;
m_words[wordIdx] |= (1 << wordCur);
m_bitCount = std::max(m_bitCount, idx + 1);
}
void unsetBit(size_t idx)
{
size_t wordIdx = idx / 32;
while (wordIdx >= m_words.size())
m_words.push_back(0);
size_t wordCur = idx % 32;
m_words[wordIdx] &= ~(1 << wordCur);
m_bitCount = std::max(m_bitCount, idx + 1);
}
void clear() { m_words.clear(); m_bitCount = 0; }
class Iterator
{
friend class WordBitmap;
const WordBitmap& m_bmp;
size_t m_idx = 0;
Iterator(const WordBitmap& bmp, size_t idx) : m_bmp(bmp), m_idx(idx) {}
public:
using iterator_category = std::forward_iterator_tag;
using value_type = bool;
using difference_type = std::ptrdiff_t;
using pointer = bool*;
using reference = bool&;
Iterator& operator++() {++m_idx; return *this;}
bool operator*() {return m_bmp.getBit(m_idx);}
bool operator!=(const Iterator& other) const {return m_idx != other.m_idx;}
};
Iterator begin() const {return Iterator(*this, 0);}
Iterator end() const {return Iterator(*this, m_bitCount);}
};
/** Resource cooker function */
typedef std::function<bool(const hecl::ProjectPath&, const hecl::ProjectPath&)> ResCooker;
}
/* Hash template-specializations for UniqueID types */
namespace std
{
template<>
struct hash<DataSpec::DNAFourCC>
{
size_t operator()(const DataSpec::DNAFourCC& fcc) const
{return fcc.toUint32();}
};
template<>
struct hash<DataSpec::UniqueID32>
{
size_t operator()(const DataSpec::UniqueID32& id) const
{return id.toUint32();}
};
template<>
struct hash<DataSpec::UniqueID64>
{
size_t operator()(const DataSpec::UniqueID64& id) const
{return id.toUint64();}
};
template<>
struct hash<DataSpec::UniqueID128>
{
size_t operator()(const DataSpec::UniqueID128& id) const
{return id.toHighUint64() ^ id.toLowUint64();}
};
}
#endif // __DNA_COMMON_HPP__