metaforce/Runtime/World/CFluidPlaneCPU.cpp

958 lines
45 KiB
C++

#include "CFluidPlaneCPU.hpp"
#include "CSimplePool.hpp"
#include "GameGlobalObjects.hpp"
#include "CFluidPlaneManager.hpp"
#include "CStateManager.hpp"
#include "CWorld.hpp"
#include "World/CScriptWater.hpp"
#include "TCastTo.hpp"
#include "Camera/CGameCamera.hpp"
#define kTableSize 2048
namespace urde
{
CFluidPlaneCPU::CTurbulence::CTurbulence(float speed, float distance, float freqMax, float freqMin,
float phaseMax, float phaseMin, float amplitudeMax, float amplitudeMin)
: x0_speed(speed), x4_distance(distance), x8_freqMax(freqMax), xc_freqMin(freqMin),
x10_phaseMax(phaseMax), x14_phaseMin(phaseMin), x18_amplitudeMax(amplitudeMax), x1c_amplitudeMin(amplitudeMin),
x2c_ooTurbSpeed(1.f / x0_speed), x30_ooTurbDistance(1.f / x4_distance)
{
if (x18_amplitudeMax != 0.f || x1c_amplitudeMin != 0.f)
{
x24_tableCount = kTableSize;
x28_heightSelPitch = x24_tableCount;
x20_table.reset(new float[x24_tableCount]);
float anglePitch = 2.f * M_PIF / x28_heightSelPitch;
float freqConstant = 0.5f * (x8_freqMax + xc_freqMin);
float freqLinear = 0.5f * (x8_freqMax - xc_freqMin);
float phaseConstant = 0.5f * (x10_phaseMax + x14_phaseMin);
float phaseLinear = 0.5f * (x10_phaseMax - x14_phaseMin);
float amplitudeConstant = 0.5f * (x18_amplitudeMax + x1c_amplitudeMin);
float amplitudeLinear = 0.5f * (x18_amplitudeMax - x1c_amplitudeMin);
float curAng = 0.f;
for (int i=0 ; i<x24_tableCount ; ++i, curAng += anglePitch)
{
float angCos = std::cos(curAng);
x20_table[i] = (amplitudeLinear * angCos + amplitudeConstant) *
std::sin((freqLinear * angCos + freqConstant) * curAng + (phaseLinear * angCos + phaseConstant));
}
x34_hasTurbulence = true;
}
}
CFluidPlaneCPU::CFluidPlaneCPU(CAssetId texPattern1, CAssetId texPattern2, CAssetId texColor, CAssetId bumpMap,
CAssetId envMap, CAssetId envBumpMap, CAssetId lightMap, float unitsPerLightmapTexel,
float tileSize, u32 tileSubdivisions, EFluidType fluidType, float alpha,
const zeus::CVector3f& bumpLightDir, float bumpScale, const CFluidUVMotion& mot,
float turbSpeed, float turbDistance, float turbFreqMax, float turbFreqMin,
float turbPhaseMax, float turbPhaseMin, float turbAmplitudeMax, float turbAmplitudeMin,
float specularMin, float specularMax, float reflectionBlend, float reflectionSize,
float rippleIntensity, u32 maxVertCount)
: CFluidPlane(texPattern1, texPattern2, texColor, alpha, fluidType, rippleIntensity, mot),
xa0_texIdBumpMap(bumpMap), xa4_texIdEnvMap(envMap), xa8_texIdEnvBumpMap(envBumpMap), xac_texId4(lightMap),
xf0_bumpLightDir(bumpLightDir), xfc_bumpScale(bumpScale), x100_tileSize(tileSize),
x104_tileSubdivisions(tileSubdivisions & ~0x1),
x108_rippleResolution(x100_tileSize / float(x104_tileSubdivisions)),
x10c_specularMin(specularMin), x110_specularMax(specularMax), x114_reflectionBlend(reflectionBlend),
x118_reflectionSize(reflectionSize), x11c_unitsPerLightmapTexel(unitsPerLightmapTexel),
x120_turbulence(turbSpeed, turbDistance, turbFreqMax, turbFreqMin, turbPhaseMax,
turbPhaseMin, turbAmplitudeMax, turbAmplitudeMin),
m_maxVertCount(maxVertCount)
{
if (g_ResFactory->GetResourceTypeById(xa0_texIdBumpMap) == FOURCC('TXTR'))
xb0_bumpMap = g_SimplePool->GetObj(SObjectTag{FOURCC('TXTR'), xa0_texIdBumpMap});
if (g_ResFactory->GetResourceTypeById(xa4_texIdEnvMap) == FOURCC('TXTR'))
xc0_envMap = g_SimplePool->GetObj(SObjectTag{FOURCC('TXTR'), xa4_texIdEnvMap});
if (g_ResFactory->GetResourceTypeById(xa8_texIdEnvBumpMap) == FOURCC('TXTR'))
xd0_envBumpMap = g_SimplePool->GetObj(SObjectTag{FOURCC('TXTR'), xa8_texIdEnvBumpMap});
if (g_ResFactory->GetResourceTypeById(xac_texId4) == FOURCC('TXTR'))
xe0_lightmap = g_SimplePool->GetObj(SObjectTag{FOURCC('TXTR'), xac_texId4});
}
void CFluidPlaneCPU::CreateRipple(const CRipple& ripple, CStateManager& mgr)
{
}
void CFluidPlaneCPU::CalculateLightmapMatrix(const zeus::CTransform& areaXf, const zeus::CTransform& xf,
const zeus::CAABox& aabb, zeus::CMatrix4f& mtxOut) const
{
int width = GetLightMap().GetWidth();
int height = GetLightMap().GetHeight();
zeus::CTransform toLocal = areaXf.getRotation().inverse();
zeus::CAABox areaLocalAABB = aabb.getTransformedAABox(toLocal);
float f26 = (areaLocalAABB.max.x - areaLocalAABB.min.x) / (width * x11c_unitsPerLightmapTexel);
float f25 = (areaLocalAABB.max.y - areaLocalAABB.min.y) / (height * x11c_unitsPerLightmapTexel);
float f24 = (1.f + std::fmod(areaLocalAABB.min.x + xf.origin.x, x11c_unitsPerLightmapTexel)) / width;
float f23 = (2.f - std::fmod(areaLocalAABB.max.x + xf.origin.x, x11c_unitsPerLightmapTexel)) / width;
float f29 = (1.f + std::fmod(areaLocalAABB.min.y + xf.origin.y, x11c_unitsPerLightmapTexel)) / height;
float f6 = (2.f - std::fmod(areaLocalAABB.max.y + xf.origin.y, x11c_unitsPerLightmapTexel)) / height;
float scaleX = (f26 - f24 - f23) / (areaLocalAABB.max.x - areaLocalAABB.min.x);
float scaleY = -(f25 - f29 - f6) / (areaLocalAABB.max.y - areaLocalAABB.min.y);
float offX = f24 + f26 * -areaLocalAABB.min.x / (areaLocalAABB.max.x - areaLocalAABB.min.x);
float offY = f25 * areaLocalAABB.min.y / (areaLocalAABB.max.y - areaLocalAABB.min.y) - f6;
mtxOut = (zeus::CTransform(zeus::CMatrix3f(zeus::CVector3f(scaleX, scaleY, 0.f)),
zeus::CVector3f(offX, offY, 0.f)) * toLocal).toMatrix4f();
}
static bool sSineWaveInitialized = false;
static float sGlobalSineWave[256] = {};
static const float* InitializeSineWave()
{
if (sSineWaveInitialized)
return sGlobalSineWave;
for (int i=0 ; i<256 ; ++i)
sGlobalSineWave[i] = std::sin(2.f * M_PIF * (i / 256.f));
sSineWaveInitialized = true;
return sGlobalSineWave;
}
#define kEnableWaterBumpMaps true
CFluidPlaneShader::RenderSetupInfo
CFluidPlaneCPU::RenderSetup(const CStateManager& mgr, float alpha, const zeus::CTransform& xf,
const zeus::CTransform& areaXf, const zeus::CAABox& aabb, const CScriptWater* water) const
{
CFluidPlaneShader::RenderSetupInfo out;
float uvT = mgr.GetFluidPlaneManager()->GetUVT();
bool hasBumpMap = HasBumpMap() && kEnableWaterBumpMaps;
bool doubleLightmapBlend = false;
bool hasEnvMap = mgr.GetCameraManager()->GetFluidCounter() == 0 && HasEnvMap();
bool hasEnvBumpMap = HasEnvBumpMap();
InitializeSineWave();
CGraphics::SetModelMatrix(xf);
if (hasBumpMap)
{
// Build 50% grey directional light with xf0_bumpLightDir and load into LIGHT_3
// Light 3 in channel 1
// Vertex colors in channel 0
out.lights.resize(4);
out.lights[3] = CLight::BuildDirectional(xf0_bumpLightDir, zeus::CColor::skGrey);
}
else
{
// Normal light mask in channel 1
// Vertex colors in channel 0
out.lights = water->GetActorLights()->BuildLightVector();
}
int curTex = 3;
int bumpMapId;
int envMapId;
int envBumpMapId;
int lightmapId;
if (hasBumpMap)
{
// Load into next
bumpMapId = curTex++;
}
if (hasEnvMap)
{
// Load into next
envMapId = curTex++;
}
if (hasEnvBumpMap)
{
// Load into next
envBumpMapId = curTex++;
}
float fluidUVs[3][2];
x4c_uvMotion.CalculateFluidTextureOffset(uvT, fluidUVs);
out.texMtxs[0][0][0] = out.texMtxs[0][1][1] = x4c_uvMotion.GetFluidLayers()[1].GetUVScale();
out.texMtxs[0][3][0] = fluidUVs[1][0];
out.texMtxs[0][3][1] = fluidUVs[1][1];
out.texMtxs[1][0][0] = out.texMtxs[1][1][1] = x4c_uvMotion.GetFluidLayers()[2].GetUVScale();
out.texMtxs[1][3][0] = fluidUVs[2][0];
out.texMtxs[1][3][1] = fluidUVs[2][1];
out.texMtxs[2][0][0] = out.texMtxs[2][1][1] = x4c_uvMotion.GetFluidLayers()[0].GetUVScale();
out.texMtxs[2][3][0] = fluidUVs[0][0];
out.texMtxs[2][3][1] = fluidUVs[0][1];
// Load normal mtx 0 with
out.normMtx =
(zeus::CTransform::Scale(xfc_bumpScale) * CGraphics::g_ViewMatrix.getRotation().inverse()).toMatrix4f();
// Setup TCGs
int nextTexMtx = 3;
if (hasEnvBumpMap)
{
float pttScale;
if (hasEnvMap)
pttScale = 0.5f * (1.f - x118_reflectionSize);
else
pttScale = g_tweakGame->GetFluidEnvBumpScale() * x4c_uvMotion.GetFluidLayers()[0].GetUVScale();
// Load GX_TEXMTX3 with identity
zeus::CMatrix4f& texMtx = out.texMtxs[nextTexMtx++];
texMtx[0][0] = texMtx[1][1] = pttScale;
texMtx[3][0] = texMtx[3][1] = 0.5f;
// Load GX_PTTEXMTX0 with scale of pttScale
// Next: GX_TG_MTX2x4 GX_TG_NRM, GX_TEXMTX3, true, GX_PTTEXMTX0
out.indScale = 0.5f * (hasEnvMap ? x118_reflectionSize : 1.f);
// Load ind mtx with scale of (indScale, -indScale)
// Load envBumpMap into ind stage 0 with previous TCG
}
if (hasEnvMap)
{
float scale = std::max(aabb.max.x - aabb.min.x, aabb.max.y - aabb.min.y);
zeus::CMatrix4f& texMtx = out.texMtxs[nextTexMtx++];
texMtx[0][0] = texMtx[1][1] = 1.f / scale;
zeus::CVector3f center = aabb.center();
texMtx[3][0] = 0.5f + -center.x / scale;
texMtx[3][1] = 0.5f + -center.y / scale;
// Next: GX_TG_MTX2x4 GX_TG_POS, mtxNext, false, GX_PTIDENTITY
}
if (HasLightMap())
{
float lowLightBlend = 1.f;
const CGameArea* area = mgr.GetWorld()->GetAreaAlways(mgr.GetNextAreaId());
float lightLevel = area->GetPostConstructed()->x1128_worldLightingLevel;
const CScriptWater* nextWater = water->GetNextConnectedWater(mgr);
if (std::fabs(water->GetMorphFactor()) < 0.00001f || !nextWater ||
!nextWater->GetFluidPlane().HasLightMap())
{
lightmapId = curTex;
// Load lightmap
CalculateLightmapMatrix(areaXf, xf, aabb, out.texMtxs[nextTexMtx++]);
// Next: GX_TG_MTX2x4 GX_TG_POS, mtxNext, false, GX_PTIDENTITY
}
else if (nextWater && nextWater->GetFluidPlane().HasLightMap())
{
if (std::fabs(water->GetMorphFactor() - 1.f) < 0.00001f)
{
lightmapId = curTex;
// Load lightmap
CalculateLightmapMatrix(areaXf, xf, aabb, out.texMtxs[nextTexMtx++]);
// Next: GX_TG_MTX2x4 GX_TG_POS, mtxNext, false, GX_PTIDENTITY
}
else
{
lightmapId = curTex;
// Load lightmap
CalculateLightmapMatrix(areaXf, xf, aabb, out.texMtxs[nextTexMtx++]);
// Next: GX_TG_MTX2x4 GX_TG_POS, mtxNext, false, GX_PTIDENTITY
// Load lightmap
CalculateLightmapMatrix(areaXf, xf, aabb, out.texMtxs[nextTexMtx++]);
// Next: GX_TG_MTX2x4 GX_TG_POS, mtxNext, false, GX_PTIDENTITY
float lum = lightLevel * water->GetMorphFactor();
out.kColors[3] = zeus::CColor(lum, 1.f);
lowLightBlend = (1.f - water->GetMorphFactor()) / (1.f - lum);
doubleLightmapBlend = true;
}
}
out.kColors[2] = zeus::CColor(lowLightBlend * lightLevel, 1.f);
}
float waterPlaneOrthoDot = xf.transposeRotate(zeus::CVector3f::skUp).
dot(CGraphics::g_ViewMatrix.inverse().transposeRotate(zeus::CVector3f::skForward));
if (waterPlaneOrthoDot < 0.f)
waterPlaneOrthoDot = -waterPlaneOrthoDot;
out.kColors[0] =
zeus::CColor((1.f - waterPlaneOrthoDot) * (x110_specularMax - x10c_specularMin) + x10c_specularMin, alpha);
out.kColors[1] = zeus::CColor(x114_reflectionBlend, 1.f);
if (!m_shader || m_cachedDoubleLightmapBlend != doubleLightmapBlend ||
m_cachedAdditive != (mgr.GetThermalDrawFlag() == EThermalDrawFlag::Hot))
{
m_cachedDoubleLightmapBlend = doubleLightmapBlend;
m_cachedAdditive = mgr.GetThermalDrawFlag() == EThermalDrawFlag::Hot;
m_shader.emplace(x44_fluidType,
x10_texPattern1, x20_texPattern2, x30_texColor, xb0_bumpMap, xc0_envMap,
xd0_envBumpMap, xe0_lightmap,
m_tessellation ? CFluidPlaneManager::RippleMapTex : boo::ObjToken<boo::ITextureS>{},
m_cachedDoubleLightmapBlend, m_cachedAdditive, m_maxVertCount);
}
return out;
}
int CFluidPlaneRender::numTilesInHField;
int CFluidPlaneRender::numSubdivisionsInTile;
int CFluidPlaneRender::numSubdivisionsInHField;
bool CFluidPlaneCPU::PrepareRipple(const CRipple& ripple, const CFluidPlaneRender::SPatchInfo& info,
CFluidPlaneRender::SRippleInfo& rippleOut)
{
auto lifeIdx = int((1.f - (ripple.GetTimeFalloff() - ripple.GetTime()) / ripple.GetTimeFalloff()) * 64.f);
float dist = CFluidPlaneManager::RippleMaxs[lifeIdx] * (ripple.GetDistanceFalloff() / 256.f);
dist *= dist;
if (dist != 0)
dist = std::sqrt(dist);
dist = info.x24_ooRippleResolution * dist + 1.f;
float centerX = info.x24_ooRippleResolution * (ripple.GetCenter().x - info.xc_globalMin.x);
float centerY = info.x24_ooRippleResolution * (ripple.GetCenter().y - info.xc_globalMin.y);
int fromX = int(centerX - dist) - 1;
int toX = int(centerX + dist) + 1;
int fromY = int(centerY - dist) - 1;
int toY = int(centerY + dist) + 1;
rippleOut.x4_fromX = std::max(0, fromX);
rippleOut.x8_toX = std::min(int(info.x0_xSubdivs), toX);
rippleOut.xc_fromY = std::max(0, fromY);
rippleOut.x10_toY = std::min(int(info.x1_ySubdivs), toY);
rippleOut.x14_gfromX = std::max(rippleOut.x14_gfromX, fromX);
rippleOut.x18_gtoX = std::min(rippleOut.x18_gtoX, toX);
rippleOut.x1c_gfromY = std::max(rippleOut.x1c_gfromY, fromY);
rippleOut.x20_gtoY = std::min(rippleOut.x20_gtoY, toY);
return !(rippleOut.x14_gfromX > rippleOut.x18_gtoX || rippleOut.x1c_gfromY > rippleOut.x20_gtoY);
}
void CFluidPlaneCPU::ApplyTurbulence(float t, CFluidPlaneRender::SHFieldSample (&heights)[46][46],
const u8 (&flags)[9][9], const float sineWave[256],
const CFluidPlaneRender::SPatchInfo& info,
const zeus::CVector3f& areaCenter) const
{
if (!HasTurbulence())
{
memset(&heights, 0, sizeof(heights));
return;
}
float scaledT = t * GetOOTurbulenceSpeed();
float curY = info.x4_localMin.y - info.x18_rippleResolution - areaCenter.y;
int xDivs = (info.x0_xSubdivs + CFluidPlaneRender::numSubdivisionsInTile - 4) /
CFluidPlaneRender::numSubdivisionsInTile * CFluidPlaneRender::numSubdivisionsInTile + 2;
int yDivs = (info.x1_ySubdivs + CFluidPlaneRender::numSubdivisionsInTile - 4) /
CFluidPlaneRender::numSubdivisionsInTile * CFluidPlaneRender::numSubdivisionsInTile + 2;
for (int i=0 ; i<=yDivs ; ++i)
{
float curYSq = curY * curY;
float curX = info.x4_localMin.x - info.x18_rippleResolution - areaCenter.x;
for (int j=0 ; j<=xDivs ; ++j)
{
float distFac = curX * curX + curYSq;
if (distFac != 0.f)
distFac = std::sqrt(distFac);
heights[i][j].height =
GetTurbulenceHeight(GetOOTurbulenceDistance() * distFac + scaledT);
curX += info.x18_rippleResolution;
}
curY += info.x18_rippleResolution;
}
}
void CFluidPlaneCPU::ApplyRipple(const CFluidPlaneRender::SRippleInfo& rippleInfo,
CFluidPlaneRender::SHFieldSample (&heights)[46][46],
u8 (&flags)[9][9], const float sineWave[256],
const CFluidPlaneRender::SPatchInfo& info) const
{
float lookupT = 256.f * (1.f - rippleInfo.x0_ripple.GetTime() * rippleInfo.x0_ripple.GetOOTimeFalloff() *
rippleInfo.x0_ripple.GetOOTimeFalloff()) * rippleInfo.x0_ripple.GetFrequency();
auto lifeIdx = int(64.f * rippleInfo.x0_ripple.GetTime() * rippleInfo.x0_ripple.GetOOTimeFalloff());
float distMul = rippleInfo.x0_ripple.GetDistanceFalloff() / 255.f;
float minDist = CFluidPlaneManager::RippleMins[lifeIdx] * distMul;
float minDistSq = minDist * minDist;
if (minDistSq != 0.f)
minDist = std::sqrt(minDistSq);
float maxDist = CFluidPlaneManager::RippleMaxs[lifeIdx] * distMul;
float maxDistSq = maxDist * maxDist;
if (maxDistSq != 0.f)
maxDist = std::sqrt(maxDistSq);
int fromY = (rippleInfo.x1c_gfromY + CFluidPlaneRender::numSubdivisionsInTile - 1) /
CFluidPlaneRender::numSubdivisionsInTile;
int fromX = (rippleInfo.x14_gfromX + CFluidPlaneRender::numSubdivisionsInTile - 1) /
CFluidPlaneRender::numSubdivisionsInTile;
int toY = (rippleInfo.x20_gtoY + CFluidPlaneRender::numSubdivisionsInTile - 1) /
CFluidPlaneRender::numSubdivisionsInTile;
int toX = (rippleInfo.x18_gtoX + CFluidPlaneRender::numSubdivisionsInTile - 1) /
CFluidPlaneRender::numSubdivisionsInTile;
float curY = rippleInfo.x0_ripple.GetCenter().y - info.xc_globalMin.y -
(0.5f * info.x14_tileSize + (fromY - 1) * info.x14_tileSize);
int curGridY = info.x2a_gridDimX * (info.x2e_tileY + fromY - 1);
int startGridX = (info.x28_tileX + fromX - 1);
int gridCells = info.x2a_gridDimX * info.x2c_gridDimY;
float distFalloff = 64.f * rippleInfo.x0_ripple.GetOODistanceFalloff();
int curYDiv = rippleInfo.xc_fromY;
for (int i=fromY ; i<=toY ; ++i, curY -= info.x14_tileSize)
{
int nextYDiv = (i+1) * CFluidPlaneRender::numSubdivisionsInTile;
float curYSq = curY * curY;
int curGridX = startGridX;
int curXDiv = rippleInfo.x4_fromX;
float curX = rippleInfo.x0_ripple.GetCenter().x - info.xc_globalMin.x -
(0.5f * info.x14_tileSize + (fromX - 1) * info.x14_tileSize);
for (int j=fromX ; j<=toX ; ++j, curX -= info.x14_tileSize, ++curGridX)
{
float dist = curX * curX + curYSq;
if (dist != 0.f)
dist = std::sqrt(dist);
if (maxDist < dist - info.x1c_tileHypRadius || minDist > dist + info.x1c_tileHypRadius)
continue;
bool addedRipple = false;
int nextXDiv = (j+1) * CFluidPlaneRender::numSubdivisionsInTile;
float curXMod =
(rippleInfo.x0_ripple.GetCenter().x - info.xc_globalMin.x) - info.x18_rippleResolution * curXDiv;
float curYMod =
(rippleInfo.x0_ripple.GetCenter().y - info.xc_globalMin.y) - info.x18_rippleResolution * curYDiv;
if (!info.x30_gridFlags || (info.x30_gridFlags && curGridY >= 0 && curGridY < gridCells && curGridX >= 0 &&
curGridX < info.x2a_gridDimX && info.x30_gridFlags[curGridX + curGridY]))
{
for (int k=curYDiv ; k<=std::min(rippleInfo.x10_toY, nextYDiv-1) ; ++k,
curYMod -= info.x18_rippleResolution)
{
float tmpXMod = curXMod;
float curYModSq = curYMod * curYMod;
for (int l=curXDiv ; l<=std::min(rippleInfo.x8_toX, nextXDiv-1) ; ++l,
tmpXMod -= info.x18_rippleResolution)
{
float divDistSq = tmpXMod * tmpXMod + curYModSq;
if (divDistSq < minDistSq || divDistSq > maxDistSq)
continue;
if (m_tessellation)
{
/* This will be evaluated in tessellation shader instead */
addedRipple = true;
break;
}
float divDist = (divDistSq != 0.f) ? std::sqrt(divDistSq) : 0.f;
if (u8 rippleV = CFluidPlaneManager::RippleValues[lifeIdx][int(divDist * distFalloff)])
{
heights[k][l].height += rippleV * rippleInfo.x0_ripple.GetLookupAmplitude() *
sineWave[int(divDist * rippleInfo.x0_ripple.GetLookupPhase() + lookupT) & 0xff];
}
else
{
heights[k][l].height += 0.f;
}
addedRipple = true;
}
}
if (addedRipple)
flags[i][j] = 0x1f;
}
else
{
int yMin = nextYDiv - 1;
int yMax = nextYDiv - CFluidPlaneRender::numSubdivisionsInTile + 1;
int xMin = nextXDiv - 1;
int xMax = nextXDiv - CFluidPlaneRender::numSubdivisionsInTile + 1;
if (curGridX >= 0.f && curGridX < info.x2a_gridDimX && curGridY - info.x2a_gridDimX >= 0 &&
!info.x30_gridFlags[curGridX + curGridY - info.x2a_gridDimX])
yMax -= 2;
if (curGridX >= 0.f && curGridX < info.x2a_gridDimX && curGridY + info.x2a_gridDimX < gridCells &&
!info.x30_gridFlags[curGridX + info.x2a_gridDimX])
yMin += 2;
if (curGridY >= 0 && curGridY < info.x2c_gridDimY && curGridX > 0 &&
!info.x30_gridFlags[curGridX - 1])
xMax -= 2;
if (curGridY >= 0 && curGridY < info.x2c_gridDimY && curGridX + 1 < info.x2a_gridDimX &&
!info.x30_gridFlags[curGridX + 1])
xMin += 2;
for (int k=curYDiv ; k<=std::min(rippleInfo.x10_toY, nextYDiv-1) ; ++k,
curYMod -= info.x18_rippleResolution)
{
float tmpXMod = curXMod;
float curYModSq = curYMod * curYMod;
for (int l=curXDiv ; l<=std::min(rippleInfo.x8_toX, nextXDiv-1) ; ++l,
tmpXMod -= info.x18_rippleResolution)
{
if (k <= yMax || k >= yMin || l <= xMax || l >= xMin)
{
float divDistSq = tmpXMod * tmpXMod + curYModSq;
if (divDistSq < minDistSq || divDistSq > maxDistSq)
continue;
if (m_tessellation)
{
/* This will be evaluated in tessellation shader instead */
addedRipple = true;
break;
}
float divDist = (divDistSq != 0.f) ? std::sqrt(divDistSq) : 0.f;
if (u8 rippleV = CFluidPlaneManager::RippleValues[lifeIdx][int(divDist * distFalloff)])
{
heights[k][l].height += rippleV * rippleInfo.x0_ripple.GetLookupAmplitude() *
sineWave[int(divDist * rippleInfo.x0_ripple.GetLookupPhase() + lookupT) & 0xff];
}
else
{
heights[k][l].height += 0.f;
}
addedRipple = true;
}
}
if (m_tessellation && addedRipple)
break;
}
if (addedRipple)
flags[i][j] = 0xf;
}
curXDiv = nextXDiv;
}
curYDiv = nextYDiv;
curGridY += info.x2a_gridDimX;
}
}
void CFluidPlaneCPU::ApplyRipples(const rstl::reserved_vector<CFluidPlaneRender::SRippleInfo, 32>& rippleInfos,
CFluidPlaneRender::SHFieldSample (&heights)[46][46], u8 (&flags)[9][9],
const float sineWave[256], const CFluidPlaneRender::SPatchInfo& info) const
{
for (const CFluidPlaneRender::SRippleInfo& rippleInfo : rippleInfos)
ApplyRipple(rippleInfo, heights, flags, sineWave, info);
for (int i=0 ; i<CFluidPlaneRender::numTilesInHField ; ++i)
flags[0][i+1] |= 1;
for (int i=0 ; i<CFluidPlaneRender::numTilesInHField ; ++i)
flags[i+1][0] |= 8;
for (int i=0 ; i<CFluidPlaneRender::numTilesInHField ; ++i)
flags[i+1][CFluidPlaneRender::numTilesInHField+1] |= 4;
for (int i=0 ; i<CFluidPlaneRender::numTilesInHField ; ++i)
flags[CFluidPlaneRender::numTilesInHField+1][i+1] |= 2;
}
void CFluidPlaneCPU::UpdatePatchNoNormals(CFluidPlaneRender::SHFieldSample (&heights)[46][46],
const u8 (&flags)[9][9],
const CFluidPlaneRender::SPatchInfo& info)
{
for (int i=1 ; i <= (info.x1_ySubdivs + CFluidPlaneRender::numSubdivisionsInTile - 2) /
CFluidPlaneRender::numSubdivisionsInTile ; ++i)
{
int r10 = i * CFluidPlaneRender::numSubdivisionsInTile + 1;
int r9 = std::max(0, r10 - CFluidPlaneRender::numSubdivisionsInTile);
int x24 = std::min(r10, info.x1_ySubdivs + 1);
for (int j=1 ; j <= (info.x0_xSubdivs + CFluidPlaneRender::numSubdivisionsInTile - 2) /
CFluidPlaneRender::numSubdivisionsInTile ; ++j)
{
int r29 = j * CFluidPlaneRender::numSubdivisionsInTile + 1;
int r11 = std::max(0, r29 - CFluidPlaneRender::numSubdivisionsInTile);
int x28 = std::min(r29, info.x0_xSubdivs + 1);
if ((flags[i][j] & 0x1f) == 0x1f)
{
for (int k=r9 ; k<x24 ; ++k)
{
for (int l=r11 ; l<x28 ; ++l)
{
CFluidPlaneRender::SHFieldSample& sample = heights[k][l];
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
}
}
else
{
if (i > 0 && i < CFluidPlaneRender::numTilesInHField + 1 &&
j > 0 && j < CFluidPlaneRender::numTilesInHField + 1)
{
int halfSubdivs = CFluidPlaneRender::numSubdivisionsInTile / 2;
CFluidPlaneRender::SHFieldSample& sample = heights[halfSubdivs + r9][halfSubdivs + r11];
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
if (i != 0)
{
for (int l=r11 ; l<x28 ; ++l)
{
CFluidPlaneRender::SHFieldSample& sample = heights[r9][l];
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
}
if (j != 0)
{
for (int k=r9+1 ; k<x24 ; ++k)
{
CFluidPlaneRender::SHFieldSample& sample = heights[k][r11];
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
}
}
}
}
}
void CFluidPlaneCPU::UpdatePatchWithNormals(CFluidPlaneRender::SHFieldSample (& heights)[46][46],
const u8 (& flags)[9][9],
const CFluidPlaneRender::SPatchInfo& info)
{
float normalScale = -(2.f * info.x18_rippleResolution);
float nz = 0.25f * 2.f * info.x18_rippleResolution;
int curGridY = info.x2e_tileY * info.x2a_gridDimX - 1 + info.x28_tileX;
for (int i=1 ; i <= (info.x1_ySubdivs + CFluidPlaneRender::numSubdivisionsInTile - 2) /
CFluidPlaneRender::numSubdivisionsInTile ; ++i, curGridY += info.x2a_gridDimX)
{
int r11 = i * CFluidPlaneRender::numSubdivisionsInTile + 1;
int r9 = std::max(0, r11 - CFluidPlaneRender::numSubdivisionsInTile);
int x38 = std::min(r11, info.x1_ySubdivs + 1);
for (int j=1 ; j <= (info.x0_xSubdivs + CFluidPlaneRender::numSubdivisionsInTile - 2) /
CFluidPlaneRender::numSubdivisionsInTile ; ++j)
{
int r12 = j * CFluidPlaneRender::numSubdivisionsInTile + 1;
int x3c = std::min(r12, info.x0_xSubdivs + 1);
r12 -= CFluidPlaneRender::numSubdivisionsInTile;
if ((flags[i][j] & 0x1f) == 0x1f)
{
for (int k=r9 ; k<x38 ; ++k)
{
for (int l=r12 ; l<x3c ; ++l)
{
CFluidPlaneRender::SHFieldSample& sample = heights[k][l];
CFluidPlaneRender::SHFieldSample& up = heights[k+1][l];
CFluidPlaneRender::SHFieldSample& down = heights[k-1][l];
CFluidPlaneRender::SHFieldSample& right = heights[k][l+1];
CFluidPlaneRender::SHFieldSample& left = heights[k][l-1];
float nx = (right.height - left.height) * normalScale;
float ny = (up.height - down.height) * normalScale;
float normalizer = ny * ny + nx * nx + nz * nz;
if (normalizer != 0.f)
normalizer = std::sqrt(normalizer);
normalizer = 63.f / normalizer;
sample.nx = s8(nx * normalizer);
sample.ny = s8(ny * normalizer);
sample.nz = s8(nz * normalizer);
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
}
}
else
{
if (!info.x30_gridFlags || info.x30_gridFlags[curGridY+j])
{
if (i > 0 && i < CFluidPlaneRender::numTilesInHField + 1 &&
j > 0 && j < CFluidPlaneRender::numTilesInHField + 1)
{
int halfSubdivs = CFluidPlaneRender::numSubdivisionsInTile / 2;
int k = halfSubdivs + r9;
int l = halfSubdivs + r12;
CFluidPlaneRender::SHFieldSample& sample = heights[k][l];
CFluidPlaneRender::SHFieldSample& up = heights[k+1][l];
CFluidPlaneRender::SHFieldSample& down = heights[k-1][l];
CFluidPlaneRender::SHFieldSample& right = heights[k][l+1];
CFluidPlaneRender::SHFieldSample& left = heights[k][l-1];
float nx = (right.height - left.height) * normalScale;
float ny = (up.height - down.height) * normalScale;
float normalizer = ny * ny + nx * nx + nz * nz;
if (normalizer != 0.f)
normalizer = std::sqrt(normalizer);
normalizer = 63.f / normalizer;
sample.nx = s8(nx * normalizer);
sample.ny = s8(ny * normalizer);
sample.nz = s8(nz * normalizer);
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
}
if (j != 0 && i != 0)
{
if ((flags[i][j] & 2) != 0 || (flags[i-1][j] & 1) != 0 ||
(flags[i][j] & 4) != 0 || (flags[i][j-1] & 8) != 0)
{
for (int l=r12 ; l<x3c ; ++l)
{
CFluidPlaneRender::SHFieldSample& sample = heights[r9][l];
CFluidPlaneRender::SHFieldSample& up = heights[r9+1][l];
CFluidPlaneRender::SHFieldSample& down = heights[r9-1][l];
CFluidPlaneRender::SHFieldSample& right = heights[r9][l+1];
CFluidPlaneRender::SHFieldSample& left = heights[r9][l-1];
float nx = (right.height - left.height) * normalScale;
float ny = (up.height - down.height) * normalScale;
float normalizer = ny * ny + nx * nx + nz * nz;
if (normalizer != 0.f)
normalizer = std::sqrt(normalizer);
normalizer = 63.f / normalizer;
sample.nx = s8(nx * normalizer);
sample.ny = s8(ny * normalizer);
sample.nz = s8(nz * normalizer);
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
for (int k=r9 ; k<x38 ; ++k)
{
CFluidPlaneRender::SHFieldSample& sample = heights[k][r12];
CFluidPlaneRender::SHFieldSample& up = heights[k+1][r12];
CFluidPlaneRender::SHFieldSample& down = heights[k-1][r12];
CFluidPlaneRender::SHFieldSample& right = heights[k][r12+1];
CFluidPlaneRender::SHFieldSample& left = heights[k][r12-1];
float nx = (right.height - left.height) * normalScale;
float ny = (up.height - down.height) * normalScale;
float normalizer = ny * ny + nx * nx + nz * nz;
if (normalizer != 0.f)
normalizer = std::sqrt(normalizer);
normalizer = 63.f / normalizer;
sample.nx = s8(nx * normalizer);
sample.ny = s8(ny * normalizer);
sample.nz = s8(nz * normalizer);
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
}
else
{
CFluidPlaneRender::SHFieldSample& sample = heights[r9][r12];
CFluidPlaneRender::SHFieldSample& up = heights[r9+1][r12];
CFluidPlaneRender::SHFieldSample& down = heights[r9-1][r12];
CFluidPlaneRender::SHFieldSample& right = heights[r9][r12+1];
CFluidPlaneRender::SHFieldSample& left = heights[r9][r12-1];
float nx = (right.height - left.height) * normalScale;
float ny = (up.height - down.height) * normalScale;
float normalizer = ny * ny + nx * nx + nz * nz;
if (normalizer != 0.f)
normalizer = std::sqrt(normalizer);
normalizer = 63.f / normalizer;
sample.nx = s8(nx * normalizer);
sample.ny = s8(ny * normalizer);
sample.nz = s8(nz * normalizer);
if (sample.height > 0.f)
sample.wavecapIntensity =
u8(std::min(255, int(info.x38_wavecapIntensityScale * sample.height)));
else
sample.wavecapIntensity = 0;
}
}
}
}
}
}
bool CFluidPlaneCPU::UpdatePatch(float time, const CFluidPlaneRender::SPatchInfo& info,
CFluidPlaneRender::SHFieldSample (&heights)[46][46], u8 (&flags)[9][9],
const zeus::CVector3f& areaCenter,
const std::experimental::optional<CRippleManager>& rippleManager,
int fromX, int toX, int fromY, int toY) const
{
rstl::reserved_vector<CFluidPlaneRender::SRippleInfo, 32> rippleInfos;
if (rippleManager)
{
for (const CRipple& ripple : rippleManager->GetRipples())
{
if (ripple.GetTime() >= ripple.GetTimeFalloff())
continue;
CFluidPlaneRender::SRippleInfo rippleInfo(ripple, fromX, toX, fromY, toY);
if (PrepareRipple(ripple, info, rippleInfo))
rippleInfos.push_back(rippleInfo);
}
}
if (rippleInfos.empty())
return true;
ApplyTurbulence(time, heights, flags, sGlobalSineWave, info, areaCenter);
ApplyRipples(rippleInfos, heights, flags, sGlobalSineWave, info);
/* No further action necessary if using tessellation shaders */
if (m_tessellation)
return false;
if (info.x37_normalMode == CFluidPlaneRender::NormalMode::NoNormals)
UpdatePatchNoNormals(heights, flags, info);
else
UpdatePatchWithNormals(heights, flags, info);
return false;
}
/* Used to be part of locked cache
* These are too big for stack allocation */
static CFluidPlaneRender::SHFieldSample lc_heights[46][46] = {};
static u8 lc_flags[9][9] = {};
void CFluidPlaneCPU::Render(const CStateManager& mgr, float alpha, const zeus::CAABox& aabb, const zeus::CTransform& xf,
const zeus::CTransform& areaXf, bool noNormals, const zeus::CFrustum& frustum,
const std::experimental::optional<CRippleManager>& rippleManager, TUniqueId waterId,
const bool* gridFlags, u32 gridDimX, u32 gridDimY, const zeus::CVector3f& areaCenter) const
{
TCastToConstPtr<CScriptWater> water = mgr.GetObjectById(waterId);
CFluidPlaneShader::RenderSetupInfo setupInfo = RenderSetup(mgr, alpha, xf, areaXf, aabb, water.GetPtr());
CFluidPlaneRender::NormalMode normalMode;
if (xb0_bumpMap && kEnableWaterBumpMaps)
normalMode = CFluidPlaneRender::NormalMode::NBT;
else if (!noNormals)
normalMode = CFluidPlaneRender::NormalMode::Normals;
else
normalMode = CFluidPlaneRender::NormalMode::NoNormals;
// Set Position and color format
switch (normalMode)
{
case CFluidPlaneRender::NormalMode::NBT:
// Set NBT format
break;
case CFluidPlaneRender::NormalMode::Normals:
// Set Normal format
break;
default:
break;
}
float rippleResolutionRecip = 1.f / x108_rippleResolution;
CFluidPlaneRender::numSubdivisionsInTile = x104_tileSubdivisions;
CFluidPlaneRender::numTilesInHField = std::min(7, 42 / CFluidPlaneRender::numSubdivisionsInTile);
CFluidPlaneRender::numSubdivisionsInHField =
CFluidPlaneRender::numTilesInHField * CFluidPlaneRender::numSubdivisionsInTile;
zeus::CVector2f ripplePitch(x108_rippleResolution * CFluidPlaneRender::numSubdivisionsInHField);
// Amount to shift intensity values right (for added wavecap color)
int redShift = 0;
int greenShift = 0;
int blueShift = 0;
float wavecapIntensityScale = g_tweakGame->GetWavecapIntensityNormal();
switch (x44_fluidType)
{
case EFluidType::PoisonWater:
wavecapIntensityScale = g_tweakGame->GetWavecapIntensityPoison();
redShift = 1;
blueShift = 1;
break;
case EFluidType::Lava:
case EFluidType::ThickLava:
wavecapIntensityScale = g_tweakGame->GetWavecapIntensityLava();
blueShift = 8;
greenShift = 8;
break;
default:
break;
}
if (water)
{
float cameraPenetration =
mgr.GetCameraManager()->GetCurrentCamera(mgr)->GetTranslation().dot(zeus::CVector3f::skUp) -
water->GetTriggerBoundsWR().max.z;
wavecapIntensityScale *= (cameraPenetration >= 0.5f || cameraPenetration < 0.f) ? 1.f : 2.f * cameraPenetration;
}
u32 patchDimX = (water && water->GetPatchDimensionX()) ? water->GetPatchDimensionX() : 128;
u32 patchDimY = (water && water->GetPatchDimensionY()) ? water->GetPatchDimensionY() : 128;
m_verts.clear();
m_pVerts.clear();
if (m_tessellation)
{
/* Additional uniform data for tessellation evaluation shader */
zeus::CColor colorMul;
colorMul.r = wavecapIntensityScale / 255.f / float(1 << redShift);
colorMul.g = wavecapIntensityScale / 255.f / float(1 << greenShift);
colorMul.b = wavecapIntensityScale / 255.f / float(1 << blueShift);
m_shader->prepareDraw(setupInfo, xf.origin, *rippleManager, colorMul, x108_rippleResolution / 4.f);
}
else
{
m_shader->prepareDraw(setupInfo);
}
u32 tileY = 0;
float curY = aabb.min.y;
for (int i=0 ; curY < aabb.max.y && i<patchDimY ; ++i)
{
u32 tileX = 0;
float curX = aabb.min.x;
float _remDivsY = (aabb.max.y - curY) * rippleResolutionRecip;
for (int j=0 ; curX < aabb.max.x && j<patchDimX ; ++j)
{
if (u8 renderFlags = water->GetPatchRenderFlags(j, i))
{
s16 remDivsX = std::min(s16((aabb.max.x - curX) * rippleResolutionRecip),
s16(CFluidPlaneRender::numSubdivisionsInHField));
s16 remDivsY = std::min(s16(_remDivsY), s16(CFluidPlaneRender::numSubdivisionsInHField));
zeus::CVector3f localMax(x108_rippleResolution * remDivsX + curX,
x108_rippleResolution * remDivsY + curY, aabb.max.z);
zeus::CVector3f localMin(curX, curY, aabb.min.z);
zeus::CAABox testaabb(localMin + xf.origin, localMax + xf.origin);
if (frustum.aabbFrustumTest(testaabb))
{
CFluidPlaneRender::SPatchInfo info(localMin, localMax, xf.origin, x108_rippleResolution,
x100_tileSize, wavecapIntensityScale,
CFluidPlaneRender::numSubdivisionsInHField, normalMode,
redShift, greenShift, blueShift, tileX, gridDimX, gridDimY,
tileY, gridFlags);
int fromX = tileX != 0 ? (2 - CFluidPlaneRender::numSubdivisionsInTile) : 0;
int toX;
if (tileX != gridDimX - 1)
toX = info.x0_xSubdivs + (CFluidPlaneRender::numSubdivisionsInTile - 2);
else
toX = info.x0_xSubdivs;
int fromY = tileY != 0 ? (2 - CFluidPlaneRender::numSubdivisionsInTile) : 0;
int toY;
if (tileY != gridDimY - 1)
toY = info.x1_ySubdivs + (CFluidPlaneRender::numSubdivisionsInTile - 2);
else
toY = info.x1_ySubdivs;
bool noRipples = UpdatePatch(mgr.GetFluidPlaneManager()->GetUVT(), info, lc_heights, lc_flags,
areaCenter, rippleManager, fromX, toX, fromY, toY);
RenderPatch(info, lc_heights, lc_flags, noRipples, renderFlags == 1, m_verts, m_pVerts);
}
}
curX += ripplePitch.x;
tileX += CFluidPlaneRender::numTilesInHField;
}
curY += ripplePitch.y;
tileY += CFluidPlaneRender::numTilesInHField;
}
m_shader->loadVerts(m_verts, m_pVerts);
m_shader->doneDrawing();
}
}