metaforce/Runtime/rstl.hpp

642 lines
20 KiB
C++

#pragma once
#include <algorithm>
#include <cstdlib>
#include <optional>
#include <type_traits>
#include <vector>
#include <iterator>
#ifndef NDEBUG
#include <logvisor/logvisor.hpp>
#endif
namespace rstl {
#ifndef NDEBUG
static logvisor::Module Log("rstl");
#endif
/**
* @brief Base vector backed by statically-allocated array
*/
template <class T>
class _reserved_vector_base {
public:
class const_iterator {
friend class _reserved_vector_base;
protected:
const T* m_val;
public:
explicit const_iterator(const T* val) : m_val(val) {}
using value_type = T;
using difference_type = std::ptrdiff_t;
using pointer = T*;
using reference = T&;
// atdna workaround
#if __cplusplus > 201703L
using iterator_category = std::contiguous_iterator_tag;
#else
using iterator_category = std::random_access_iterator_tag;
#endif
const T& operator*() const { return *m_val; }
const T* operator->() const { return m_val; }
const_iterator& operator++() {
++m_val;
return *this;
}
const_iterator& operator--() {
--m_val;
return *this;
}
const_iterator operator++(int) {
auto ret = *this;
++m_val;
return ret;
}
const_iterator operator--(int) {
auto ret = *this;
--m_val;
return ret;
}
bool operator!=(const const_iterator& other) const { return m_val != other.m_val; }
bool operator==(const const_iterator& other) const { return m_val == other.m_val; }
const_iterator operator+(std::ptrdiff_t i) const { return const_iterator(m_val + i); }
const_iterator operator-(std::ptrdiff_t i) const { return const_iterator(m_val - i); }
const_iterator& operator+=(std::ptrdiff_t i) {
m_val += i;
return *this;
}
const_iterator& operator-=(std::ptrdiff_t i) {
m_val -= i;
return *this;
}
std::ptrdiff_t operator-(const const_iterator& it) const { return m_val - it.m_val; }
bool operator>(const const_iterator& it) const { return m_val > it.m_val; }
bool operator<(const const_iterator& it) const { return m_val < it.m_val; }
bool operator>=(const const_iterator& it) const { return m_val >= it.m_val; }
bool operator<=(const const_iterator& it) const { return m_val <= it.m_val; }
const T& operator[](std::ptrdiff_t i) const { return m_val[i]; }
};
class iterator : public const_iterator {
friend class _reserved_vector_base;
public:
explicit iterator(T* val) : const_iterator(val) {}
T& operator*() const { return *const_cast<T*>(const_iterator::m_val); }
T* operator->() const { return const_cast<T*>(const_iterator::m_val); }
iterator& operator++() {
++const_iterator::m_val;
return *this;
}
iterator& operator--() {
--const_iterator::m_val;
return *this;
}
iterator operator++(int) {
auto ret = *this;
++const_iterator::m_val;
return ret;
}
iterator operator--(int) {
auto ret = *this;
--const_iterator::m_val;
return ret;
}
iterator operator+(std::ptrdiff_t i) const { return iterator(const_cast<T*>(const_iterator::m_val) + i); }
iterator operator-(std::ptrdiff_t i) const { return iterator(const_cast<T*>(const_iterator::m_val) - i); }
iterator& operator+=(std::ptrdiff_t i) {
const_iterator::m_val += i;
return *this;
}
iterator& operator-=(std::ptrdiff_t i) {
const_iterator::m_val -= i;
return *this;
}
std::ptrdiff_t operator-(const iterator& it) const { return const_iterator::m_val - it.m_val; }
bool operator>(const iterator& it) const { return const_iterator::m_val > it.m_val; }
bool operator<(const iterator& it) const { return const_iterator::m_val < it.m_val; }
bool operator>=(const iterator& it) const { return const_iterator::m_val >= it.m_val; }
bool operator<=(const iterator& it) const { return const_iterator::m_val <= it.m_val; }
T& operator[](std::ptrdiff_t i) const { return const_cast<T*>(const_iterator::m_val)[i]; }
};
using reverse_iterator = decltype(std::make_reverse_iterator(iterator{nullptr}));
using const_reverse_iterator = decltype(std::make_reverse_iterator(const_iterator{nullptr}));
protected:
static iterator _const_cast_iterator(const const_iterator& it) { return iterator(const_cast<T*>(it.m_val)); }
};
/**
* @brief Vector backed by statically-allocated array with uninitialized storage
*/
template <class T, size_t N>
class reserved_vector : public _reserved_vector_base<T> {
using base = _reserved_vector_base<T>;
public:
using value_type = T;
using pointer = value_type*;
using const_pointer = const value_type*;
using reference = value_type&;
using const_reference = const value_type&;
using difference_type = std::ptrdiff_t;
using size_type = std::size_t;
using iterator = typename base::iterator;
using const_iterator = typename base::const_iterator;
using reverse_iterator = typename base::reverse_iterator;
using const_reverse_iterator = typename base::const_reverse_iterator;
private:
union alignas(T) storage_t {
struct {
} _dummy;
T _value;
storage_t() : _dummy() {}
~storage_t() {}
};
size_t x0_size;
storage_t x4_data[N];
T& _value(std::ptrdiff_t idx) { return x4_data[idx]._value; }
const T& _value(std::ptrdiff_t idx) const { return x4_data[idx]._value; }
template <typename Tp>
static void
destroy(Tp& t, std::enable_if_t<std::is_destructible_v<Tp> && !std::is_trivially_destructible_v<Tp>>* = nullptr) {
t.Tp::~Tp();
}
template <typename Tp>
static void
destroy(Tp& t, std::enable_if_t<!std::is_destructible_v<Tp> || std::is_trivially_destructible_v<Tp>>* = nullptr) {}
public:
constexpr reserved_vector() noexcept(std::is_nothrow_constructible_v<T>) : x0_size(0) {}
template <size_t LN>
constexpr reserved_vector(const T (&l)[LN]) noexcept(std::is_nothrow_copy_constructible_v<T>) : x0_size(LN) {
static_assert(LN <= N, "initializer array too large for reserved_vector");
for (size_t i = 0; i < LN; ++i) {
::new (static_cast<void*>(std::addressof(_value(i)))) T(l[i]);
}
}
reserved_vector(const reserved_vector& other) noexcept(std::is_nothrow_copy_constructible_v<T>)
: x0_size(other.x0_size) {
for (size_t i = 0; i < x0_size; ++i) {
::new (static_cast<void*>(std::addressof(_value(i)))) T(other._value(i));
}
}
reserved_vector& operator=(const reserved_vector& other) noexcept(std::is_nothrow_copy_assignable_v<T>) {
size_t i = 0;
if (other.x0_size > x0_size) {
for (; i < x0_size; ++i) {
_value(i) = other._value(i);
}
for (; i < other.x0_size; ++i) {
::new (static_cast<void*>(std::addressof(_value(i)))) T(other._value(i));
}
} else if (other.x0_size < x0_size) {
for (; i < other.x0_size; ++i) {
_value(i) = other._value(i);
}
if constexpr (std::is_destructible_v<T> && !std::is_trivially_destructible_v<T>) {
for (; i < x0_size; ++i) {
destroy(_value(i));
}
}
} else {
for (; i < other.x0_size; ++i) {
_value(i) = other._value(i);
}
}
x0_size = other.x0_size;
return *this;
}
reserved_vector(reserved_vector&& other) noexcept(std::is_nothrow_move_constructible_v<T>) : x0_size(other.x0_size) {
for (size_t i = 0; i < x0_size; ++i) {
::new (static_cast<void*>(std::addressof(_value(i)))) T(std::forward<T>(other._value(i)));
}
}
reserved_vector& operator=(reserved_vector&& other) noexcept(
std::is_nothrow_move_assignable_v<T>&& std::is_nothrow_move_constructible_v<T>) {
size_t i = 0;
if (other.x0_size > x0_size) {
for (; i < x0_size; ++i) {
_value(i) = std::forward<T>(other._value(i));
}
for (; i < other.x0_size; ++i) {
::new (static_cast<void*>(std::addressof(_value(i)))) T(std::forward<T>(other._value(i)));
}
} else if (other.x0_size < x0_size) {
for (; i < other.x0_size; ++i) {
_value(i) = std::forward<T>(other._value(i));
}
if constexpr (std::is_destructible_v<T> && !std::is_trivially_destructible_v<T>) {
for (; i < x0_size; ++i) {
destroy(_value(i));
}
}
} else {
for (; i < other.x0_size; ++i) {
_value(i) = std::forward<T>(other._value(i));
}
}
x0_size = other.x0_size;
return *this;
}
~reserved_vector() {
if constexpr (std::is_destructible_v<T> && !std::is_trivially_destructible_v<T>) {
for (size_t i = 0; i < x0_size; ++i) {
destroy(_value(i));
}
}
}
void push_back(const T& d) {
#ifndef NDEBUG
if (x0_size == N) {
Log.report(logvisor::Fatal, FMT_STRING("push_back() called on full rstl::reserved_vector."));
}
#endif
::new (static_cast<void*>(std::addressof(_value(x0_size)))) T(d);
++x0_size;
}
void push_back(T&& d) {
#ifndef NDEBUG
if (x0_size == N) {
Log.report(logvisor::Fatal, FMT_STRING("push_back() called on full rstl::reserved_vector."));
}
#endif
::new (static_cast<void*>(std::addressof(_value(x0_size)))) T(std::forward<T>(d));
++x0_size;
}
template <class... _Args>
T& emplace_back(_Args&&... args) {
#ifndef NDEBUG
if (x0_size == N) {
Log.report(logvisor::Fatal, FMT_STRING("emplace_back() called on full rstl::reserved_vector."));
}
#endif
T& element = _value(x0_size);
::new (static_cast<void*>(std::addressof(element))) T(std::forward<_Args>(args)...);
++x0_size;
return element;
}
void pop_back() {
#ifndef NDEBUG
if (x0_size == 0) {
Log.report(logvisor::Fatal, FMT_STRING("pop_back() called on empty rstl::reserved_vector."));
}
#endif
--x0_size;
destroy(_value(x0_size));
}
iterator insert(const_iterator pos, const T& value) {
#ifndef NDEBUG
if (x0_size == N) {
Log.report(logvisor::Fatal, FMT_STRING("insert() called on full rstl::reserved_vector."));
}
#endif
auto target_it = base::_const_cast_iterator(pos);
if (pos == cend()) {
::new (static_cast<void*>(std::addressof(_value(x0_size)))) T(value);
} else {
::new (static_cast<void*>(std::addressof(_value(x0_size)))) T(std::forward<T>(_value(x0_size - 1)));
for (auto it = end() - 1; it != target_it; --it) {
*it = std::forward<T>(*(it - 1));
}
*target_it = value;
}
++x0_size;
return target_it;
}
iterator insert(const_iterator pos, T&& value) {
#ifndef NDEBUG
if (x0_size == N)
Log.report(logvisor::Fatal, FMT_STRING("insert() called on full rstl::reserved_vector."));
#endif
auto target_it = base::_const_cast_iterator(pos);
if (pos == cend()) {
::new (static_cast<void*>(std::addressof(_value(x0_size)))) T(std::forward<T>(value));
} else {
::new (static_cast<void*>(std::addressof(_value(x0_size)))) T(std::forward<T>(_value(x0_size - 1)));
for (auto it = end() - 1; it != target_it; --it) {
*it = std::forward<T>(*(it - 1));
}
*target_it = std::forward<T>(value);
}
++x0_size;
return target_it;
}
void resize(size_t size) {
#ifndef NDEBUG
if (size > N) {
Log.report(logvisor::Fatal, FMT_STRING("resize() call overflows rstl::reserved_vector."));
}
#endif
if (size > x0_size) {
for (size_t i = x0_size; i < size; ++i) {
::new (static_cast<void*>(std::addressof(_value(i)))) T();
}
x0_size = size;
} else if (size < x0_size) {
if constexpr (std::is_destructible_v<T> && !std::is_trivially_destructible_v<T>) {
for (size_t i = size; i < x0_size; ++i) {
destroy(_value(i));
}
}
x0_size = size;
}
}
void resize(size_t size, const T& value) {
#ifndef NDEBUG
if (size > N) {
Log.report(logvisor::Fatal, FMT_STRING("resize() call overflows rstl::reserved_vector."));
}
#endif
if (size > x0_size) {
for (size_t i = x0_size; i < size; ++i) {
::new (static_cast<void*>(std::addressof(_value(i)))) T(value);
}
x0_size = size;
} else if (size < x0_size) {
if constexpr (std::is_destructible_v<T> && !std::is_trivially_destructible_v<T>) {
for (size_t i = size; i < x0_size; ++i) {
destroy(_value(i));
}
}
x0_size = size;
}
}
iterator erase(const_iterator pos) {
#ifndef NDEBUG
if (x0_size == 0) {
Log.report(logvisor::Fatal, FMT_STRING("erase() called on empty rstl::reserved_vector."));
}
#endif
for (auto it = base::_const_cast_iterator(pos) + 1; it != end(); ++it) {
*(it - 1) = std::forward<T>(*it);
}
--x0_size;
destroy(_value(x0_size));
return base::_const_cast_iterator(pos);
}
void pop_front() {
if (x0_size != 0) {
erase(begin());
}
}
void clear() {
if constexpr (std::is_destructible_v<T> && !std::is_trivially_destructible_v<T>) {
for (auto it = begin(); it != end(); ++it) {
destroy(*it);
}
}
x0_size = 0;
}
[[nodiscard]] size_t size() const noexcept { return x0_size; }
[[nodiscard]] bool empty() const noexcept { return x0_size == 0; }
[[nodiscard]] constexpr size_t capacity() const noexcept { return N; }
[[nodiscard]] const T* data() const noexcept { return std::addressof(_value(0)); }
[[nodiscard]] T* data() noexcept { return std::addressof(_value(0)); }
[[nodiscard]] T& back() { return _value(x0_size - 1); }
[[nodiscard]] T& front() { return _value(0); }
[[nodiscard]] const T& back() const { return _value(x0_size - 1); }
[[nodiscard]] const T& front() const { return _value(0); }
[[nodiscard]] const_iterator begin() const noexcept { return const_iterator(std::addressof(_value(0))); }
[[nodiscard]] const_iterator end() const noexcept { return const_iterator(std::addressof(_value(x0_size))); }
[[nodiscard]] iterator begin() noexcept { return iterator(std::addressof(_value(0))); }
[[nodiscard]] iterator end() noexcept { return iterator(std::addressof(_value(x0_size))); }
[[nodiscard]] const_iterator cbegin() const noexcept { return begin(); }
[[nodiscard]] const_iterator cend() const noexcept { return end(); }
[[nodiscard]] auto rbegin() const noexcept { return std::make_reverse_iterator(end()); }
[[nodiscard]] auto rend() const noexcept { return std::make_reverse_iterator(begin()); }
[[nodiscard]] auto rbegin() noexcept { return std::make_reverse_iterator(end()); }
[[nodiscard]] auto rend() noexcept { return std::make_reverse_iterator(begin()); }
[[nodiscard]] auto crbegin() const noexcept { return rbegin(); }
[[nodiscard]] auto crend() const noexcept { return rend(); }
[[nodiscard]] T& operator[](size_t idx) {
#ifndef NDEBUG
if (idx >= x0_size) {
Log.report(logvisor::Fatal, FMT_STRING("out of bounds access on reserved_vector."));
}
#endif
return _value(idx);
}
[[nodiscard]] const T& operator[](size_t idx) const {
#ifndef NDEBUG
if (idx >= x0_size) {
Log.report(logvisor::Fatal, FMT_STRING("out of bounds access on reserved_vector."));
}
#endif
return _value(idx);
}
};
/**
* @brief Vector-style view backed by externally-allocated storage
*/
template <class T>
class prereserved_vector : public _reserved_vector_base<T> {
size_t x0_size;
T* x4_data;
T& _value(std::ptrdiff_t idx) { return x4_data[idx]; }
const T& _value(std::ptrdiff_t idx) const { return x4_data[idx]; }
public:
using base = _reserved_vector_base<T>;
using iterator = typename base::iterator;
using const_iterator = typename base::const_iterator;
using reverse_iterator = typename base::reverse_iterator;
using const_reverse_iterator = typename base::const_reverse_iterator;
prereserved_vector() : x0_size(0), x4_data(nullptr) {}
prereserved_vector(size_t size, T* data) : x0_size(size), x4_data(data) {}
void set_size(size_t n) { x0_size = n; }
void set_data(T* data) { x4_data = data; }
[[nodiscard]] size_t size() const noexcept { return x0_size; }
[[nodiscard]] bool empty() const noexcept { return x0_size == 0; }
[[nodiscard]] const T* data() const noexcept { return x4_data; }
[[nodiscard]] T* data() noexcept { return x4_data; }
[[nodiscard]] T& back() { return _value(x0_size - 1); }
[[nodiscard]] T& front() { return _value(0); }
[[nodiscard]] const T& back() const { return _value(x0_size - 1); }
[[nodiscard]] const T& front() const { return _value(0); }
[[nodiscard]] const_iterator begin() const noexcept { return const_iterator(std::addressof(_value(0))); }
[[nodiscard]] const_iterator end() const noexcept { return const_iterator(std::addressof(_value(x0_size))); }
[[nodiscard]] iterator begin() noexcept { return iterator(std::addressof(_value(0))); }
[[nodiscard]] iterator end() noexcept { return iterator(std::addressof(_value(x0_size))); }
[[nodiscard]] const_iterator cbegin() const noexcept { return begin(); }
[[nodiscard]] const_iterator cend() const noexcept { return end(); }
[[nodiscard]] auto rbegin() const noexcept { return std::make_reverse_iterator(end()); }
[[nodiscard]] auto rend() const noexcept { return std::make_reverse_iterator(begin()); }
[[nodiscard]] auto rbegin() noexcept { return std::make_reverse_iterator(end()); }
[[nodiscard]] auto rend() noexcept { return std::make_reverse_iterator(begin()); }
[[nodiscard]] auto crbegin() const noexcept { return rbegin(); }
[[nodiscard]] auto crend() const noexcept { return rend(); }
[[nodiscard]] T& operator[](size_t idx) { return _value(idx); }
[[nodiscard]] const T& operator[](size_t idx) const { return _value(idx); }
};
template <class ForwardIt, class T>
ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value) {
first = std::lower_bound(first, last, value);
return (!(first == last) && !(value < *first)) ? first : last;
}
template <class ForwardIt, class T, class GetKey>
ForwardIt binary_find(ForwardIt first, ForwardIt last, const T& value, GetKey getkey) {
auto comp = [&](const auto& left, const T& right) { return getkey(left) < right; };
first = std::lower_bound(first, last, value, comp);
return (!(first == last) && !(value < getkey(*first))) ? first : last;
}
#if 0
template <typename _CharTp>
class basic_string
{
struct COWData
{
uint32_t x0_capacity;
uint32_t x4_refCount;
_CharTp x8_data[];
};
const _CharTp* x0_ptr;
COWData* x4_cow;
uint32_t x8_size;
void internal_allocate(int size)
{
x4_cow = reinterpret_cast<COWData*>(new uint8_t[size * sizeof(_CharTp) + 8]);
x0_ptr = x4_cow->x8_data;
x4_cow->x0_capacity = uint32_t(size);
x4_cow->x4_refCount = 1;
}
static const _CharTp _EmptyString;
public:
struct literal_t {};
basic_string(literal_t, const _CharTp* data)
{
x0_ptr = data;
x4_cow = nullptr;
const _CharTp* it = data;
while (*it)
++it;
x8_size = uint32_t((it - data) / sizeof(_CharTp));
}
basic_string(const basic_string& str)
{
x0_ptr = str.x0_ptr;
x4_cow = str.x4_cow;
x8_size = str.x8_size;
if (x4_cow)
++x4_cow->x4_refCount;
}
basic_string(const _CharTp* data, int size)
{
if (size <= 0 && !data)
{
x0_ptr = &_EmptyString;
x4_cow = nullptr;
x8_size = 0;
return;
}
const _CharTp* it = data;
uint32_t len = 0;
while (*it)
{
if (size != -1 && len >= size)
break;
++it;
++len;
}
internal_allocate(len + 1);
x8_size = len;
for (int i = 0; i < len; ++i)
x4_cow->x8_data[i] = data[i];
x4_cow->x8_data[len] = 0;
}
~basic_string()
{
if (x4_cow && --x4_cow->x4_refCount == 0)
delete[] x4_cow;
}
};
template <>
const char basic_string<char>::_EmptyString = 0;
template <>
const wchar_t basic_string<wchar_t>::_EmptyString = 0;
typedef basic_string<wchar_t> wstring;
typedef basic_string<char> string;
wstring wstring_l(const wchar_t* data)
{
return wstring(wstring::literal_t(), data);
}
string string_l(const char* data)
{
return string(string::literal_t(), data);
}
#endif
} // namespace rstl