metaforce/DataSpec/DNACommon/DNACommon.hpp

502 lines
16 KiB
C++

#ifndef __DNA_COMMON_HPP__
#define __DNA_COMMON_HPP__
#include <stdio.h>
#include <Athena/DNAYaml.hpp>
#include <NOD/DiscBase.hpp>
#include "HECL/HECL.hpp"
#include "HECL/Database.hpp"
namespace Retro
{
extern LogVisor::LogModule LogDNACommon;
/* This comes up a great deal */
typedef Athena::io::DNA<Athena::BigEndian> BigDNA;
typedef Athena::io::DNAYaml<Athena::BigEndian> BigYAML;
/* FourCC with DNA read/write */
class FourCC final : public BigYAML, public HECL::FourCC
{
public:
FourCC() : HECL::FourCC() {}
FourCC(const HECL::FourCC& other)
: HECL::FourCC() {num = other.toUint32();}
FourCC(const char* name)
: HECL::FourCC(name) {}
Delete expl;
inline void read(Athena::io::IStreamReader& reader)
{reader.readUBytesToBuf(fcc, 4);}
inline void write(Athena::io::IStreamWriter& writer) const
{writer.writeUBytes((atUint8*)fcc, 4);}
inline void fromYAML(Athena::io::YAMLDocReader& reader)
{std::string rs = reader.readString(nullptr); strncpy(fcc, rs.c_str(), 4);}
inline void toYAML(Athena::io::YAMLDocWriter& writer) const
{writer.writeString(nullptr, std::string(fcc, 4));}
};
/* PAK 32-bit Unique ID */
class UniqueID32 : public BigYAML
{
uint32_t m_id;
public:
Delete expl;
inline void read(Athena::io::IStreamReader& reader)
{m_id = reader.readUint32();}
inline void write(Athena::io::IStreamWriter& writer) const
{writer.writeUint32(m_id);}
inline void fromYAML(Athena::io::YAMLDocReader& reader)
{m_id = reader.readUint32(nullptr);}
inline void toYAML(Athena::io::YAMLDocWriter& writer) const
{writer.writeUint32(nullptr, m_id);}
inline bool operator!=(const UniqueID32& other) const {return m_id != other.m_id;}
inline bool operator==(const UniqueID32& other) const {return m_id == other.m_id;}
inline uint32_t toUint32() const {return m_id;}
inline std::string toString() const
{
char buf[9];
snprintf(buf, 9, "%08X", m_id);
return std::string(buf);
}
};
/* PAK 64-bit Unique ID */
class UniqueID64 : public BigDNA
{
uint64_t m_id;
public:
Delete expl;
inline void read(Athena::io::IStreamReader& reader)
{m_id = reader.readUint64();}
inline void write(Athena::io::IStreamWriter& writer) const
{writer.writeUint64(m_id);}
inline bool operator!=(const UniqueID64& other) const {return m_id != other.m_id;}
inline bool operator==(const UniqueID64& other) const {return m_id == other.m_id;}
inline uint64_t toUint64() const {return m_id;}
inline std::string toString() const
{
char buf[17];
snprintf(buf, 17, "%016lX", m_id);
return std::string(buf);
}
};
/* PAK 128-bit Unique ID */
class UniqueID128 : public BigDNA
{
union
{
uint64_t m_id[2];
#if __SSE__
__m128i m_id128;
#endif
};
public:
Delete expl;
inline void read(Athena::io::IStreamReader& reader)
{
m_id[0] = reader.readUint64();
m_id[1] = reader.readUint64();
}
inline void write(Athena::io::IStreamWriter& writer) const
{
writer.writeUint64(m_id[0]);
writer.writeUint64(m_id[1]);
}
inline bool operator!=(const UniqueID128& other) const
{
#if __SSE__
__m128i vcmp = _mm_cmpeq_epi32(m_id128, other.m_id128);
int vmask = _mm_movemask_epi8(vcmp);
return vmask != 0xffff;
#else
return (m_id[0] != other.m_id[0]) || (m_id[1] != other.m_id[1]);
#endif
}
inline bool operator==(const UniqueID128& other) const
{
#if __SSE__
__m128i vcmp = _mm_cmpeq_epi32(m_id128, other.m_id128);
int vmask = _mm_movemask_epi8(vcmp);
return vmask == 0xffff;
#else
return (m_id[0] == other.m_id[0]) && (m_id[1] == other.m_id[1]);
#endif
}
inline uint64_t toHighUint64() const {return m_id[0];}
inline uint64_t toLowUint64() const {return m_id[1];}
inline std::string toString() const
{
char buf[33];
snprintf(buf, 33, "%016lX%016lX", m_id[0], m_id[1]);
return std::string(buf);
}
};
/* Case-insensitive comparator for std::map sorting */
struct CaseInsensitiveCompare
{
inline bool operator()(const std::string& lhs, const std::string& rhs) const
{
#if _WIN32
if (_stricmp(lhs.c_str(), rhs.c_str()) < 0)
#else
if (strcasecmp(lhs.c_str(), rhs.c_str()) < 0)
#endif
return true;
return false;
}
#if _WIN32
inline bool operator()(const std::wstring& lhs, const std::wstring& rhs) const
{
if (_wcsicmp(lhs.c_str(), rhs.c_str()) < 0)
return true;
return false;
}
#endif
};
/* PAK entry stream reader */
class PAKEntryReadStream : public Athena::io::IStreamReader
{
std::unique_ptr<atUint8[]> m_buf;
atUint64 m_sz;
atUint64 m_pos;
public:
PAKEntryReadStream() {}
operator bool() const {return m_buf.operator bool();}
PAKEntryReadStream(const PAKEntryReadStream& other) = delete;
PAKEntryReadStream(PAKEntryReadStream&& other) = default;
PAKEntryReadStream& operator=(const PAKEntryReadStream& other) = delete;
PAKEntryReadStream& operator=(PAKEntryReadStream&& other) = default;
PAKEntryReadStream(std::unique_ptr<atUint8[]>&& buf, atUint64 sz, atUint64 pos)
: m_buf(std::move(buf)), m_sz(sz), m_pos(pos)
{
if (m_pos >= m_sz)
LogDNACommon.report(LogVisor::FatalError, "PAK stream cursor overrun");
}
inline void seek(atInt64 pos, Athena::SeekOrigin origin)
{
if (origin == Athena::Begin)
m_pos = pos;
else if (origin == Athena::Current)
m_pos += pos;
else if (origin == Athena::End)
m_pos = m_sz + pos;
if (m_pos >= m_sz)
LogDNACommon.report(LogVisor::FatalError, "PAK stream cursor overrun");
}
inline atUint64 position() const {return m_pos;}
inline atUint64 length() const {return m_sz;}
inline const atUint8* data() const {return m_buf.get();}
inline atUint64 readUBytesToBuf(void* buf, atUint64 len)
{
atUint64 bufEnd = m_pos + len;
if (bufEnd > m_sz)
len -= bufEnd - m_sz;
memcpy(buf, m_buf.get() + m_pos, len);
m_pos += len;
return len;
}
};
struct UniqueResult
{
enum Type
{
UNIQUE_NOTFOUND,
UNIQUE_LEVEL,
UNIQUE_AREA,
UNIQUE_LAYER
} type = UNIQUE_NOTFOUND;
const HECL::SystemString* areaName = nullptr;
const HECL::SystemString* layerName = nullptr;
UniqueResult() = default;
UniqueResult(Type tp) : type(tp) {}
inline HECL::ProjectPath uniquePath(const HECL::ProjectPath& pakPath) const
{
if (type == UNIQUE_AREA)
{
HECL::ProjectPath areaDir(pakPath, *areaName);
areaDir.makeDir();
return areaDir;
}
else if (type == UNIQUE_LAYER)
{
HECL::ProjectPath areaDir(pakPath, *areaName);
areaDir.makeDir();
HECL::ProjectPath layerDir(areaDir, *layerName);
layerDir.makeDir();
return layerDir;
}
return pakPath;
}
};
template <class BRIDGETYPE>
class PAKRouter;
/* Resource extractor type */
template <class PAKBRIDGE>
struct ResExtractor
{
std::function<bool(PAKEntryReadStream&, const HECL::ProjectPath&)> func_a;
std::function<bool(PAKEntryReadStream&, const HECL::ProjectPath&, PAKRouter<PAKBRIDGE>&)> func_b;
const char* fileExt;
unsigned weight;
};
/* PAKRouter (for detecting shared entry locations) */
template <class BRIDGETYPE>
class PAKRouter
{
const HECL::ProjectPath& m_gameWorking;
const HECL::ProjectPath& m_gameCooked;
HECL::ProjectPath m_sharedWorking;
HECL::ProjectPath m_sharedCooked;
const typename BRIDGETYPE::PAKType* m_pak = nullptr;
const NOD::DiscBase::IPartition::Node* m_node = nullptr;
HECL::ProjectPath m_pakWorking;
HECL::ProjectPath m_pakCooked;
std::unordered_map<typename BRIDGETYPE::PAKType::IDType, typename BRIDGETYPE::PAKType::Entry*> m_uniqueEntries;
std::unordered_map<typename BRIDGETYPE::PAKType::IDType, typename BRIDGETYPE::PAKType::Entry*> m_sharedEntries;
public:
PAKRouter(const HECL::ProjectPath& working, const HECL::ProjectPath& cooked)
: m_gameWorking(working), m_gameCooked(cooked),
m_sharedWorking(working, "Shared"), m_sharedCooked(cooked, "Shared") {}
void build(std::vector<BRIDGETYPE>& bridges, std::function<void(float)> progress)
{
m_uniqueEntries.clear();
m_sharedEntries.clear();
size_t count = 0;
float bridgesSz = bridges.size();
/* Route entries unique/shared per-pak */
for (BRIDGETYPE& bridge : bridges)
{
bridge.build();
const typename BRIDGETYPE::PAKType& pak = bridge.getPAK();
for (const auto& entry : pak.m_idMap)
{
auto search = m_uniqueEntries.find(entry.first);
if (search != m_uniqueEntries.end())
{
m_uniqueEntries.erase(search);
m_sharedEntries.insert(entry);
}
else
m_uniqueEntries.insert(entry);
}
progress(++count / bridgesSz);
}
}
void enterPAKBridge(const BRIDGETYPE& pakBridge)
{
const std::string& name = pakBridge.getName();
HECL::SystemStringView sysName(name);
HECL::SystemString::const_iterator extit = sysName.sys_str().end() - 4;
HECL::SystemString baseName(sysName.sys_str().begin(), extit);
m_pakWorking.assign(m_gameWorking, baseName);
m_pakWorking.makeDir();
m_pakCooked.assign(m_gameCooked, baseName);
m_pakCooked.makeDir();
m_pak = &pakBridge.getPAK();
m_node = &pakBridge.getNode();
}
HECL::ProjectPath getWorking(const typename BRIDGETYPE::PAKType::Entry* entry,
const ResExtractor<BRIDGETYPE>& extractor) const
{
if (!m_pak)
LogDNACommon.report(LogVisor::FatalError,
"PAKRouter::enterPAKBridge() must be called before PAKRouter::getWorkingPath()");
auto uniqueSearch = m_uniqueEntries.find(entry->id);
if (uniqueSearch != m_uniqueEntries.end())
{
HECL::ProjectPath uniquePath = entry->unique.uniquePath(m_pakWorking);
HECL::SystemString entName = m_pak->bestEntryName(*entry);
if (extractor.fileExt)
entName += extractor.fileExt;
return HECL::ProjectPath(uniquePath, entName);
}
auto sharedSearch = m_sharedEntries.find(entry->id);
if (sharedSearch != m_sharedEntries.end())
{
HECL::SystemString entName = m_pak->bestEntryName(*entry);
if (extractor.fileExt)
entName += extractor.fileExt;
HECL::ProjectPath sharedPath(m_sharedWorking, entName);
HECL::ProjectPath uniquePath(m_pakWorking, entName);
if (extractor.func_a || extractor.func_b)
uniquePath.makeLinkTo(sharedPath);
m_sharedWorking.makeDir();
return sharedPath;
}
LogDNACommon.report(LogVisor::FatalError, "Unable to find entry %s", entry->id.toString().c_str());
return HECL::ProjectPath();
}
HECL::ProjectPath getCooked(const typename BRIDGETYPE::PAKType::Entry* entry) const
{
if (!m_pak)
LogDNACommon.report(LogVisor::FatalError,
"PAKRouter::enterPAKBridge() must be called before PAKRouter::getCookedPath()");
auto uniqueSearch = m_uniqueEntries.find(entry->id);
if (uniqueSearch != m_uniqueEntries.end())
{
HECL::ProjectPath uniquePath = entry->unique.uniquePath(m_pakCooked);
return HECL::ProjectPath(uniquePath, m_pak->bestEntryName(*entry));
}
auto sharedSearch = m_sharedEntries.find(entry->id);
if (sharedSearch != m_sharedEntries.end())
{
m_sharedCooked.makeDir();
return HECL::ProjectPath(m_sharedCooked, m_pak->bestEntryName(*entry));
}
LogDNACommon.report(LogVisor::FatalError, "Unable to find entry %s", entry->id.toString().c_str());
return HECL::ProjectPath();
}
bool extractResources(const BRIDGETYPE& pakBridge, bool force, std::function<void(float)> progress)
{
enterPAKBridge(pakBridge);
size_t count = 0;
size_t sz = m_pak->m_idMap.size();
float fsz = sz;
for (unsigned w=0 ; count<sz ; ++w)
{
for (const auto& item : m_pak->m_idMap)
{
ResExtractor<BRIDGETYPE> extractor = BRIDGETYPE::LookupExtractor(*item.second);
if (extractor.weight != w)
continue;
HECL::ProjectPath cooked = getCooked(item.second);
if (force || cooked.getPathType() == HECL::ProjectPath::PT_NONE)
{
PAKEntryReadStream s = item.second->beginReadStream(*m_node);
FILE* fout = HECL::Fopen(cooked.getAbsolutePath().c_str(), _S("wb"));
fwrite(s.data(), 1, s.length(), fout);
fclose(fout);
}
HECL::ProjectPath working = getWorking(item.second, extractor);
if (extractor.func_a) /* Doesn't need PAKRouter access */
{
if (force || working.getPathType() == HECL::ProjectPath::PT_NONE)
{
PAKEntryReadStream s = item.second->beginReadStream(*m_node);
extractor.func_a(s, working);
}
}
else if (extractor.func_b) /* Needs PAKRouter access */
{
if (force || working.getPathType() == HECL::ProjectPath::PT_NONE)
{
PAKEntryReadStream s = item.second->beginReadStream(*m_node);
extractor.func_b(s, working, *this);
}
}
progress(++count / fsz);
}
}
return true;
}
};
/* Resource cooker function */
typedef std::function<bool(const HECL::ProjectPath&, const HECL::ProjectPath&)> ResCooker;
/* Language-identifiers */
extern const HECL::FourCC ENGL;
extern const HECL::FourCC FREN;
extern const HECL::FourCC GERM;
extern const HECL::FourCC SPAN;
extern const HECL::FourCC ITAL;
extern const HECL::FourCC JAPN;
/* Resource types */
extern const HECL::FourCC AFSM;
extern const HECL::FourCC AGSC;
extern const HECL::FourCC ANCS;
extern const HECL::FourCC ANIM;
extern const HECL::FourCC ATBL;
extern const HECL::FourCC CINF;
extern const HECL::FourCC CMDL;
extern const HECL::FourCC CRSC;
extern const HECL::FourCC CSKR;
extern const HECL::FourCC CSMP;
extern const HECL::FourCC CSNG;
extern const HECL::FourCC CTWK;
extern const HECL::FourCC DGRP;
extern const HECL::FourCC DPSC;
extern const HECL::FourCC DUMB;
extern const HECL::FourCC ELSC;
extern const HECL::FourCC EVNT;
extern const HECL::FourCC FONT;
extern const HECL::FourCC FRME;
extern const HECL::FourCC HINT;
extern const HECL::FourCC MAPA;
extern const HECL::FourCC MAPU;
extern const HECL::FourCC MAPW;
extern const HECL::FourCC MLVL;
extern const HECL::FourCC MREA;
extern const HECL::FourCC PART;
extern const HECL::FourCC PATH;
extern const HECL::FourCC RFRM;
extern const HECL::FourCC ROOM;
extern const HECL::FourCC SAVW;
extern const HECL::FourCC SCAN;
extern const HECL::FourCC STRG;
extern const HECL::FourCC SWHC;
extern const HECL::FourCC TXTR;
extern const HECL::FourCC WPSC;
}
/* Hash template-specializations for UniqueID types */
namespace std
{
template<>
struct hash<Retro::FourCC>
{
inline size_t operator()(const Retro::FourCC& fcc) const
{return fcc.toUint32();}
};
template<>
struct hash<Retro::UniqueID32>
{
inline size_t operator()(const Retro::UniqueID32& id) const
{return id.toUint32();}
};
template<>
struct hash<Retro::UniqueID64>
{
inline size_t operator()(const Retro::UniqueID64& id) const
{return id.toUint64();}
};
template<>
struct hash<Retro::UniqueID128>
{
inline size_t operator()(const Retro::UniqueID128& id) const
{return id.toHighUint64() ^ id.toLowUint64();}
};
}
#endif // __DNA_COMMON_HPP__