metaforce/hecl/lib/Blender/Connection.cpp

2225 lines
66 KiB
C++

#include <cerrno>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <cinttypes>
#include <signal.h>
#include <system_error>
#include <string>
#include <algorithm>
#include <chrono>
#include <thread>
#include <mutex>
#include <hecl/hecl.hpp>
#include <hecl/Database.hpp>
#include "logvisor/logvisor.hpp"
#include "hecl/Blender/Connection.hpp"
#include "hecl/SteamFinder.hpp"
#if _WIN32
#include <io.h>
#include <fcntl.h>
#else
#include <unistd.h>
#if __linux__ || __APPLE__
extern "C" int rep_closefrom(int lower);
#define closefrom rep_closefrom
#endif
#endif
#undef min
#undef max
namespace std {
template <>
struct hash<std::pair<uint32_t, uint32_t>> {
size_t operator()(const std::pair<uint32_t, uint32_t>& val) const noexcept {
/* this will potentially truncate the second value if 32-bit size_t,
* however, its application here is intended to operate in 16-bit indices */
return val.first | (val.second << 16);
}
};
} // namespace std
using namespace std::literals;
namespace hecl::blender {
logvisor::Module BlenderLog("hecl::blender::Connection");
Token SharedBlenderToken;
#ifdef __APPLE__
#define DEFAULT_BLENDER_BIN "/Applications/Blender.app/Contents/MacOS/blender"
#else
#define DEFAULT_BLENDER_BIN "blender"
#endif
extern "C" uint8_t HECL_BLENDERSHELL[];
extern "C" size_t HECL_BLENDERSHELL_SZ;
extern "C" uint8_t HECL_ADDON[];
extern "C" size_t HECL_ADDON_SZ;
extern "C" uint8_t HECL_STARTUP[];
extern "C" size_t HECL_STARTUP_SZ;
static void InstallBlendershell(const SystemChar* path) {
FILE* fp = hecl::Fopen(path, _SYS_STR("w"));
if (!fp)
BlenderLog.report(logvisor::Fatal, _SYS_STR("unable to open %s for writing"), path);
fwrite(HECL_BLENDERSHELL, 1, HECL_BLENDERSHELL_SZ, fp);
fclose(fp);
}
static void InstallAddon(const SystemChar* path) {
FILE* fp = hecl::Fopen(path, _SYS_STR("wb"));
if (!fp)
BlenderLog.report(logvisor::Fatal, _SYS_STR("Unable to install blender addon at '%s'"), path);
fwrite(HECL_ADDON, 1, HECL_ADDON_SZ, fp);
fclose(fp);
}
static void InstallStartup(const char* path) {
FILE* fp = fopen(path, "wb");
if (!fp)
BlenderLog.report(logvisor::Fatal, "Unable to place hecl_startup.blend at '%s'", path);
fwrite(HECL_STARTUP, 1, HECL_STARTUP_SZ, fp);
fclose(fp);
}
static int Read(int fd, void* buf, size_t size) {
int intrCount = 0;
do {
auto ret = read(fd, buf, size);
if (ret < 0) {
if (errno == EINTR)
++intrCount;
else
return -1;
} else
return ret;
} while (intrCount < 1000);
return -1;
}
static int Write(int fd, const void* buf, size_t size) {
int intrCount = 0;
do {
auto ret = write(fd, buf, size);
if (ret < 0) {
if (errno == EINTR)
++intrCount;
else
return -1;
} else
return ret;
} while (intrCount < 1000);
return -1;
}
uint32_t Connection::_readStr(char* buf, uint32_t bufSz) {
uint32_t readLen;
int ret = Read(m_readpipe[0], &readLen, 4);
if (ret < 4) {
BlenderLog.report(logvisor::Error, "Pipe error %d %s", ret, strerror(errno));
_blenderDied();
return 0;
}
if (readLen >= bufSz) {
BlenderLog.report(logvisor::Fatal, "Pipe buffer overrun [%d/%d]", readLen, bufSz);
*buf = '\0';
return 0;
}
ret = Read(m_readpipe[0], buf, readLen);
if (ret < 0) {
BlenderLog.report(logvisor::Fatal, strerror(errno));
return 0;
} else if (readLen >= 9) {
if (!memcmp(buf, "EXCEPTION", std::min(readLen, uint32_t(9)))) {
_blenderDied();
return 0;
}
}
*(buf + readLen) = '\0';
return readLen;
}
uint32_t Connection::_writeStr(const char* buf, uint32_t len, int wpipe) {
int ret, nlerr;
nlerr = Write(wpipe, &len, 4);
if (nlerr < 4)
goto err;
ret = Write(wpipe, buf, len);
if (ret < 0)
goto err;
return (uint32_t)ret;
err:
_blenderDied();
return 0;
}
size_t Connection::_readBuf(void* buf, size_t len) {
uint8_t* cBuf = reinterpret_cast<uint8_t*>(buf);
size_t readLen = 0;
do {
int ret = Read(m_readpipe[0], cBuf, len);
if (ret < 0)
goto err;
if (len >= 9)
if (!memcmp((char*)cBuf, "EXCEPTION", std::min(len, size_t(9))))
_blenderDied();
readLen += ret;
cBuf += ret;
len -= ret;
} while (len);
return readLen;
err:
_blenderDied();
return 0;
}
size_t Connection::_writeBuf(const void* buf, size_t len) {
const uint8_t* cBuf = reinterpret_cast<const uint8_t*>(buf);
size_t writeLen = 0;
do {
int ret = Write(m_writepipe[1], cBuf, len);
if (ret < 0)
goto err;
writeLen += ret;
cBuf += ret;
len -= ret;
} while (len);
return writeLen;
err:
_blenderDied();
return 0;
}
void Connection::_closePipe() {
close(m_readpipe[0]);
close(m_writepipe[1]);
#ifdef _WIN32
CloseHandle(m_pinfo.hProcess);
CloseHandle(m_pinfo.hThread);
m_consoleThreadRunning = false;
if (m_consoleThread.joinable())
m_consoleThread.join();
#endif
}
void Connection::_blenderDied() {
std::this_thread::sleep_for(std::chrono::milliseconds(100));
FILE* errFp = hecl::Fopen(m_errPath.c_str(), _SYS_STR("r"));
if (errFp) {
fseek(errFp, 0, SEEK_END);
int64_t len = hecl::FTell(errFp);
if (len) {
fseek(errFp, 0, SEEK_SET);
std::unique_ptr<char[]> buf(new char[len + 1]);
memset(buf.get(), 0, len + 1);
fread(buf.get(), 1, len, errFp);
BlenderLog.report(logvisor::Fatal, "\n%.*s", int(len), buf.get());
}
}
BlenderLog.report(logvisor::Fatal, "Blender Exception");
}
static std::atomic_bool BlenderFirstInit(false);
static bool RegFileExists(const hecl::SystemChar* path) {
if (!path)
return false;
hecl::Sstat theStat;
return !hecl::Stat(path, &theStat) && S_ISREG(theStat.st_mode);
}
Connection::Connection(int verbosityLevel) {
#if !WINDOWS_STORE
if (hecl::VerbosityLevel >= 1)
BlenderLog.report(logvisor::Info, "Establishing BlenderConnection...");
/* Put hecl_blendershell.py in temp dir */
const SystemChar* TMPDIR = GetTmpDir();
#ifdef _WIN32
m_startupBlend = hecl::WideToUTF8(TMPDIR);
#else
signal(SIGPIPE, SIG_IGN);
m_startupBlend = TMPDIR;
#endif
hecl::SystemString blenderShellPath(TMPDIR);
blenderShellPath += _SYS_STR("/hecl_blendershell.py");
hecl::SystemString blenderAddonPath(TMPDIR);
blenderAddonPath += _SYS_STR("/hecl_blenderaddon.zip");
m_startupBlend += "/hecl_startup.blend";
bool FalseCmp = false;
if (BlenderFirstInit.compare_exchange_strong(FalseCmp, true)) {
InstallBlendershell(blenderShellPath.c_str());
InstallAddon(blenderAddonPath.c_str());
InstallStartup(m_startupBlend.c_str());
}
int installAttempt = 0;
while (true) {
/* Construct communication pipes */
#if _WIN32
_pipe(m_readpipe, 2048, _O_BINARY);
_pipe(m_writepipe, 2048, _O_BINARY);
HANDLE writehandle = HANDLE(_get_osfhandle(m_writepipe[0]));
SetHandleInformation(writehandle, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT);
HANDLE readhandle = HANDLE(_get_osfhandle(m_readpipe[1]));
SetHandleInformation(readhandle, HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT);
SECURITY_ATTRIBUTES sattrs = {sizeof(SECURITY_ATTRIBUTES), NULL, TRUE};
HANDLE consoleOutReadTmp, consoleOutWrite, consoleErrWrite, consoleOutRead;
if (!CreatePipe(&consoleOutReadTmp, &consoleOutWrite, &sattrs, 0))
BlenderLog.report(logvisor::Fatal, "Error with CreatePipe");
if (!DuplicateHandle(GetCurrentProcess(), consoleOutWrite, GetCurrentProcess(), &consoleErrWrite, 0, TRUE,
DUPLICATE_SAME_ACCESS))
BlenderLog.report(logvisor::Fatal, "Error with DuplicateHandle");
if (!DuplicateHandle(GetCurrentProcess(), consoleOutReadTmp, GetCurrentProcess(),
&consoleOutRead, // Address of new handle.
0, FALSE, // Make it uninheritable.
DUPLICATE_SAME_ACCESS))
BlenderLog.report(logvisor::Fatal, "Error with DupliateHandle");
if (!CloseHandle(consoleOutReadTmp))
BlenderLog.report(logvisor::Fatal, "Error with CloseHandle");
#else
pipe(m_readpipe);
pipe(m_writepipe);
#endif
/* User-specified blender path */
#if _WIN32
wchar_t BLENDER_BIN_BUF[2048];
const wchar_t* blenderBin = _wgetenv(L"BLENDER_BIN");
#else
const char* blenderBin = getenv("BLENDER_BIN");
#endif
/* Steam blender */
hecl::SystemString steamBlender;
/* Child process of blender */
#if _WIN32
if (!blenderBin || !RegFileExists(blenderBin)) {
/* Environment not set; try steam */
steamBlender = hecl::FindCommonSteamApp(_SYS_STR("Blender"));
if (steamBlender.size()) {
steamBlender += _SYS_STR("\\blender.exe");
blenderBin = steamBlender.c_str();
}
if (!RegFileExists(blenderBin)) {
/* No steam; try default */
wchar_t progFiles[256];
if (!GetEnvironmentVariableW(L"ProgramFiles", progFiles, 256))
BlenderLog.report(logvisor::Fatal, L"unable to determine 'Program Files' path");
_snwprintf(BLENDER_BIN_BUF, 2048, L"%s\\Blender Foundation\\Blender\\blender.exe", progFiles);
blenderBin = BLENDER_BIN_BUF;
if (!RegFileExists(blenderBin))
BlenderLog.report(logvisor::Fatal, L"unable to find blender.exe");
}
}
wchar_t cmdLine[2048];
_snwprintf(cmdLine, 2048, L" --background -P \"%s\" -- %" PRIuPTR " %" PRIuPTR " %d \"%s\"",
blenderShellPath.c_str(), uintptr_t(writehandle), uintptr_t(readhandle), verbosityLevel,
blenderAddonPath.c_str());
STARTUPINFO sinfo = {sizeof(STARTUPINFO)};
HANDLE nulHandle = CreateFileW(L"nul", GENERIC_WRITE, FILE_SHARE_READ | FILE_SHARE_WRITE, &sattrs, OPEN_EXISTING,
FILE_ATTRIBUTE_NORMAL, NULL);
sinfo.dwFlags = STARTF_USESTDHANDLES;
sinfo.hStdInput = nulHandle;
if (verbosityLevel == 0) {
sinfo.hStdError = nulHandle;
sinfo.hStdOutput = nulHandle;
} else {
sinfo.hStdError = consoleErrWrite;
sinfo.hStdOutput = consoleOutWrite;
}
if (!CreateProcessW(blenderBin, cmdLine, NULL, NULL, TRUE, NORMAL_PRIORITY_CLASS, NULL, NULL, &sinfo, &m_pinfo)) {
LPWSTR messageBuffer = nullptr;
FormatMessageW(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS, NULL,
GetLastError(), MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPWSTR)&messageBuffer, 0, NULL);
BlenderLog.report(logvisor::Fatal, L"unable to launch blender from %s: %s", blenderBin, messageBuffer);
}
close(m_writepipe[0]);
close(m_readpipe[1]);
CloseHandle(nulHandle);
CloseHandle(consoleErrWrite);
CloseHandle(consoleOutWrite);
m_consoleThreadRunning = true;
m_consoleThread = std::thread([=]() {
CHAR lpBuffer[256];
DWORD nBytesRead;
DWORD nCharsWritten;
while (m_consoleThreadRunning) {
if (!ReadFile(consoleOutRead, lpBuffer, sizeof(lpBuffer), &nBytesRead, NULL) || !nBytesRead) {
DWORD err = GetLastError();
if (err == ERROR_BROKEN_PIPE)
break; // pipe done - normal exit path.
else
BlenderLog.report(logvisor::Error, "Error with ReadFile: %08X", err); // Something bad happened.
}
// Display the character read on the screen.
auto lk = logvisor::LockLog();
if (!WriteConsoleA(GetStdHandle(STD_OUTPUT_HANDLE), lpBuffer, nBytesRead, &nCharsWritten, NULL)) {
// BlenderLog.report(logvisor::Error, "Error with WriteConsole: %08X", GetLastError());
}
}
CloseHandle(consoleOutRead);
});
#else
pid_t pid = fork();
if (!pid) {
/* Close all file descriptors besides those this blender instance uses */
int upper_fd = std::max(m_writepipe[0], m_readpipe[1]);
for (int i = 3; i < upper_fd; ++i) {
if (i != m_writepipe[0] && i != m_readpipe[1])
close(i);
}
closefrom(upper_fd + 1);
if (verbosityLevel == 0) {
int devNull = open("/dev/null", O_WRONLY);
dup2(devNull, STDOUT_FILENO);
dup2(devNull, STDERR_FILENO);
close(devNull);
}
char errbuf[256];
char readfds[32];
snprintf(readfds, 32, "%d", m_writepipe[0]);
char writefds[32];
snprintf(writefds, 32, "%d", m_readpipe[1]);
char vLevel[32];
snprintf(vLevel, 32, "%d", verbosityLevel);
/* Try user-specified blender first */
if (blenderBin) {
execlp(blenderBin, blenderBin, "--background", "-P", blenderShellPath.c_str(), "--", readfds, writefds, vLevel,
blenderAddonPath.c_str(), NULL);
if (errno != ENOENT) {
snprintf(errbuf, 256, "NOLAUNCH %s", strerror(errno));
_writeStr(errbuf, strlen(errbuf), m_readpipe[1]);
exit(1);
}
}
/* Try steam */
steamBlender = hecl::FindCommonSteamApp(_SYS_STR("Blender"));
if (steamBlender.size()) {
#ifdef __APPLE__
steamBlender += "/blender.app/Contents/MacOS/blender";
#else
steamBlender += "/blender";
#endif
blenderBin = steamBlender.c_str();
execlp(blenderBin, blenderBin, "--background", "-P", blenderShellPath.c_str(), "--", readfds, writefds, vLevel,
blenderAddonPath.c_str(), NULL);
if (errno != ENOENT) {
snprintf(errbuf, 256, "NOLAUNCH %s", strerror(errno));
_writeStr(errbuf, strlen(errbuf), m_readpipe[1]);
exit(1);
}
}
/* Otherwise default blender */
execlp(DEFAULT_BLENDER_BIN, DEFAULT_BLENDER_BIN, "--background", "-P", blenderShellPath.c_str(), "--", readfds,
writefds, vLevel, blenderAddonPath.c_str(), NULL);
if (errno != ENOENT) {
snprintf(errbuf, 256, "NOLAUNCH %s", strerror(errno));
_writeStr(errbuf, strlen(errbuf), m_readpipe[1]);
exit(1);
}
/* Unable to find blender */
_writeStr("NOBLENDER", 9, m_readpipe[1]);
exit(1);
}
close(m_writepipe[0]);
close(m_readpipe[1]);
m_blenderProc = pid;
#endif
/* Stash error path and unlink existing file */
#if _WIN32
m_errPath = hecl::SystemString(TMPDIR) +
hecl::SysFormat(_SYS_STR("/hecl_%016llX.derp"), (unsigned long long)m_pinfo.dwProcessId);
#else
m_errPath =
hecl::SystemString(TMPDIR) + hecl::SysFormat(_SYS_STR("/hecl_%016llX.derp"), (unsigned long long)m_blenderProc);
#endif
hecl::Unlink(m_errPath.c_str());
/* Handle first response */
char lineBuf[256];
_readStr(lineBuf, sizeof(lineBuf));
if (!strncmp(lineBuf, "NOLAUNCH", 8)) {
_closePipe();
BlenderLog.report(logvisor::Fatal, "Unable to launch blender: %s", lineBuf + 9);
} else if (!strncmp(lineBuf, "NOBLENDER", 9)) {
_closePipe();
if (blenderBin)
BlenderLog.report(logvisor::Fatal, _SYS_STR("Unable to find blender at '%s' or '%s'"), blenderBin,
DEFAULT_BLENDER_BIN);
else
BlenderLog.report(logvisor::Fatal, _SYS_STR("Unable to find blender at '%s'"), DEFAULT_BLENDER_BIN);
} else if (!strcmp(lineBuf, "NOADDON")) {
_closePipe();
InstallAddon(blenderAddonPath.c_str());
++installAttempt;
if (installAttempt >= 2)
BlenderLog.report(logvisor::Fatal, _SYS_STR("unable to install blender addon using '%s'"),
blenderAddonPath.c_str());
continue;
} else if (!strcmp(lineBuf, "ADDONINSTALLED")) {
_closePipe();
blenderAddonPath = _SYS_STR("SKIPINSTALL");
continue;
} else if (strcmp(lineBuf, "READY")) {
_closePipe();
BlenderLog.report(logvisor::Fatal, "read '%s' from blender; expected 'READY'", lineBuf);
}
_writeStr("ACK");
_readStr(lineBuf, 7);
if (!strcmp(lineBuf, "SLERP0"))
m_hasSlerp = false;
else if (!strcmp(lineBuf, "SLERP1"))
m_hasSlerp = true;
else {
_closePipe();
BlenderLog.report(logvisor::Fatal, "read '%s' from blender; expected 'SLERP(0|1)'", lineBuf);
}
break;
}
#else
BlenderLog.report(logvisor::Fatal, "BlenderConnection not available on UWP");
#endif
}
Connection::~Connection() { _closePipe(); }
void Vector2f::read(Connection& conn) { conn._readBuf(&val, 8); }
void Vector3f::read(Connection& conn) { conn._readBuf(&val, 12); }
void Vector4f::read(Connection& conn) { conn._readBuf(&val, 16); }
void Matrix4f::read(Connection& conn) { conn._readBuf(&val, 64); }
void Index::read(Connection& conn) { conn._readBuf(&val, 4); }
std::streambuf::int_type PyOutStream::StreamBuf::overflow(int_type ch) {
if (!m_parent.m_parent || !m_parent.m_parent->m_lock)
BlenderLog.report(logvisor::Fatal, "lock not held for PyOutStream writing");
if (ch != traits_type::eof() && ch != '\n' && ch != '\0') {
m_lineBuf += char_type(ch);
return ch;
}
// printf("FLUSHING %s\n", m_lineBuf.c_str());
m_parent.m_parent->_writeStr(m_lineBuf.c_str());
char readBuf[16];
m_parent.m_parent->_readStr(readBuf, 16);
if (strcmp(readBuf, "OK")) {
if (m_deleteOnError)
m_parent.m_parent->deleteBlend();
m_parent.m_parent->_blenderDied();
}
m_lineBuf.clear();
return ch;
}
static const char* BlendTypeStrs[] = {"NONE", "MESH", "CMESH", "ACTOR", "AREA", "WORLD",
"MAPAREA", "MAPUNIVERSE", "FRAME", "PATH", nullptr};
bool Connection::createBlend(const ProjectPath& path, BlendType type) {
if (m_lock) {
BlenderLog.report(logvisor::Fatal, "BlenderConnection::createBlend() musn't be called with stream active");
return false;
}
_writeStr(("CREATE \""s + path.getAbsolutePathUTF8().data() + "\" " + BlendTypeStrs[int(type)] + " \"" +
m_startupBlend + "\"")
.c_str());
char lineBuf[256];
_readStr(lineBuf, sizeof(lineBuf));
if (!strcmp(lineBuf, "FINISHED")) {
/* Delete immediately in case save doesn't occur */
hecl::Unlink(path.getAbsolutePath().data());
m_loadedBlend = path;
m_loadedType = type;
return true;
}
return false;
}
bool Connection::openBlend(const ProjectPath& path, bool force) {
if (m_lock) {
BlenderLog.report(logvisor::Fatal, "BlenderConnection::openBlend() musn't be called with stream active");
return false;
}
if (!force && path == m_loadedBlend)
return true;
_writeStr(("OPEN \""s + path.getAbsolutePathUTF8().data() + "\"").c_str());
char lineBuf[256];
_readStr(lineBuf, sizeof(lineBuf));
if (!strcmp(lineBuf, "FINISHED")) {
m_loadedBlend = path;
_writeStr("GETTYPE");
_readStr(lineBuf, sizeof(lineBuf));
m_loadedType = BlendType::None;
unsigned idx = 0;
while (BlendTypeStrs[idx]) {
if (!strcmp(BlendTypeStrs[idx], lineBuf)) {
m_loadedType = BlendType(idx);
break;
}
++idx;
}
m_loadedRigged = false;
if (m_loadedType == BlendType::Mesh) {
_writeStr("GETMESHRIGGED");
_readStr(lineBuf, sizeof(lineBuf));
if (!strcmp("TRUE", lineBuf))
m_loadedRigged = true;
}
return true;
}
return false;
}
bool Connection::saveBlend() {
if (m_lock) {
BlenderLog.report(logvisor::Fatal, "BlenderConnection::saveBlend() musn't be called with stream active");
return false;
}
_writeStr("SAVE");
char lineBuf[256];
_readStr(lineBuf, sizeof(lineBuf));
if (!strcmp(lineBuf, "FINISHED"))
return true;
return false;
}
void Connection::deleteBlend() {
if (m_loadedBlend) {
hecl::Unlink(m_loadedBlend.getAbsolutePath().data());
BlenderLog.report(logvisor::Info, _SYS_STR("Deleted '%s'"), m_loadedBlend.getAbsolutePath().data());
m_loadedBlend = ProjectPath();
}
}
PyOutStream::PyOutStream(Connection* parent, bool deleteOnError)
: std::ostream(&m_sbuf), m_parent(parent), m_sbuf(*this, deleteOnError) {
m_parent->m_pyStreamActive = true;
m_parent->_writeStr("PYBEGIN");
char readBuf[16];
m_parent->_readStr(readBuf, 16);
if (strcmp(readBuf, "READY"))
BlenderLog.report(logvisor::Fatal, "unable to open PyOutStream with blender");
}
void PyOutStream::close() {
if (m_parent && m_parent->m_lock) {
m_parent->_writeStr("PYEND");
char readBuf[16];
m_parent->_readStr(readBuf, 16);
if (strcmp(readBuf, "DONE"))
BlenderLog.report(logvisor::Fatal, "unable to close PyOutStream with blender");
m_parent->m_pyStreamActive = false;
m_parent->m_lock = false;
}
}
#if __GNUC__
__attribute__((__format__ (__printf__, 2, 3)))
#endif
void PyOutStream::format(const char* fmt, ...)
{
if (!m_parent || !m_parent->m_lock)
BlenderLog.report(logvisor::Fatal, "lock not held for PyOutStream::format()");
va_list ap;
va_start(ap, fmt);
char* result = nullptr;
#ifdef _WIN32
int length = _vscprintf(fmt, ap);
result = (char*)malloc(length);
vsnprintf(result, length, fmt, ap);
#else
int length = vasprintf(&result, fmt, ap);
#endif
va_end(ap);
if (length > 0)
this->write(result, length);
free(result);
}
void PyOutStream::linkBlend(const char* target, const char* objName, bool link) {
format(
"if '%s' not in bpy.data.scenes:\n"
" with bpy.data.libraries.load('''%s''', link=%s, relative=True) as (data_from, data_to):\n"
" data_to.scenes = data_from.scenes\n"
" obj_scene = None\n"
" for scene in data_to.scenes:\n"
" if scene.name == '%s':\n"
" obj_scene = scene\n"
" break\n"
" if not obj_scene:\n"
" raise RuntimeError('''unable to find %s in %s. try deleting it and restart the extract.''')\n"
" obj = None\n"
" for object in obj_scene.objects:\n"
" if object.name == obj_scene.name:\n"
" obj = object\n"
"else:\n"
" obj = bpy.data.objects['%s']\n"
"\n",
objName, target, link ? "True" : "False", objName, objName, target, objName);
}
void PyOutStream::linkBackground(const char* target, const char* sceneName) {
if (!sceneName) {
format(
"with bpy.data.libraries.load('''%s''', link=True, relative=True) as (data_from, data_to):\n"
" data_to.scenes = data_from.scenes\n"
"obj_scene = None\n"
"for scene in data_to.scenes:\n"
" obj_scene = scene\n"
" break\n"
"if not obj_scene:\n"
" raise RuntimeError('''unable to find %s. try deleting it and restart the extract.''')\n"
"\n"
"bpy.context.scene.background_set = obj_scene\n",
target, target);
} else {
format(
"if '%s' not in bpy.data.scenes:\n"
" with bpy.data.libraries.load('''%s''', link=True, relative=True) as (data_from, data_to):\n"
" data_to.scenes = data_from.scenes\n"
" obj_scene = None\n"
" for scene in data_to.scenes:\n"
" if scene.name == '%s':\n"
" obj_scene = scene\n"
" break\n"
" if not obj_scene:\n"
" raise RuntimeError('''unable to find %s in %s. try deleting it and restart the extract.''')\n"
"\n"
"bpy.context.scene.background_set = bpy.data.scenes['%s']\n",
sceneName, target, sceneName, sceneName, target, sceneName);
}
}
void PyOutStream::AABBToBMesh(const atVec3f& min, const atVec3f& max) {
athena::simd_floats minf(min.simd);
athena::simd_floats maxf(max.simd);
format(
"bm = bmesh.new()\n"
"bm.verts.new((%f,%f,%f))\n"
"bm.verts.new((%f,%f,%f))\n"
"bm.verts.new((%f,%f,%f))\n"
"bm.verts.new((%f,%f,%f))\n"
"bm.verts.new((%f,%f,%f))\n"
"bm.verts.new((%f,%f,%f))\n"
"bm.verts.new((%f,%f,%f))\n"
"bm.verts.new((%f,%f,%f))\n"
"bm.verts.ensure_lookup_table()\n"
"bm.edges.new((bm.verts[0], bm.verts[1]))\n"
"bm.edges.new((bm.verts[0], bm.verts[2]))\n"
"bm.edges.new((bm.verts[0], bm.verts[4]))\n"
"bm.edges.new((bm.verts[3], bm.verts[1]))\n"
"bm.edges.new((bm.verts[3], bm.verts[2]))\n"
"bm.edges.new((bm.verts[3], bm.verts[7]))\n"
"bm.edges.new((bm.verts[5], bm.verts[1]))\n"
"bm.edges.new((bm.verts[5], bm.verts[4]))\n"
"bm.edges.new((bm.verts[5], bm.verts[7]))\n"
"bm.edges.new((bm.verts[6], bm.verts[2]))\n"
"bm.edges.new((bm.verts[6], bm.verts[4]))\n"
"bm.edges.new((bm.verts[6], bm.verts[7]))\n",
minf[0], minf[1], minf[2], maxf[0], minf[1], minf[2], minf[0], maxf[1], minf[2], maxf[0], maxf[1], minf[2],
minf[0], minf[1], maxf[2], maxf[0], minf[1], maxf[2], minf[0], maxf[1], maxf[2], maxf[0], maxf[1], maxf[2]);
}
void PyOutStream::centerView() {
*this << "for obj in bpy.context.scene.objects:\n"
" if obj.type == 'CAMERA' or obj.type == 'LAMP':\n"
" obj.hide = True\n"
"\n"
"bpy.context.user_preferences.view.smooth_view = 0\n"
"for window in bpy.context.window_manager.windows:\n"
" screen = window.screen\n"
" for area in screen.areas:\n"
" if area.type == 'VIEW_3D':\n"
" for region in area.regions:\n"
" if region.type == 'WINDOW':\n"
" override = {'scene': bpy.context.scene, 'window': window, 'screen': screen, 'area': "
"area, 'region': region}\n"
" bpy.ops.view3d.view_all(override)\n"
" break\n"
"\n"
"for obj in bpy.context.scene.objects:\n"
" if obj.type == 'CAMERA' or obj.type == 'LAMP':\n"
" obj.hide = False\n";
}
ANIMOutStream::ANIMOutStream(Connection* parent) : m_parent(parent) {
m_parent->_writeStr("PYANIM");
char readBuf[16];
m_parent->_readStr(readBuf, 16);
if (strcmp(readBuf, "ANIMREADY"))
BlenderLog.report(logvisor::Fatal, "unable to open ANIMOutStream");
}
ANIMOutStream::~ANIMOutStream() {
char tp = -1;
m_parent->_writeBuf(&tp, 1);
char readBuf[16];
m_parent->_readStr(readBuf, 16);
if (strcmp(readBuf, "ANIMDONE"))
BlenderLog.report(logvisor::Fatal, "unable to close ANIMOutStream");
}
void ANIMOutStream::changeCurve(CurveType type, unsigned crvIdx, unsigned keyCount) {
if (m_curCount != m_totalCount)
BlenderLog.report(logvisor::Fatal, "incomplete ANIMOutStream for change");
m_curCount = 0;
m_totalCount = keyCount;
char tp = char(type);
m_parent->_writeBuf(&tp, 1);
struct {
uint32_t ci;
uint32_t kc;
} info = {uint32_t(crvIdx), uint32_t(keyCount)};
m_parent->_writeBuf(reinterpret_cast<const char*>(&info), 8);
m_inCurve = true;
}
void ANIMOutStream::write(unsigned frame, float val) {
if (!m_inCurve)
BlenderLog.report(logvisor::Fatal, "changeCurve not called before write");
if (m_curCount < m_totalCount) {
struct {
uint32_t frm;
float val;
} key = {uint32_t(frame), val};
m_parent->_writeBuf(reinterpret_cast<const char*>(&key), 8);
++m_curCount;
} else
BlenderLog.report(logvisor::Fatal, "ANIMOutStream keyCount overflow");
}
Mesh::SkinBind::SkinBind(Connection& conn) { conn._readBuf(&boneIdx, 8); }
void Mesh::normalizeSkinBinds() {
for (std::vector<SkinBind>& skin : skins) {
float accum = 0.f;
for (const SkinBind& bind : skin)
accum += bind.weight;
if (accum > FLT_EPSILON) {
for (SkinBind& bind : skin)
bind.weight /= accum;
}
}
}
Mesh::Mesh(Connection& conn, HMDLTopology topologyIn, int skinSlotCount, SurfProgFunc& surfProg)
: topology(topologyIn), sceneXf(conn), aabbMin(conn), aabbMax(conn) {
uint32_t matSetCount;
conn._readBuf(&matSetCount, 4);
materialSets.reserve(matSetCount);
for (uint32_t i = 0; i < matSetCount; ++i) {
materialSets.emplace_back();
std::vector<Material>& materials = materialSets.back();
uint32_t matCount;
conn._readBuf(&matCount, 4);
materials.reserve(matCount);
for (uint32_t i = 0; i < matCount; ++i)
materials.emplace_back(conn);
}
uint32_t count;
conn._readBuf(&count, 4);
pos.reserve(count);
for (uint32_t i = 0; i < count; ++i)
pos.emplace_back(conn);
conn._readBuf(&count, 4);
norm.reserve(count);
for (uint32_t i = 0; i < count; ++i)
norm.emplace_back(conn);
conn._readBuf(&colorLayerCount, 4);
if (colorLayerCount > 4)
LogModule.report(logvisor::Fatal, "mesh has %u color-layers; max 4", colorLayerCount);
conn._readBuf(&count, 4);
color.reserve(count);
for (uint32_t i = 0; i < count; ++i)
color.emplace_back(conn);
conn._readBuf(&uvLayerCount, 4);
if (uvLayerCount > 8)
LogModule.report(logvisor::Fatal, "mesh has %u UV-layers; max 8", uvLayerCount);
conn._readBuf(&count, 4);
uv.reserve(count);
for (uint32_t i = 0; i < count; ++i)
uv.emplace_back(conn);
conn._readBuf(&luvLayerCount, 4);
if (luvLayerCount > 1)
LogModule.report(logvisor::Fatal, "mesh has %u LUV-layers; max 1", luvLayerCount);
conn._readBuf(&count, 4);
luv.reserve(count);
for (uint32_t i = 0; i < count; ++i)
luv.emplace_back(conn);
conn._readBuf(&count, 4);
boneNames.reserve(count);
for (uint32_t i = 0; i < count; ++i) {
char name[128];
conn._readStr(name, 128);
boneNames.emplace_back(name);
}
conn._readBuf(&count, 4);
skins.reserve(count);
for (uint32_t i = 0; i < count; ++i) {
skins.emplace_back();
std::vector<SkinBind>& binds = skins.back();
uint32_t bindCount;
conn._readBuf(&bindCount, 4);
binds.reserve(bindCount);
for (uint32_t j = 0; j < bindCount; ++j)
binds.emplace_back(conn);
}
normalizeSkinBinds();
/* Assume 16 islands per material for reserve */
if (materialSets.size())
surfaces.reserve(materialSets.front().size() * 16);
uint8_t isSurf;
conn._readBuf(&isSurf, 1);
int prog = 0;
while (isSurf) {
surfaces.emplace_back(conn, *this, skinSlotCount);
surfProg(++prog);
conn._readBuf(&isSurf, 1);
}
/* Custom properties */
uint32_t propCount;
conn._readBuf(&propCount, 4);
std::string keyBuf;
std::string valBuf;
for (uint32_t i = 0; i < propCount; ++i) {
uint32_t kLen;
conn._readBuf(&kLen, 4);
keyBuf.assign(kLen, '\0');
conn._readBuf(&keyBuf[0], kLen);
uint32_t vLen;
conn._readBuf(&vLen, 4);
valBuf.assign(vLen, '\0');
conn._readBuf(&valBuf[0], vLen);
customProps[keyBuf] = valBuf;
}
/* Connect skinned verts to bank slots */
if (boneNames.size()) {
for (Surface& surf : surfaces) {
SkinBanks::Bank& bank = skinBanks.banks[surf.skinBankIdx];
for (Surface::Vert& vert : surf.verts) {
if (vert.iPos == 0xffffffff)
continue;
for (uint32_t i = 0; i < bank.m_skinIdxs.size(); ++i) {
if (bank.m_skinIdxs[i] == vert.iSkin) {
vert.iBankSkin = i;
break;
}
}
}
}
}
}
Mesh Mesh::getContiguousSkinningVersion() const {
Mesh newMesh = *this;
newMesh.pos.clear();
newMesh.norm.clear();
newMesh.contiguousSkinVertCounts.clear();
newMesh.contiguousSkinVertCounts.reserve(skins.size());
for (size_t i = 0; i < skins.size(); ++i) {
std::unordered_map<std::pair<uint32_t, uint32_t>, uint32_t> contigMap;
size_t vertCount = 0;
for (Surface& surf : newMesh.surfaces) {
for (Surface::Vert& vert : surf.verts) {
if (vert.iPos == 0xffffffff)
continue;
if (vert.iSkin == i) {
auto key = std::make_pair(vert.iPos, vert.iNorm);
auto search = contigMap.find(key);
if (search != contigMap.end()) {
vert.iPos = search->second;
vert.iNorm = search->second;
} else {
uint32_t newIdx = newMesh.pos.size();
contigMap[key] = newIdx;
newMesh.pos.push_back(pos.at(vert.iPos));
newMesh.norm.push_back(norm.at(vert.iNorm));
vert.iPos = newIdx;
vert.iNorm = newIdx;
++vertCount;
}
}
}
}
newMesh.contiguousSkinVertCounts.push_back(vertCount);
}
return newMesh;
}
Material::Material(Connection& conn) {
uint32_t bufSz;
conn._readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
conn._readBuf(&name[0], bufSz);
conn._readBuf(&bufSz, 4);
source.assign(bufSz, ' ');
conn._readBuf(&source[0], bufSz);
uint32_t texCount;
conn._readBuf(&texCount, 4);
texs.reserve(texCount);
for (uint32_t i = 0; i < texCount; ++i) {
conn._readBuf(&bufSz, 4);
std::string readStr(bufSz, ' ');
conn._readBuf(&readStr[0], bufSz);
SystemStringConv absolute(readStr);
SystemString relative =
conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(absolute.sys_str());
texs.emplace_back(conn.getBlendPath().getProject().getProjectWorkingPath(), relative);
}
uint32_t iPropCount;
conn._readBuf(&iPropCount, 4);
iprops.reserve(iPropCount);
for (uint32_t i = 0; i < iPropCount; ++i) {
conn._readBuf(&bufSz, 4);
std::string readStr(bufSz, ' ');
conn._readBuf(&readStr[0], bufSz);
int32_t val;
conn._readBuf(&val, 4);
iprops[readStr] = val;
}
conn._readBuf(&transparent, 1);
}
Mesh::Surface::Surface(Connection& conn, Mesh& parent, int skinSlotCount)
: centroid(conn), materialIdx(conn), aabbMin(conn), aabbMax(conn), reflectionNormal(conn) {
uint32_t countEstimate;
conn._readBuf(&countEstimate, 4);
verts.reserve(countEstimate);
uint8_t isVert;
conn._readBuf(&isVert, 1);
while (isVert) {
verts.emplace_back(conn, parent);
conn._readBuf(&isVert, 1);
}
if (parent.boneNames.size())
skinBankIdx = parent.skinBanks.addSurface(parent, *this, skinSlotCount);
}
Mesh::Surface::Vert::Vert(Connection& conn, const Mesh& parent) {
conn._readBuf(&iPos, 4);
if (iPos == 0xffffffff)
return;
conn._readBuf(&iNorm, 4);
for (uint32_t i = 0; i < parent.colorLayerCount; ++i)
conn._readBuf(&iColor[i], 4);
for (uint32_t i = 0; i < parent.uvLayerCount; ++i)
conn._readBuf(&iUv[i], 4);
conn._readBuf(&iSkin, 4);
}
bool Mesh::Surface::Vert::operator==(const Vert& other) const {
if (iPos != other.iPos)
return false;
if (iNorm != other.iNorm)
return false;
for (int i = 0; i < 4; ++i)
if (iColor[i] != other.iColor[i])
return false;
for (int i = 0; i < 8; ++i)
if (iUv[i] != other.iUv[i])
return false;
if (iSkin != other.iSkin)
return false;
return true;
}
static bool VertInBank(const std::vector<uint32_t>& bank, uint32_t sIdx) {
for (uint32_t idx : bank)
if (sIdx == idx)
return true;
return false;
}
void Mesh::SkinBanks::Bank::addSkins(const Mesh& parent, const std::vector<uint32_t>& skinIdxs) {
for (uint32_t sidx : skinIdxs) {
m_skinIdxs.push_back(sidx);
for (const SkinBind& bind : parent.skins[sidx]) {
bool found = false;
for (uint32_t bidx : m_boneIdxs) {
if (bidx == bind.boneIdx) {
found = true;
break;
}
}
if (!found)
m_boneIdxs.push_back(bind.boneIdx);
}
}
}
size_t Mesh::SkinBanks::Bank::lookupLocalBoneIdx(uint32_t boneIdx) const {
for (size_t i = 0; i < m_boneIdxs.size(); ++i)
if (m_boneIdxs[i] == boneIdx)
return i;
return -1;
}
std::vector<Mesh::SkinBanks::Bank>::iterator Mesh::SkinBanks::addSkinBank(int skinSlotCount) {
banks.emplace_back();
if (skinSlotCount > 0)
banks.back().m_skinIdxs.reserve(skinSlotCount);
return banks.end() - 1;
}
uint32_t Mesh::SkinBanks::addSurface(const Mesh& mesh, const Surface& surf, int skinSlotCount) {
if (banks.empty())
addSkinBank(skinSlotCount);
std::vector<uint32_t> toAdd;
if (skinSlotCount > 0)
toAdd.reserve(skinSlotCount);
std::vector<Bank>::iterator bankIt = banks.begin();
for (;;) {
bool done = true;
for (; bankIt != banks.end(); ++bankIt) {
Bank& bank = *bankIt;
done = true;
for (const Surface::Vert& v : surf.verts) {
if (v.iPos == 0xffffffff)
continue;
if (!VertInBank(bank.m_skinIdxs, v.iSkin) && !VertInBank(toAdd, v.iSkin)) {
toAdd.push_back(v.iSkin);
if (skinSlotCount > 0 && bank.m_skinIdxs.size() + toAdd.size() > skinSlotCount) {
toAdd.clear();
done = false;
break;
}
}
}
if (toAdd.size()) {
bank.addSkins(mesh, toAdd);
toAdd.clear();
}
if (done)
return uint32_t(bankIt - banks.begin());
}
if (!done) {
bankIt = addSkinBank(skinSlotCount);
continue;
}
break;
}
return uint32_t(-1);
}
ColMesh::ColMesh(Connection& conn) {
uint32_t matCount;
conn._readBuf(&matCount, 4);
materials.reserve(matCount);
for (uint32_t i = 0; i < matCount; ++i)
materials.emplace_back(conn);
uint32_t count;
conn._readBuf(&count, 4);
verts.reserve(count);
for (uint32_t i = 0; i < count; ++i)
verts.emplace_back(conn);
conn._readBuf(&count, 4);
edges.reserve(count);
for (uint32_t i = 0; i < count; ++i)
edges.emplace_back(conn);
conn._readBuf(&count, 4);
trianges.reserve(count);
for (uint32_t i = 0; i < count; ++i)
trianges.emplace_back(conn);
}
ColMesh::Material::Material(Connection& conn) {
uint32_t nameLen;
conn._readBuf(&nameLen, 4);
if (nameLen) {
name.assign(nameLen, '\0');
conn._readBuf(&name[0], nameLen);
}
conn._readBuf(&unknown, 42);
}
ColMesh::Edge::Edge(Connection& conn) { conn._readBuf(this, 9); }
ColMesh::Triangle::Triangle(Connection& conn) { conn._readBuf(this, 17); }
World::Area::Dock::Dock(Connection& conn) {
verts[0].read(conn);
verts[1].read(conn);
verts[2].read(conn);
verts[3].read(conn);
targetArea.read(conn);
targetDock.read(conn);
}
World::Area::Area(Connection& conn) {
std::string name;
uint32_t nameLen;
conn._readBuf(&nameLen, 4);
if (nameLen) {
name.assign(nameLen, '\0');
conn._readBuf(&name[0], nameLen);
}
path.assign(conn.getBlendPath().getParentPath(), name);
aabb[0].read(conn);
aabb[1].read(conn);
transform.read(conn);
uint32_t dockCount;
conn._readBuf(&dockCount, 4);
docks.reserve(dockCount);
for (uint32_t i = 0; i < dockCount; ++i)
docks.emplace_back(conn);
}
World::World(Connection& conn) {
uint32_t areaCount;
conn._readBuf(&areaCount, 4);
areas.reserve(areaCount);
for (uint32_t i = 0; i < areaCount; ++i)
areas.emplace_back(conn);
}
Light::Light(Connection& conn) : sceneXf(conn), color(conn) {
conn._readBuf(&layer, 29);
uint32_t nameLen;
conn._readBuf(&nameLen, 4);
if (nameLen) {
name.assign(nameLen, '\0');
conn._readBuf(&name[0], nameLen);
}
}
MapArea::Surface::Surface(Connection& conn) {
centerOfMass.read(conn);
normal.read(conn);
conn._readBuf(&start, 8);
uint32_t borderCount;
conn._readBuf(&borderCount, 4);
borders.reserve(borderCount);
for (int i = 0; i < borderCount; ++i) {
borders.emplace_back();
std::pair<Index, Index>& idx = borders.back();
conn._readBuf(&idx, 8);
}
}
MapArea::POI::POI(Connection& conn) {
conn._readBuf(&type, 12);
xf.read(conn);
}
MapArea::MapArea(Connection& conn) {
visType.read(conn);
uint32_t vertCount;
conn._readBuf(&vertCount, 4);
verts.reserve(vertCount);
for (int i = 0; i < vertCount; ++i)
verts.emplace_back(conn);
uint8_t isIdx;
conn._readBuf(&isIdx, 1);
while (isIdx) {
indices.emplace_back(conn);
conn._readBuf(&isIdx, 1);
}
uint32_t surfCount;
conn._readBuf(&surfCount, 4);
surfaces.reserve(surfCount);
for (int i = 0; i < surfCount; ++i)
surfaces.emplace_back(conn);
uint32_t poiCount;
conn._readBuf(&poiCount, 4);
pois.reserve(poiCount);
for (int i = 0; i < poiCount; ++i)
pois.emplace_back(conn);
}
MapUniverse::World::World(Connection& conn) {
uint32_t nameLen;
conn._readBuf(&nameLen, 4);
if (nameLen) {
name.assign(nameLen, '\0');
conn._readBuf(&name[0], nameLen);
}
xf.read(conn);
uint32_t hexCount;
conn._readBuf(&hexCount, 4);
hexagons.reserve(hexCount);
for (int i = 0; i < hexCount; ++i)
hexagons.emplace_back(conn);
color.read(conn);
uint32_t pathLen;
conn._readBuf(&pathLen, 4);
if (pathLen) {
std::string path;
path.assign(pathLen, '\0');
conn._readBuf(&path[0], pathLen);
hecl::SystemStringConv sysPath(path);
worldPath.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), sysPath.sys_str());
}
}
MapUniverse::MapUniverse(Connection& conn) {
uint32_t pathLen;
conn._readBuf(&pathLen, 4);
if (pathLen) {
std::string path;
path.assign(pathLen, '\0');
conn._readBuf(&path[0], pathLen);
hecl::SystemStringConv sysPath(path);
SystemString pathRel =
conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(sysPath.sys_str());
hexagonPath.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), pathRel);
}
uint32_t worldCount;
conn._readBuf(&worldCount, 4);
worlds.reserve(worldCount);
for (int i = 0; i < worldCount; ++i)
worlds.emplace_back(conn);
}
Actor::Actor(Connection& conn) {
uint32_t armCount;
conn._readBuf(&armCount, 4);
armatures.reserve(armCount);
for (uint32_t i = 0; i < armCount; ++i)
armatures.emplace_back(conn);
uint32_t subtypeCount;
conn._readBuf(&subtypeCount, 4);
subtypes.reserve(subtypeCount);
for (uint32_t i = 0; i < subtypeCount; ++i)
subtypes.emplace_back(conn);
uint32_t attachmentCount;
conn._readBuf(&attachmentCount, 4);
attachments.reserve(attachmentCount);
for (uint32_t i = 0; i < attachmentCount; ++i)
attachments.emplace_back(conn);
uint32_t actionCount;
conn._readBuf(&actionCount, 4);
actions.reserve(actionCount);
for (uint32_t i = 0; i < actionCount; ++i)
actions.emplace_back(conn);
}
PathMesh::PathMesh(Connection& conn) {
uint32_t dataSize;
conn._readBuf(&dataSize, 4);
data.resize(dataSize);
conn._readBuf(data.data(), dataSize);
}
const Bone* Armature::lookupBone(const char* name) const {
for (const Bone& b : bones)
if (!b.name.compare(name))
return &b;
return nullptr;
}
const Bone* Armature::getParent(const Bone* bone) const {
if (bone->parent < 0)
return nullptr;
return &bones[bone->parent];
}
const Bone* Armature::getChild(const Bone* bone, size_t child) const {
if (child >= bone->children.size())
return nullptr;
int32_t cIdx = bone->children[child];
if (cIdx < 0)
return nullptr;
return &bones[cIdx];
}
const Bone* Armature::getRoot() const {
for (const Bone& b : bones)
if (b.parent < 0)
return &b;
return nullptr;
}
Armature::Armature(Connection& conn) {
uint32_t bufSz;
conn._readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
conn._readBuf(&name[0], bufSz);
uint32_t boneCount;
conn._readBuf(&boneCount, 4);
bones.reserve(boneCount);
for (uint32_t i = 0; i < boneCount; ++i)
bones.emplace_back(conn);
}
Bone::Bone(Connection& conn) {
uint32_t bufSz;
conn._readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
conn._readBuf(&name[0], bufSz);
origin.read(conn);
conn._readBuf(&parent, 4);
uint32_t childCount;
conn._readBuf(&childCount, 4);
children.reserve(childCount);
for (uint32_t i = 0; i < childCount; ++i) {
children.emplace_back(0);
conn._readBuf(&children.back(), 4);
}
}
Actor::Subtype::Subtype(Connection& conn) {
uint32_t bufSz;
conn._readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
conn._readBuf(&name[0], bufSz);
std::string meshPath;
conn._readBuf(&bufSz, 4);
if (bufSz) {
meshPath.assign(bufSz, ' ');
conn._readBuf(&meshPath[0], bufSz);
SystemStringConv meshPathAbs(meshPath);
SystemString meshPathRel =
conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(meshPathAbs.sys_str());
mesh.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), meshPathRel);
}
conn._readBuf(&armature, 4);
uint32_t overlayCount;
conn._readBuf(&overlayCount, 4);
overlayMeshes.reserve(overlayCount);
for (uint32_t i = 0; i < overlayCount; ++i) {
std::string overlayName;
conn._readBuf(&bufSz, 4);
overlayName.assign(bufSz, ' ');
conn._readBuf(&overlayName[0], bufSz);
std::string meshPath;
conn._readBuf(&bufSz, 4);
if (bufSz) {
meshPath.assign(bufSz, ' ');
conn._readBuf(&meshPath[0], bufSz);
SystemStringConv meshPathAbs(meshPath);
SystemString meshPathRel =
conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(meshPathAbs.sys_str());
overlayMeshes.emplace_back(std::move(overlayName),
ProjectPath(conn.getBlendPath().getProject().getProjectWorkingPath(), meshPathRel));
}
}
}
Actor::Attachment::Attachment(Connection& conn) {
uint32_t bufSz;
conn._readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
conn._readBuf(&name[0], bufSz);
std::string meshPath;
conn._readBuf(&bufSz, 4);
if (bufSz) {
meshPath.assign(bufSz, ' ');
conn._readBuf(&meshPath[0], bufSz);
SystemStringConv meshPathAbs(meshPath);
SystemString meshPathRel =
conn.getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(meshPathAbs.sys_str());
mesh.assign(conn.getBlendPath().getProject().getProjectWorkingPath(), meshPathRel);
}
conn._readBuf(&armature, 4);
}
Action::Action(Connection& conn) {
uint32_t bufSz;
conn._readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
conn._readBuf(&name[0], bufSz);
conn._readBuf(&interval, 4);
conn._readBuf(&additive, 1);
conn._readBuf(&looping, 1);
uint32_t frameCount;
conn._readBuf(&frameCount, 4);
frames.reserve(frameCount);
for (uint32_t i = 0; i < frameCount; ++i) {
frames.emplace_back();
conn._readBuf(&frames.back(), 4);
}
uint32_t chanCount;
conn._readBuf(&chanCount, 4);
channels.reserve(chanCount);
for (uint32_t i = 0; i < chanCount; ++i)
channels.emplace_back(conn);
uint32_t aabbCount;
conn._readBuf(&aabbCount, 4);
subtypeAABBs.reserve(aabbCount);
for (uint32_t i = 0; i < aabbCount; ++i) {
// printf("AABB %s %d\n", name.c_str(), i);
subtypeAABBs.emplace_back();
subtypeAABBs.back().first.read(conn);
subtypeAABBs.back().second.read(conn);
}
}
Action::Channel::Channel(Connection& conn) {
uint32_t bufSz;
conn._readBuf(&bufSz, 4);
boneName.assign(bufSz, ' ');
conn._readBuf(&boneName[0], bufSz);
conn._readBuf(&attrMask, 4);
uint32_t keyCount;
conn._readBuf(&keyCount, 4);
keys.reserve(keyCount);
for (uint32_t i = 0; i < keyCount; ++i)
keys.emplace_back(conn, attrMask);
}
Action::Channel::Key::Key(Connection& conn, uint32_t attrMask) {
if (attrMask & 1)
rotation.read(conn);
if (attrMask & 2)
position.read(conn);
if (attrMask & 4)
scale.read(conn);
}
DataStream::DataStream(Connection* parent) : m_parent(parent) {
m_parent->m_dataStreamActive = true;
m_parent->_writeStr("DATABEGIN");
char readBuf[16];
m_parent->_readStr(readBuf, 16);
if (strcmp(readBuf, "READY"))
BlenderLog.report(logvisor::Fatal, "unable to open DataStream with blender");
}
void DataStream::close() {
if (m_parent && m_parent->m_lock) {
m_parent->_writeStr("DATAEND");
char readBuf[16];
m_parent->_readStr(readBuf, 16);
if (strcmp(readBuf, "DONE"))
BlenderLog.report(logvisor::Fatal, "unable to close DataStream with blender");
m_parent->m_dataStreamActive = false;
m_parent->m_lock = false;
}
}
std::vector<std::string> DataStream::getMeshList() {
m_parent->_writeStr("MESHLIST");
uint32_t count;
m_parent->_readBuf(&count, 4);
std::vector<std::string> retval;
retval.reserve(count);
for (uint32_t i = 0; i < count; ++i) {
char name[128];
m_parent->_readStr(name, 128);
retval.push_back(name);
}
return retval;
}
std::vector<std::string> DataStream::getLightList() {
m_parent->_writeStr("LIGHTLIST");
uint32_t count;
m_parent->_readBuf(&count, 4);
std::vector<std::string> retval;
retval.reserve(count);
for (uint32_t i = 0; i < count; ++i) {
char name[128];
m_parent->_readStr(name, 128);
retval.push_back(name);
}
return retval;
}
std::pair<atVec3f, atVec3f> DataStream::getMeshAABB() {
if (m_parent->m_loadedType != BlendType::Mesh && m_parent->m_loadedType != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not a MESH or ACTOR blend"),
m_parent->m_loadedBlend.getAbsolutePath().data());
m_parent->_writeStr("MESHAABB");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable get AABB: %s", readBuf);
Vector3f minPt(*m_parent);
Vector3f maxPt(*m_parent);
return std::make_pair(minPt.val, maxPt.val);
}
const char* DataStream::MeshOutputModeString(HMDLTopology topology) {
static const char* STRS[] = {"TRIANGLES", "TRISTRIPS"};
return STRS[int(topology)];
}
Mesh DataStream::compileMesh(HMDLTopology topology, int skinSlotCount, Mesh::SurfProgFunc surfProg) {
if (m_parent->getBlendType() != BlendType::Mesh)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not a MESH blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[128];
snprintf(req, 128, "MESHCOMPILE %s %d", MeshOutputModeString(topology), skinSlotCount);
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to cook mesh: %s", readBuf);
return Mesh(*m_parent, topology, skinSlotCount, surfProg);
}
Mesh DataStream::compileMesh(std::string_view name, HMDLTopology topology, int skinSlotCount, bool useLuv,
Mesh::SurfProgFunc surfProg) {
if (m_parent->getBlendType() != BlendType::Area)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an AREA blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[128];
snprintf(req, 128, "MESHCOMPILENAME %s %s %d %d", name.data(), MeshOutputModeString(topology), skinSlotCount,
int(useLuv));
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to cook mesh '%s': %s", name.data(), readBuf);
return Mesh(*m_parent, topology, skinSlotCount, surfProg);
}
ColMesh DataStream::compileColMesh(std::string_view name) {
if (m_parent->getBlendType() != BlendType::Area)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an AREA blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[128];
snprintf(req, 128, "MESHCOMPILENAMECOLLISION %s", name.data());
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to cook collision mesh '%s': %s", name.data(), readBuf);
return ColMesh(*m_parent);
}
std::vector<ColMesh> DataStream::compileColMeshes() {
if (m_parent->getBlendType() != BlendType::ColMesh)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not a CMESH blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[128];
snprintf(req, 128, "MESHCOMPILECOLLISIONALL");
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to cook collision meshes: %s", readBuf);
uint32_t meshCount;
m_parent->_readBuf(&meshCount, 4);
std::vector<ColMesh> ret;
ret.reserve(meshCount);
for (uint32_t i = 0; i < meshCount; ++i)
ret.emplace_back(*m_parent);
return ret;
}
Mesh DataStream::compileAllMeshes(HMDLTopology topology, int skinSlotCount, float maxOctantLength,
Mesh::SurfProgFunc surfProg) {
if (m_parent->getBlendType() != BlendType::Area)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an AREA blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[128];
snprintf(req, 128, "MESHCOMPILEALL %s %d %f", MeshOutputModeString(topology), skinSlotCount, maxOctantLength);
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to cook all meshes: %s", readBuf);
return Mesh(*m_parent, topology, skinSlotCount, surfProg);
}
std::vector<Light> DataStream::compileLights() {
if (m_parent->getBlendType() != BlendType::Area)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an AREA blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("LIGHTCOMPILEALL");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to gather all lights: %s", readBuf);
uint32_t lightCount;
m_parent->_readBuf(&lightCount, 4);
std::vector<Light> ret;
ret.reserve(lightCount);
for (uint32_t i = 0; i < lightCount; ++i)
ret.emplace_back(*m_parent);
return ret;
}
PathMesh DataStream::compilePathMesh() {
if (m_parent->getBlendType() != BlendType::PathMesh)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not a PATH blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("MESHCOMPILEPATH");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to path collision mesh: %s", readBuf);
return PathMesh(*m_parent);
}
std::vector<uint8_t> DataStream::compileGuiFrame(int version) {
std::vector<uint8_t> ret;
if (m_parent->getBlendType() != BlendType::Frame)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not a FRAME blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[512];
snprintf(req, 512, "FRAMECOMPILE %d", version);
m_parent->_writeStr(req);
char readBuf[1024];
m_parent->_readStr(readBuf, 1024);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to compile frame: %s", readBuf);
while (true) {
m_parent->_readStr(readBuf, 1024);
if (!strcmp(readBuf, "FRAMEDONE"))
break;
std::string readStr(readBuf);
SystemStringConv absolute(readStr);
auto& proj = m_parent->getBlendPath().getProject();
SystemString relative;
if (PathRelative(absolute.c_str()))
relative = absolute.sys_str();
else
relative = proj.getProjectRootPath().getProjectRelativeFromAbsolute(absolute.sys_str());
hecl::ProjectPath path(proj.getProjectWorkingPath(), relative);
snprintf(req, 512, "%016" PRIX64, path.hash().val64());
m_parent->_writeStr(req);
}
uint32_t len;
m_parent->_readBuf(&len, 4);
ret.resize(len);
m_parent->_readBuf(&ret[0], len);
return ret;
}
std::vector<ProjectPath> DataStream::getTextures() {
m_parent->_writeStr("GETTEXTURES");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to get textures: %s", readBuf);
uint32_t texCount;
m_parent->_readBuf(&texCount, 4);
std::vector<ProjectPath> texs;
texs.reserve(texCount);
for (uint32_t i = 0; i < texCount; ++i) {
uint32_t bufSz;
m_parent->_readBuf(&bufSz, 4);
std::string readStr(bufSz, ' ');
m_parent->_readBuf(&readStr[0], bufSz);
SystemStringConv absolute(readStr);
SystemString relative =
m_parent->getBlendPath().getProject().getProjectRootPath().getProjectRelativeFromAbsolute(absolute.sys_str());
texs.emplace_back(m_parent->getBlendPath().getProject().getProjectWorkingPath(), relative);
}
return texs;
}
Actor DataStream::compileActor() {
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("ACTORCOMPILE");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to compile actor: %s", readBuf);
return Actor(*m_parent);
}
Actor DataStream::compileActorCharacterOnly() {
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("ACTORCOMPILECHARACTERONLY");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to compile actor: %s", readBuf);
return Actor(*m_parent);
}
Action DataStream::compileActionChannelsOnly(std::string_view name) {
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[128];
snprintf(req, 128, "ACTIONCOMPILECHANNELSONLY %s", name.data());
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to compile action: %s", readBuf);
return Action(*m_parent);
}
World DataStream::compileWorld() {
if (m_parent->getBlendType() != BlendType::World)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an WORLD blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("WORLDCOMPILE");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to compile world: %s", readBuf);
return World(*m_parent);
}
std::vector<std::string> DataStream::getArmatureNames() {
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("GETARMATURENAMES");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to get armatures of actor: %s", readBuf);
std::vector<std::string> ret;
uint32_t armCount;
m_parent->_readBuf(&armCount, 4);
ret.reserve(armCount);
for (uint32_t i = 0; i < armCount; ++i) {
ret.emplace_back();
std::string& name = ret.back();
uint32_t bufSz;
m_parent->_readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
m_parent->_readBuf(&name[0], bufSz);
}
return ret;
}
std::vector<std::string> DataStream::getSubtypeNames() {
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("GETSUBTYPENAMES");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to get subtypes of actor: %s", readBuf);
std::vector<std::string> ret;
uint32_t subCount;
m_parent->_readBuf(&subCount, 4);
ret.reserve(subCount);
for (uint32_t i = 0; i < subCount; ++i) {
ret.emplace_back();
std::string& name = ret.back();
uint32_t bufSz;
m_parent->_readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
m_parent->_readBuf(&name[0], bufSz);
}
return ret;
}
std::vector<std::string> DataStream::getActionNames() {
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("GETACTIONNAMES");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to get actions of actor: %s", readBuf);
std::vector<std::string> ret;
uint32_t actCount;
m_parent->_readBuf(&actCount, 4);
ret.reserve(actCount);
for (uint32_t i = 0; i < actCount; ++i) {
ret.emplace_back();
std::string& name = ret.back();
uint32_t bufSz;
m_parent->_readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
m_parent->_readBuf(&name[0], bufSz);
}
return ret;
}
std::vector<std::string> DataStream::getSubtypeOverlayNames(std::string_view name) {
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[128];
snprintf(req, 128, "GETSUBTYPEOVERLAYNAMES %s", name.data());
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to get subtype overlays of actor: %s", readBuf);
std::vector<std::string> ret;
uint32_t subCount;
m_parent->_readBuf(&subCount, 4);
ret.reserve(subCount);
for (uint32_t i = 0; i < subCount; ++i) {
ret.emplace_back();
std::string& name = ret.back();
uint32_t bufSz;
m_parent->_readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
m_parent->_readBuf(&name[0], bufSz);
}
return ret;
}
std::vector<std::string> DataStream::getAttachmentNames() {
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("GETATTACHMENTNAMES");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to get attachments of actor: %s", readBuf);
std::vector<std::string> ret;
uint32_t attCount;
m_parent->_readBuf(&attCount, 4);
ret.reserve(attCount);
for (uint32_t i = 0; i < attCount; ++i) {
ret.emplace_back();
std::string& name = ret.back();
uint32_t bufSz;
m_parent->_readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
m_parent->_readBuf(&name[0], bufSz);
}
return ret;
}
std::unordered_map<std::string, Matrix3f> DataStream::getBoneMatrices(std::string_view name) {
if (name.empty())
return {};
if (m_parent->getBlendType() != BlendType::Actor)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an ACTOR blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[128];
snprintf(req, 128, "GETBONEMATRICES %s", name.data());
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to get matrices of armature: %s", readBuf);
std::unordered_map<std::string, Matrix3f> ret;
uint32_t boneCount;
m_parent->_readBuf(&boneCount, 4);
ret.reserve(boneCount);
for (uint32_t i = 0; i < boneCount; ++i) {
std::string name;
uint32_t bufSz;
m_parent->_readBuf(&bufSz, 4);
name.assign(bufSz, ' ');
m_parent->_readBuf(&name[0], bufSz);
Matrix3f matOut;
for (int i = 0; i < 3; ++i) {
for (int j = 0; j < 3; ++j) {
float val;
m_parent->_readBuf(&val, 4);
matOut[i].simd[j] = val;
}
reinterpret_cast<atVec4f&>(matOut[i]).simd[3] = 0.f;
}
ret.emplace(std::make_pair(std::move(name), std::move(matOut)));
}
return ret;
}
bool DataStream::renderPvs(std::string_view path, const atVec3f& location) {
if (path.empty())
return false;
if (m_parent->getBlendType() != BlendType::Area)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an AREA blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[256];
athena::simd_floats f(location.simd);
snprintf(req, 256, "RENDERPVS %s %f %f %f", path.data(), f[0], f[1], f[2]);
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to render PVS for: %s; %s",
m_parent->getBlendPath().getAbsolutePathUTF8().data(), readBuf);
return true;
}
bool DataStream::renderPvsLight(std::string_view path, std::string_view lightName) {
if (path.empty())
return false;
if (m_parent->getBlendType() != BlendType::Area)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not an AREA blend"),
m_parent->getBlendPath().getAbsolutePath().data());
char req[256];
snprintf(req, 256, "RENDERPVSLIGHT %s %s", path.data(), lightName.data());
m_parent->_writeStr(req);
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to render PVS light %s for: %s; %s", lightName.data(),
m_parent->getBlendPath().getAbsolutePathUTF8().data(), readBuf);
return true;
}
MapArea DataStream::compileMapArea() {
if (m_parent->getBlendType() != BlendType::MapArea)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not a MAPAREA blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("MAPAREACOMPILE");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to compile map area: %s; %s",
m_parent->getBlendPath().getAbsolutePathUTF8().data(), readBuf);
return {*m_parent};
}
MapUniverse DataStream::compileMapUniverse() {
if (m_parent->getBlendType() != BlendType::MapUniverse)
BlenderLog.report(logvisor::Fatal, _SYS_STR("%s is not a MAPUNIVERSE blend"),
m_parent->getBlendPath().getAbsolutePath().data());
m_parent->_writeStr("MAPUNIVERSECOMPILE");
char readBuf[256];
m_parent->_readStr(readBuf, 256);
if (strcmp(readBuf, "OK"))
BlenderLog.report(logvisor::Fatal, "unable to compile map universe: %s; %s",
m_parent->getBlendPath().getAbsolutePathUTF8().data(), readBuf);
return {*m_parent};
}
void Connection::quitBlender() {
char lineBuf[256];
if (m_lock) {
if (m_pyStreamActive) {
_writeStr("PYEND");
_readStr(lineBuf, sizeof(lineBuf));
m_pyStreamActive = false;
} else if (m_dataStreamActive) {
_writeStr("DATAEND");
_readStr(lineBuf, sizeof(lineBuf));
m_dataStreamActive = false;
}
m_lock = false;
}
_writeStr("QUIT");
_readStr(lineBuf, sizeof(lineBuf));
}
Connection& Connection::SharedConnection() { return SharedBlenderToken.getBlenderConnection(); }
void Connection::Shutdown() { SharedBlenderToken.shutdown(); }
Connection& Token::getBlenderConnection() {
if (!m_conn)
m_conn = std::make_unique<Connection>(hecl::VerbosityLevel);
return *m_conn;
}
void Token::shutdown() {
if (m_conn) {
m_conn->quitBlender();
m_conn.reset();
if (hecl::VerbosityLevel >= 1)
BlenderLog.report(logvisor::Info, "Blender Shutdown Successful");
}
}
Token::~Token() { shutdown(); }
HMDLBuffers::HMDLBuffers(HMDLMeta&& meta, size_t vboSz, const std::vector<atUint32>& iboData,
std::vector<Surface>&& surfaces, const Mesh::SkinBanks& skinBanks)
: m_meta(std::move(meta))
, m_vboSz(vboSz)
, m_vboData(new uint8_t[vboSz])
, m_iboSz(iboData.size() * 4)
, m_iboData(new uint8_t[iboData.size() * 4])
, m_surfaces(std::move(surfaces))
, m_skinBanks(skinBanks) {
if (m_iboSz) {
athena::io::MemoryWriter w(m_iboData.get(), m_iboSz);
w.enumerateLittle(iboData);
}
}
} // namespace hecl::blender