metaforce/Runtime/Character/CFBStreamedAnimReader.cpp

512 lines
17 KiB
C++

#include "Runtime/Character/CFBStreamedAnimReader.hpp"
#include <algorithm>
#include <cmath>
#include <cstring>
#include <memory>
#include "Runtime/Character/CSegIdList.hpp"
#include "Runtime/Character/CSegStatementSet.hpp"
namespace urde {
void CFBStreamedAnimReaderTotals::Allocate(u32 chanCount) {
const u32 chan2 = chanCount * 2;
const u32 chan32 = chanCount * 32;
const size_t sz = chan32 + chanCount + chan2 + chan32;
x0_buffer = std::make_unique<u8[]>(sz);
x4_cumulativeInts32 = reinterpret_cast<s32*>(x0_buffer.get());
x8_hasTrans1 = reinterpret_cast<u8*>(x4_cumulativeInts32 + chanCount * 8);
xc_segIds2 = reinterpret_cast<u16*>(x8_hasTrans1 + chanCount);
x10_computedFloats32 = reinterpret_cast<float*>(xc_segIds2 + chanCount);
}
void CFBStreamedAnimReaderTotals::Initialize(const CFBStreamedCompression& source) {
x1c_curKey = 0;
x20_calculated = false;
const u8* chans = source.GetPerChannelHeaders();
u32 boneChanCount = *reinterpret_cast<const u32*>(chans);
chans += 4;
if (source.m_pc) {
for (unsigned b = 0; b < boneChanCount; ++b) {
xc_segIds2[b] = *reinterpret_cast<const u32*>(chans);
chans += 8;
s32* cumulativesOut = &x4_cumulativeInts32[8 * b];
const s32* cumulativesIn = reinterpret_cast<const s32*>(chans);
cumulativesOut[0] = 0;
cumulativesOut[1] = cumulativesIn[0] >> 8;
cumulativesOut[2] = cumulativesIn[1] >> 8;
cumulativesOut[3] = cumulativesIn[2] >> 8;
chans += 12;
u32 tCount = *reinterpret_cast<const u32*>(chans);
chans += 4;
if (tCount) {
x8_hasTrans1[b] = true;
const s32* cumulativesIn = reinterpret_cast<const s32*>(chans);
cumulativesOut[4] = cumulativesIn[0] >> 8;
cumulativesOut[5] = cumulativesIn[1] >> 8;
cumulativesOut[6] = cumulativesIn[2] >> 8;
chans += 12;
} else
x8_hasTrans1[b] = false;
}
} else {
for (unsigned b = 0; b < boneChanCount; ++b) {
xc_segIds2[b] = *reinterpret_cast<const u32*>(chans);
chans += 6;
s32* cumulativesOut = &x4_cumulativeInts32[8 * b];
cumulativesOut[0] = 0;
cumulativesOut[1] = *reinterpret_cast<const s16*>(chans);
cumulativesOut[2] = *reinterpret_cast<const s16*>(chans + 3);
cumulativesOut[3] = *reinterpret_cast<const s16*>(chans + 6);
chans += 9;
u16 tCount = *reinterpret_cast<const u16*>(chans);
chans += 2;
if (tCount) {
x8_hasTrans1[b] = true;
cumulativesOut[4] = *reinterpret_cast<const s16*>(chans);
cumulativesOut[5] = *reinterpret_cast<const s16*>(chans + 3);
cumulativesOut[6] = *reinterpret_cast<const s16*>(chans + 6);
chans += 9;
} else
x8_hasTrans1[b] = false;
}
}
}
CFBStreamedAnimReaderTotals::CFBStreamedAnimReaderTotals(const CFBStreamedCompression& source) {
const CFBStreamedCompression::Header& header = source.MainHeader();
x14_rotDiv = header.rotDiv;
x18_transMult = header.translationMult;
const u8* chans = source.GetPerChannelHeaders();
x24_boneChanCount = *reinterpret_cast<const u32*>(chans);
Allocate(x24_boneChanCount);
Initialize(source);
}
void CFBStreamedAnimReaderTotals::IncrementInto(CBitLevelLoader& loader, const CFBStreamedCompression& source,
CFBStreamedAnimReaderTotals& dest) {
dest.x20_calculated = false;
const u8* chans = source.GetPerChannelHeaders();
u32 boneChanCount = *reinterpret_cast<const u32*>(chans);
chans += 4;
if (source.m_pc) {
for (unsigned b = 0; b < boneChanCount; ++b) {
chans += 8;
const s32* cumulativesIn = &x4_cumulativeInts32[8 * b];
s32* cumulativesOut = &dest.x4_cumulativeInts32[8 * b];
const s32* qsIn = reinterpret_cast<const s32*>(chans);
cumulativesOut[0] = loader.LoadBool();
cumulativesOut[1] = cumulativesIn[1] + loader.LoadSigned(qsIn[0] & 0xff);
cumulativesOut[2] = cumulativesIn[2] + loader.LoadSigned(qsIn[1] & 0xff);
cumulativesOut[3] = cumulativesIn[3] + loader.LoadSigned(qsIn[2] & 0xff);
chans += 12;
u32 tCount = *reinterpret_cast<const u32*>(chans);
chans += 4;
if (tCount) {
const s32* qsIn = reinterpret_cast<const s32*>(chans);
cumulativesOut[4] = cumulativesIn[4] + loader.LoadSigned(qsIn[0] & 0xff);
cumulativesOut[5] = cumulativesIn[5] + loader.LoadSigned(qsIn[1] & 0xff);
cumulativesOut[6] = cumulativesIn[6] + loader.LoadSigned(qsIn[2] & 0xff);
chans += 12;
}
}
} else {
for (unsigned b = 0; b < boneChanCount; ++b) {
chans += 6;
const s32* cumulativesIn = &x4_cumulativeInts32[8 * b];
s32* cumulativesOut = &dest.x4_cumulativeInts32[8 * b];
cumulativesOut[0] = loader.LoadBool();
cumulativesOut[1] = cumulativesIn[1] + loader.LoadSigned(*reinterpret_cast<const u8*>(chans + 2));
cumulativesOut[2] = cumulativesIn[2] + loader.LoadSigned(*reinterpret_cast<const u8*>(chans + 5));
cumulativesOut[3] = cumulativesIn[3] + loader.LoadSigned(*reinterpret_cast<const u8*>(chans + 8));
chans += 9;
u16 tCount = *reinterpret_cast<const u16*>(chans);
chans += 2;
if (tCount) {
cumulativesOut[4] = cumulativesIn[4] + loader.LoadSigned(*reinterpret_cast<const u8*>(chans + 2));
cumulativesOut[5] = cumulativesIn[5] + loader.LoadSigned(*reinterpret_cast<const u8*>(chans + 5));
cumulativesOut[6] = cumulativesIn[5] + loader.LoadSigned(*reinterpret_cast<const u8*>(chans + 8));
chans += 9;
}
}
}
dest.x1c_curKey = x1c_curKey + 1;
}
void CFBStreamedAnimReaderTotals::CalculateDown() {
for (unsigned b = 0; b < x24_boneChanCount; ++b) {
const s32* cumulativesIn = &x4_cumulativeInts32[8 * b];
float* compOut = &x10_computedFloats32[8 * b];
float q = M_PIF / 2.f / float(x14_rotDiv);
compOut[1] = std::sin(cumulativesIn[1] * q);
compOut[2] = std::sin(cumulativesIn[2] * q);
compOut[3] = std::sin(cumulativesIn[3] * q);
compOut[0] =
std::sqrt(std::max(1.f - (compOut[1] * compOut[1] + compOut[2] * compOut[2] + compOut[3] * compOut[3]), 0.f));
if (cumulativesIn[0])
compOut[0] = -compOut[0];
if (x8_hasTrans1[b]) {
compOut[4] = cumulativesIn[4] * x18_transMult;
compOut[5] = cumulativesIn[5] * x18_transMult;
compOut[6] = cumulativesIn[6] * x18_transMult;
}
}
x20_calculated = true;
}
CFBStreamedPairOfTotals::CFBStreamedPairOfTotals(const TSubAnimTypeToken<CFBStreamedCompression>& source)
: x0_source(source), xc_rotsAndOffs(source->xc_rotsAndOffs.get()), x14_a(*source), x3c_b(*source) {}
void CFBStreamedPairOfTotals::SetTime(CBitLevelLoader& loader, const CCharAnimTime& time) {
/* Implementation is a bit different than original;
* T evaluated pre-emptively with key indices.
* CalculateDown is also called here as needed. */
const CFBStreamedCompression::Header& header = x0_source->MainHeader();
CCharAnimTime interval(header.interval);
const u32* timeBitmap = x0_source->GetTimes();
CCharAnimTime priorTime(0);
CCharAnimTime curTime(0);
int prior = -1;
int next = -1;
int cur = 0;
for (unsigned b = 0; b < timeBitmap[0]; ++b) {
int word = b / 32;
int bit = b % 32;
if ((timeBitmap[word + 1] >> bit) & 1) {
if (curTime <= time) {
prior = cur;
priorTime = curTime;
} else if (curTime > time) {
next = cur;
if (prior == -1) {
prior = cur;
priorTime = curTime;
x78_t = 0.f;
} else {
x78_t = (time - priorTime) / (curTime - priorTime);
}
break;
}
++cur;
}
curTime += interval;
}
if (prior != -1 && u32(prior) < Prior().x1c_curKey) {
Prior().Initialize(*x0_source);
Next().Initialize(*x0_source);
loader.Reset();
}
if (prior != -1 && next == -1) {
next = cur;
x78_t = (time - priorTime) / (curTime - priorTime);
}
if (next != -1) {
while (u32(next) > Next().x1c_curKey) {
DoIncrement(loader);
}
}
if (!Prior().IsCalculated()) {
Prior().CalculateDown();
}
if (!Next().IsCalculated()) {
Next().CalculateDown();
}
}
void CFBStreamedPairOfTotals::DoIncrement(CBitLevelLoader& loader) {
x10_nextSel ^= 1;
Prior().IncrementInto(loader, *x0_source, Next());
}
u32 CBitLevelLoader::LoadUnsigned(u8 q) {
u32 byteCur = (m_bitIdx / 32) * 4;
u32 bitRem = m_bitIdx % 32;
/* Fill 32 bit buffer with region containing bits */
/* Make them least significant */
u32 tempBuf = *reinterpret_cast<const u32*>(m_data + byteCur) >> bitRem;
/* If this shift underflows the value, buffer the next 32 bits */
/* And tack onto shifted buffer */
if ((bitRem + q) > 32) {
u32 tempBuf2 = *reinterpret_cast<const u32*>(m_data + byteCur + 4);
tempBuf |= (tempBuf2 << (32 - bitRem));
}
/* Mask it */
u32 mask = (1 << q) - 1;
tempBuf &= mask;
/* Return delta value */
m_bitIdx += q;
return tempBuf;
}
s32 CBitLevelLoader::LoadSigned(u8 q) {
u32 byteCur = (m_bitIdx / 32) * 4;
u32 bitRem = m_bitIdx % 32;
/* Fill 32 bit buffer with region containing bits */
/* Make them least significant */
u32 tempBuf = *reinterpret_cast<const u32*>(m_data + byteCur) >> bitRem;
/* If this shift underflows the value, buffer the next 32 bits */
/* And tack onto shifted buffer */
if ((bitRem + q) > 32) {
u32 tempBuf2 = *reinterpret_cast<const u32*>(m_data + byteCur + 4);
tempBuf |= (tempBuf2 << (32 - bitRem));
}
/* Mask it */
u32 mask = (1 << q) - 1;
tempBuf &= mask;
/* Sign extend */
u32 sign = (tempBuf >> (q - 1)) & 0x1;
if (sign)
tempBuf |= ~0u << q;
/* Return delta value */
m_bitIdx += q;
return s32(tempBuf);
}
bool CBitLevelLoader::LoadBool() {
u32 byteCur = (m_bitIdx / 32) * 4;
u32 bitRem = m_bitIdx % 32;
/* Fill 32 bit buffer with region containing bits */
/* Make them least significant */
u32 tempBuf = *reinterpret_cast<const u32*>(m_data + byteCur) >> bitRem;
/* That's it */
m_bitIdx += 1;
return tempBuf & 0x1;
}
CSegIdToIndexConverter::CSegIdToIndexConverter(const CFBStreamedAnimReaderTotals& totals) {
std::fill(std::begin(x0_indices), std::end(x0_indices), -1);
for (u32 b = 0; b < totals.x24_boneChanCount; ++b) {
u16 segId = totals.xc_segIds2[b];
if (segId >= 100)
continue;
x0_indices[segId] = b;
}
}
CFBStreamedAnimReader::CFBStreamedAnimReader(const TSubAnimTypeToken<CFBStreamedCompression>& source,
const CCharAnimTime& time)
: CAnimSourceReaderBase(std::make_unique<TAnimSourceInfo<CFBStreamedCompression>>(source), {})
, x54_source(source)
, x64_steadyStateInfo(source->IsLooping(), source->GetAnimationDuration(), source->GetRootOffset())
, x7c_totals(source)
, x104_bitstreamData(source->GetBitstreamPointer())
, x108_bitLoader(x104_bitstreamData)
, x114_segIdToIndex(x7c_totals.x10_nextSel ? x7c_totals.x14_a : x7c_totals.x3c_b) {
x7c_totals.SetTime(x108_bitLoader, CCharAnimTime());
PostConstruct(time);
}
bool CFBStreamedAnimReader::HasOffset(const CSegId& seg) const {
s32 idx = x114_segIdToIndex.SegIdToIndex(seg);
if (idx == -1)
return false;
return x7c_totals.Prior().x8_hasTrans1[idx];
}
zeus::CVector3f CFBStreamedAnimReader::GetOffset(const CSegId& seg) const {
s32 idx = x114_segIdToIndex.SegIdToIndex(seg);
if (idx == -1)
return {};
const float* af = x7c_totals.Prior().GetFloats(idx);
const float* bf = x7c_totals.Next().GetFloats(idx);
zeus::CVector3f a(af[4], af[5], af[6]);
zeus::CVector3f b(bf[4], bf[5], bf[6]);
return zeus::CVector3f::lerp(a, b, x7c_totals.GetT());
}
zeus::CQuaternion CFBStreamedAnimReader::GetRotation(const CSegId& seg) const {
s32 idx = x114_segIdToIndex.SegIdToIndex(seg);
if (idx == -1)
return {};
const float* af = x7c_totals.Prior().GetFloats(idx);
const float* bf = x7c_totals.Next().GetFloats(idx);
zeus::CQuaternion a(af[0], af[1], af[2], af[3]);
zeus::CQuaternion b(bf[0], bf[1], bf[2], bf[3]);
return zeus::CQuaternion::slerp(a, b, x7c_totals.GetT());
}
SAdvancementResults CFBStreamedAnimReader::VGetAdvancementResults(const CCharAnimTime& dt,
const CCharAnimTime& startOff) const {
SAdvancementResults res = {};
CCharAnimTime resolveTime = xc_curTime + startOff;
CCharAnimTime animDur = x54_source->GetAnimationDuration();
if (resolveTime >= animDur || dt.EqualsZero())
return res;
const_cast<CFBStreamedAnimReader*>(this)->x7c_totals.SetTime(const_cast<CFBStreamedAnimReader*>(this)->x108_bitLoader,
resolveTime);
zeus::CQuaternion priorQ = GetRotation(3);
zeus::CVector3f priorV = GetOffset(3);
CCharAnimTime nextTime = resolveTime + dt;
if (nextTime > animDur) {
nextTime = animDur;
res.x0_remTime = nextTime - animDur;
}
const_cast<CFBStreamedAnimReader*>(this)->x7c_totals.SetTime(const_cast<CFBStreamedAnimReader*>(this)->x108_bitLoader,
nextTime);
zeus::CQuaternion nextQ = GetRotation(3);
zeus::CVector3f nextV = GetOffset(3);
res.x8_deltas.xc_rotDelta = priorQ.inverse() * nextQ;
if (HasOffset(3))
res.x8_deltas.x0_posDelta = res.x8_deltas.xc_rotDelta.transform(nextV - priorV);
return res;
}
void CFBStreamedAnimReader::VSetPhase(float ph) {
xc_curTime = x64_steadyStateInfo.GetDuration() * ph;
x7c_totals.SetTime(x108_bitLoader, xc_curTime);
if (x54_source->HasPOIData()) {
UpdatePOIStates();
if (!xc_curTime.GreaterThanZero()) {
x14_passedBoolCount = 0;
x18_passedIntCount = 0;
x1c_passedParticleCount = 0;
x20_passedSoundCount = 0;
}
}
}
SAdvancementResults CFBStreamedAnimReader::VReverseView(const CCharAnimTime& time) { return {}; }
std::unique_ptr<IAnimReader> CFBStreamedAnimReader::VClone() const {
return std::make_unique<CFBStreamedAnimReader>(x54_source, xc_curTime);
}
void CFBStreamedAnimReader::VGetSegStatementSet(const CSegIdList& list, CSegStatementSet& setOut) const {
const_cast<CFBStreamedAnimReader*>(this)->x7c_totals.SetTime(const_cast<CFBStreamedAnimReader*>(this)->x108_bitLoader,
xc_curTime);
for (const CSegId& id : list.GetList()) {
CAnimPerSegmentData& out = setOut[id];
out.x0_rotation = GetRotation(id);
out.x1c_hasOffset = HasOffset(id);
if (out.x1c_hasOffset)
out.x10_offset = GetOffset(id);
}
}
void CFBStreamedAnimReader::VGetSegStatementSet(const CSegIdList& list, CSegStatementSet& setOut,
const CCharAnimTime& time) const {
const_cast<CFBStreamedAnimReader*>(this)->x7c_totals.SetTime(const_cast<CFBStreamedAnimReader*>(this)->x108_bitLoader,
time);
for (const CSegId& id : list.GetList()) {
CAnimPerSegmentData& out = setOut[id];
out.x0_rotation = GetRotation(id);
out.x1c_hasOffset = HasOffset(id);
if (out.x1c_hasOffset)
out.x10_offset = GetOffset(id);
}
}
SAdvancementResults CFBStreamedAnimReader::VAdvanceView(const CCharAnimTime& dt) {
SAdvancementResults res = {};
CCharAnimTime animDur = x54_source->GetAnimationDuration();
if (xc_curTime == animDur) {
xc_curTime = CCharAnimTime();
x7c_totals.SetTime(x108_bitLoader, xc_curTime);
x14_passedBoolCount = 0;
x18_passedIntCount = 0;
x1c_passedParticleCount = 0;
x20_passedSoundCount = 0;
res.x0_remTime = dt;
return res;
} else if (dt.EqualsZero()) {
return res;
}
zeus::CQuaternion priorQ = GetRotation(3);
zeus::CVector3f priorV = GetOffset(3);
xc_curTime += dt;
CCharAnimTime overTime;
if (xc_curTime > animDur) {
overTime = xc_curTime - animDur;
xc_curTime = animDur;
}
x7c_totals.SetTime(x108_bitLoader, xc_curTime);
if (x54_source->HasPOIData())
UpdatePOIStates();
zeus::CQuaternion nextQ = GetRotation(3);
zeus::CVector3f nextV = GetOffset(3);
res.x0_remTime = overTime;
res.x8_deltas.xc_rotDelta = nextQ * priorQ.inverse();
if (HasOffset(3))
res.x8_deltas.x0_posDelta = nextQ.inverse().transform(nextV - priorV);
return res;
}
CCharAnimTime CFBStreamedAnimReader::VGetTimeRemaining() const {
return x54_source->GetAnimationDuration() - xc_curTime;
}
CSteadyStateAnimInfo CFBStreamedAnimReader::VGetSteadyStateAnimInfo() const { return x64_steadyStateInfo; }
bool CFBStreamedAnimReader::VHasOffset(const CSegId& seg) const { return HasOffset(seg); }
zeus::CVector3f CFBStreamedAnimReader::VGetOffset(const CSegId& seg) const {
const_cast<CFBStreamedAnimReader*>(this)->x7c_totals.SetTime(const_cast<CFBStreamedAnimReader*>(this)->x108_bitLoader,
xc_curTime);
return GetOffset(seg);
}
zeus::CVector3f CFBStreamedAnimReader::VGetOffset(const CSegId& seg, const CCharAnimTime& time) const {
const_cast<CFBStreamedAnimReader*>(this)->x7c_totals.SetTime(const_cast<CFBStreamedAnimReader*>(this)->x108_bitLoader,
time);
return GetOffset(seg);
}
zeus::CQuaternion CFBStreamedAnimReader::VGetRotation(const CSegId& seg) const {
const_cast<CFBStreamedAnimReader*>(this)->x7c_totals.SetTime(const_cast<CFBStreamedAnimReader*>(this)->x108_bitLoader,
xc_curTime);
return GetRotation(seg);
}
template class TAnimSourceInfo<CFBStreamedCompression>;
} // namespace urde