mirror of https://github.com/AxioDL/metaforce.git
1177 lines
42 KiB
C++
1177 lines
42 KiB
C++
#include "Runtime/Collision/CollisionUtil.hpp"
|
|
|
|
#include <algorithm>
|
|
#include <array>
|
|
#include <tuple>
|
|
|
|
#include "Runtime/Collision/CCollisionInfo.hpp"
|
|
#include "Runtime/Collision/CCollisionInfoList.hpp"
|
|
|
|
#include <zeus/CVector3d.hpp>
|
|
|
|
namespace urde::CollisionUtil {
|
|
bool LineIntersectsOBBox(const zeus::COBBox& obb, const zeus::CMRay& ray, float& d) {
|
|
zeus::CVector3f norm;
|
|
return RayAABoxIntersection(ray.getInvUnscaledTransformRay(obb.transform), {-obb.extents, obb.extents}, norm, d);
|
|
}
|
|
|
|
u32 RayAABoxIntersection(const zeus::CMRay& ray, const zeus::CAABox& aabb, float& tMin, float& tMax) {
|
|
tMin = -999999.f;
|
|
tMax = 999999.f;
|
|
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
if (std::fabs(ray.dir[i]) < 0.00001f) {
|
|
if (ray.start[i] < aabb.min[i] || ray.start[i] > aabb.max[i]) {
|
|
return 0;
|
|
}
|
|
} else {
|
|
if (ray.dir[i] < 0.f) {
|
|
const float startToMax = aabb.max[i] - ray.start[i];
|
|
const float startToMin = aabb.min[i] - ray.start[i];
|
|
const float dirRecip = 1.f / ray.dir[i];
|
|
if (startToMax < tMin * ray.dir[i]) {
|
|
tMin = startToMax * dirRecip;
|
|
}
|
|
if (startToMin > tMax * ray.dir[i]) {
|
|
tMax = startToMin * dirRecip;
|
|
}
|
|
} else {
|
|
const float startToMin = aabb.min[i] - ray.start[i];
|
|
const float startToMax = aabb.max[i] - ray.start[i];
|
|
const float dirRecip = 1.f / ray.dir[i];
|
|
if (startToMin > tMin * ray.dir[i]) {
|
|
tMin = startToMin * dirRecip;
|
|
}
|
|
if (startToMax < tMax * ray.dir[i]) {
|
|
tMax = startToMax * dirRecip;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return tMin <= tMax ? 2 : 0;
|
|
}
|
|
|
|
u32 RayAABoxIntersection(const zeus::CMRay& ray, const zeus::CAABox& aabb, zeus::CVector3f& norm, float& d) {
|
|
std::array<int, 3> sign{2, 2, 2};
|
|
bool bad = true;
|
|
zeus::CVector3f rayStart = ray.start;
|
|
zeus::CVector3f rayDelta = ray.delta;
|
|
zeus::CVector3f aabbMin = aabb.min;
|
|
zeus::CVector3f aabbMax = aabb.max;
|
|
|
|
zeus::CVector3f vec0 = {-1.f, -1.f, -1.f};
|
|
zeus::CVector3f vec1;
|
|
|
|
if (rayDelta.x() != 0.f && rayDelta.y() != 0.f && rayDelta.z() != 0.f) {
|
|
for (size_t i = 0; i < sign.size(); ++i) {
|
|
if (rayStart[i] < aabbMin[i]) {
|
|
sign[i] = 1;
|
|
bad = false;
|
|
vec0[i] = (aabbMin[i] - rayStart[i]) / rayDelta[i];
|
|
} else if (rayStart[i] > aabbMax[i]) {
|
|
sign[i] = 0;
|
|
bad = false;
|
|
vec0[i] = (aabbMax[i] - rayStart[i]) / rayDelta[i];
|
|
}
|
|
}
|
|
|
|
if (bad) {
|
|
d = 0.f;
|
|
return 1;
|
|
}
|
|
} else {
|
|
zeus::CVector3f end;
|
|
for (size_t i = 0; i < sign.size(); ++i) {
|
|
if (rayStart[i] < aabbMin[i]) {
|
|
sign[i] = 1;
|
|
bad = false;
|
|
end[i] = float(aabbMin[i]);
|
|
} else if (rayStart[i] > aabbMax[i]) {
|
|
sign[i] = 0;
|
|
bad = false;
|
|
end[i] = float(aabbMax[i]);
|
|
}
|
|
}
|
|
|
|
if (bad) {
|
|
d = 0.f;
|
|
return 1;
|
|
}
|
|
|
|
for (size_t i = 0; i < sign.size(); ++i) {
|
|
if (sign[i] != 2 && rayDelta[i] != 0.f) {
|
|
vec0[i] = (end[i] - rayStart[i]) / rayDelta[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
float maxComp = vec0.x();
|
|
size_t maxCompIdx = 0;
|
|
if (maxComp < vec0.y()) {
|
|
maxComp = vec0.y();
|
|
maxCompIdx = 1;
|
|
}
|
|
if (maxComp < vec0.z()) {
|
|
maxComp = vec0.z();
|
|
maxCompIdx = 2;
|
|
}
|
|
|
|
if (maxComp < 0.f || maxComp > 1.f)
|
|
return 0;
|
|
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
if (maxCompIdx != i) {
|
|
vec1[i] = maxComp * rayDelta[i] + rayStart[i];
|
|
if (vec1[i] > aabbMax[i]) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
d = maxComp;
|
|
norm = zeus::skZero3f;
|
|
norm[maxCompIdx] = (sign[maxCompIdx] == 1) ? -1.f : 1.f;
|
|
return 2;
|
|
}
|
|
|
|
u32 RayAABoxIntersection_Double(const zeus::CMRay& ray, const zeus::CAABox& aabb, zeus::CVector3f& norm, double& d) {
|
|
std::array<int, 3> sign{2, 2, 2};
|
|
bool bad = true;
|
|
zeus::CVector3d rayStart = ray.start;
|
|
zeus::CVector3d rayDelta = ray.delta;
|
|
zeus::CVector3d aabbMin = aabb.min;
|
|
zeus::CVector3d aabbMax = aabb.max;
|
|
|
|
zeus::CVector3d vec0 = {-1.0, -1.0, -1.0};
|
|
zeus::CVector3d vec1;
|
|
|
|
if (rayDelta.x() != 0.0 && rayDelta.y() != 0.0 && rayDelta.z() != 0.0) {
|
|
for (size_t i = 0; i < sign.size(); ++i) {
|
|
if (rayStart[i] < aabbMin[i]) {
|
|
sign[i] = 1;
|
|
bad = false;
|
|
vec0[i] = (aabbMin[i] - rayStart[i]) / rayDelta[i];
|
|
} else if (rayStart[i] > aabbMax[i]) {
|
|
sign[i] = 0;
|
|
bad = false;
|
|
vec0[i] = (aabbMax[i] - rayStart[i]) / rayDelta[i];
|
|
}
|
|
}
|
|
|
|
if (bad) {
|
|
d = 0.0;
|
|
return 1;
|
|
}
|
|
} else {
|
|
zeus::CVector3d end;
|
|
for (size_t i = 0; i < sign.size(); ++i) {
|
|
if (rayStart[i] < aabbMin[i]) {
|
|
sign[i] = 1;
|
|
bad = false;
|
|
end[i] = double(aabbMin[i]);
|
|
} else if (rayStart[i] > aabbMax[i]) {
|
|
sign[i] = 0;
|
|
bad = false;
|
|
end[i] = double(aabbMax[i]);
|
|
}
|
|
}
|
|
|
|
if (bad) {
|
|
d = 0.0;
|
|
return 1;
|
|
}
|
|
|
|
for (size_t i = 0; i < sign.size(); ++i) {
|
|
if (sign[i] != 2 && rayDelta[i] != 0.0) {
|
|
vec0[i] = (end[i] - rayStart[i]) / rayDelta[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
double maxComp = vec0.x();
|
|
size_t maxCompIdx = 0;
|
|
if (maxComp < vec0.y()) {
|
|
maxComp = vec0.y();
|
|
maxCompIdx = 1;
|
|
}
|
|
if (maxComp < vec0.z()) {
|
|
maxComp = vec0.z();
|
|
maxCompIdx = 2;
|
|
}
|
|
|
|
if (maxComp < 0.0 || maxComp > 1.0)
|
|
return 0;
|
|
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
if (maxCompIdx != i) {
|
|
vec1[i] = maxComp * rayDelta[i] + rayStart[i];
|
|
if (vec1[i] > aabbMax[i]) {
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
d = maxComp;
|
|
norm = zeus::skZero3f;
|
|
norm[maxCompIdx] = (sign[maxCompIdx] == 1) ? -1.0 : 1.0;
|
|
return 2;
|
|
}
|
|
|
|
bool RaySphereIntersection_Double(const zeus::CSphere& sphere, const zeus::CVector3f& pos, const zeus::CVector3f& dir,
|
|
double& T) {
|
|
const zeus::CVector3d sPosD = sphere.position;
|
|
const zeus::CVector3d posD = pos;
|
|
const zeus::CVector3d sphereToPos = posD - sPosD;
|
|
const double f30 = sphereToPos.dot(zeus::CVector3d(dir)) * 2.0;
|
|
const double f1 = f30 * f30 - 4.0 * (sphereToPos.magSquared() - sphere.radius * sphere.radius);
|
|
|
|
if (f1 >= 0.0) {
|
|
const double intersectT = 0.5 * (-f30 - std::sqrt(f1));
|
|
if (T == 0 || intersectT < T) {
|
|
T = intersectT;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RaySphereIntersection(const zeus::CSphere& sphere, const zeus::CVector3f& pos, const zeus::CVector3f& dir,
|
|
float mag, float& T, zeus::CVector3f& point) {
|
|
const zeus::CVector3f rayToSphere = sphere.position - pos;
|
|
const float magSq = rayToSphere.magSquared();
|
|
const float dirDot = rayToSphere.dot(dir);
|
|
const float radSq = sphere.radius * sphere.radius;
|
|
|
|
if (dirDot < 0.f && magSq > radSq) {
|
|
return false;
|
|
}
|
|
|
|
const float intersectSq = radSq - (magSq - dirDot * dirDot);
|
|
if (intersectSq < 0.f) {
|
|
return false;
|
|
}
|
|
|
|
T = magSq > radSq ? dirDot - std::sqrt(intersectSq) : dirDot + std::sqrt(intersectSq);
|
|
if (T < mag || mag == 0.f) {
|
|
point = pos + T * dir;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool RayTriangleIntersection_Double(const zeus::CVector3f& point, const zeus::CVector3f& dir,
|
|
const zeus::CVector3f* verts, double& d) {
|
|
const zeus::CVector3d v0tov1 = verts[1] - verts[0];
|
|
const zeus::CVector3d v0tov2 = verts[2] - verts[0];
|
|
const zeus::CVector3d cross0 = zeus::CVector3d(dir).cross(v0tov2);
|
|
const double dot0 = v0tov1.dot(cross0);
|
|
if (dot0 < DBL_EPSILON) {
|
|
return false;
|
|
}
|
|
|
|
const zeus::CVector3d v0toPoint = point - verts[0];
|
|
const double dot1 = v0toPoint.dot(cross0);
|
|
if (dot1 < 0.0 || dot1 > dot0) {
|
|
return false;
|
|
}
|
|
|
|
const zeus::CVector3d cross1 = v0toPoint.cross(v0tov1);
|
|
const double dot2 = cross1.dot(dir);
|
|
if (dot2 < 0.0 || dot1 + dot2 > dot0) {
|
|
return false;
|
|
}
|
|
|
|
const double final = 1.0 / dot0 * cross1.dot(v0tov2);
|
|
if (final < 0.0 || final >= d) {
|
|
return false;
|
|
}
|
|
|
|
d = final;
|
|
return true;
|
|
}
|
|
|
|
bool RayTriangleIntersection(const zeus::CVector3f& point, const zeus::CVector3f& dir, const zeus::CVector3f* verts,
|
|
float& d) {
|
|
const zeus::CVector3f v0tov1 = verts[1] - verts[0];
|
|
const zeus::CVector3f v0tov2 = verts[2] - verts[0];
|
|
const zeus::CVector3f cross0 = dir.cross(v0tov2);
|
|
const float dot0 = v0tov1.dot(cross0);
|
|
if (dot0 < DBL_EPSILON) {
|
|
return false;
|
|
}
|
|
|
|
const zeus::CVector3f v0toPoint = point - verts[0];
|
|
const float dot1 = v0toPoint.dot(cross0);
|
|
if (dot1 < 0.f || dot1 > dot0) {
|
|
return false;
|
|
}
|
|
|
|
const zeus::CVector3f cross1 = v0toPoint.cross(v0tov1);
|
|
const float dot2 = cross1.dot(dir);
|
|
if (dot2 < 0.f || dot1 + dot2 > dot0) {
|
|
return false;
|
|
}
|
|
|
|
const float final = 1.f / dot0 * cross1.dot(v0tov2);
|
|
if (final < 0.f || final >= d) {
|
|
return false;
|
|
}
|
|
|
|
d = final;
|
|
return true;
|
|
}
|
|
|
|
void FilterOutBackfaces(const zeus::CVector3f& vec, const CCollisionInfoList& in, CCollisionInfoList& out) {
|
|
if (vec.canBeNormalized()) {
|
|
const zeus::CVector3f norm = vec.normalized();
|
|
for (const CCollisionInfo& info : in) {
|
|
if (info.GetNormalLeft().dot(norm) < 0.001f) {
|
|
out.Add(info, false);
|
|
}
|
|
}
|
|
} else {
|
|
out = in;
|
|
}
|
|
}
|
|
|
|
void FilterByClosestNormal(const zeus::CVector3f& norm, const CCollisionInfoList& in, CCollisionInfoList& out) {
|
|
float maxDot = -1.1f;
|
|
int idx = -1;
|
|
int i = 0;
|
|
for (const CCollisionInfo& info : in) {
|
|
const float dot = info.GetNormalLeft().dot(norm);
|
|
if (dot > maxDot) {
|
|
maxDot = dot;
|
|
idx = i;
|
|
}
|
|
++i;
|
|
}
|
|
|
|
if (idx != -1) {
|
|
out.Add(in.GetItem(idx), false);
|
|
}
|
|
}
|
|
|
|
constexpr std::array<zeus::CVector3f, 6> AABBNormalTable{{
|
|
{-1.f, 0.f, 0.f},
|
|
{1.f, 0.f, 0.f},
|
|
{0.f, -1.f, 0.f},
|
|
{0.f, 1.f, 0.f},
|
|
{0.f, 0.f, -1.f},
|
|
{0.f, 0.f, 1.f},
|
|
}};
|
|
|
|
bool AABoxAABoxIntersection(const zeus::CAABox& aabb0, const CMaterialList& list0, const zeus::CAABox& aabb1,
|
|
const CMaterialList& list1, CCollisionInfoList& infoList) {
|
|
const zeus::CVector3f maxOfMin(std::max(aabb0.min.x(), aabb1.min.x()), std::max(aabb0.min.y(), aabb1.min.y()),
|
|
std::max(aabb0.min.z(), aabb1.min.z()));
|
|
const zeus::CVector3f minOfMax(std::min(aabb0.max.x(), aabb1.max.x()), std::min(aabb0.max.y(), aabb1.max.y()),
|
|
std::min(aabb0.max.z(), aabb1.max.z()));
|
|
|
|
if (maxOfMin.x() >= minOfMax.x() || maxOfMin.y() >= minOfMax.y() || maxOfMin.z() >= minOfMax.z()) {
|
|
return false;
|
|
}
|
|
|
|
const zeus::CAABox boolAABB(maxOfMin, minOfMax);
|
|
|
|
const std::array<int, 3> ineqFlags{
|
|
(aabb0.min.x() <= aabb1.min.x() ? 1 << 0 : 0) | (aabb0.min.x() <= aabb1.max.x() ? 1 << 1 : 0) |
|
|
(aabb0.max.x() <= aabb1.min.x() ? 1 << 2 : 0) | (aabb0.max.x() <= aabb1.max.x() ? 1 << 3 : 0),
|
|
(aabb0.min.y() <= aabb1.min.y() ? 1 << 0 : 0) | (aabb0.min.y() <= aabb1.max.y() ? 1 << 1 : 0) |
|
|
(aabb0.max.y() <= aabb1.min.y() ? 1 << 2 : 0) | (aabb0.max.y() <= aabb1.max.y() ? 1 << 3 : 0),
|
|
(aabb0.min.z() <= aabb1.min.z() ? 1 << 0 : 0) | (aabb0.min.z() <= aabb1.max.z() ? 1 << 1 : 0) |
|
|
(aabb0.max.z() <= aabb1.min.z() ? 1 << 2 : 0) | (aabb0.max.z() <= aabb1.max.z() ? 1 << 3 : 0),
|
|
};
|
|
|
|
for (size_t i = 0; i < ineqFlags.size(); ++i) {
|
|
switch (ineqFlags[i]) {
|
|
case 0x2: // aabb0.min <= aabb1.max
|
|
{
|
|
const CCollisionInfo info(boolAABB, list0, list1, AABBNormalTable[i * 2 + 1], -AABBNormalTable[i * 2 + 1]);
|
|
infoList.Add(info, false);
|
|
break;
|
|
}
|
|
case 0xB: // aabb0.min <= aabb1.min && aabb0.max <= aabb1.min && aabb0.max <= aabb1.max
|
|
{
|
|
const CCollisionInfo info(boolAABB, list0, list1, AABBNormalTable[i * 2], -AABBNormalTable[i * 2]);
|
|
infoList.Add(info, false);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (infoList.GetCount() != 0) {
|
|
return true;
|
|
}
|
|
|
|
{
|
|
const CCollisionInfo info(boolAABB, list0, list1, AABBNormalTable[4], -AABBNormalTable[4]);
|
|
infoList.Add(info, false);
|
|
}
|
|
|
|
{
|
|
const CCollisionInfo info(boolAABB, list0, list1, AABBNormalTable[5], -AABBNormalTable[5]);
|
|
infoList.Add(info, false);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AABoxAABoxIntersection(const zeus::CAABox& aabb0, const zeus::CAABox& aabb1) { return aabb0.intersects(aabb1); }
|
|
|
|
/* http://fileadmin.cs.lth.se/cs/Personal/Tomas_Akenine-Moller/code/tribox2.txt */
|
|
/********************************************************/
|
|
/* AABB-triangle overlap test code */
|
|
/* by Tomas Akenine-Möller */
|
|
/* Function: int triBoxOverlap(float boxcenter[3], */
|
|
/* float boxhalfsize[3],float triverts[3][3]); */
|
|
/* History: */
|
|
/* 2001-03-05: released the code in its first version */
|
|
/* 2001-06-18: changed the order of the tests, faster */
|
|
/* */
|
|
/* Acknowledgement: Many thanks to Pierre Terdiman for */
|
|
/* suggestions and discussions on how to optimize code. */
|
|
/* Thanks to David Hunt for finding a ">="-bug! */
|
|
/********************************************************/
|
|
|
|
static bool planeBoxOverlap(const zeus::CVector3f& normal, float d, const zeus::CVector3f& maxbox) {
|
|
zeus::CVector3f vmin;
|
|
zeus::CVector3f vmax;
|
|
|
|
for (int q = 0; q <= 2; q++) {
|
|
if (normal[q] > 0.0f) {
|
|
vmin[q] = -maxbox[q];
|
|
vmax[q] = maxbox[q];
|
|
} else {
|
|
vmin[q] = maxbox[q];
|
|
vmax[q] = -maxbox[q];
|
|
}
|
|
}
|
|
|
|
if (normal.dot(vmin) + d > 0.0f) {
|
|
return false;
|
|
}
|
|
|
|
if (normal.dot(vmax) + d >= 0.0f) {
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/*======================== X-tests ========================*/
|
|
#define AXISTEST_X01(a, b, fa, fb) \
|
|
p0 = a * v0.y() - b * v0.z(); \
|
|
p2 = a * v2.y() - b * v2.z(); \
|
|
if (p0 < p2) { \
|
|
min = p0; \
|
|
max = p2; \
|
|
} else { \
|
|
min = p2; \
|
|
max = p0; \
|
|
} \
|
|
rad = fa * boxhalfsize.y() + fb * boxhalfsize.z(); \
|
|
if (min > rad || max < -rad) \
|
|
return false;
|
|
|
|
#define AXISTEST_X2(a, b, fa, fb) \
|
|
p0 = a * v0.y() - b * v0.z(); \
|
|
p1 = a * v1.y() - b * v1.z(); \
|
|
if (p0 < p1) { \
|
|
min = p0; \
|
|
max = p1; \
|
|
} else { \
|
|
min = p1; \
|
|
max = p0; \
|
|
} \
|
|
rad = fa * boxhalfsize.y() + fb * boxhalfsize.z(); \
|
|
if (min > rad || max < -rad) \
|
|
return false;
|
|
|
|
/*======================== Y-tests ========================*/
|
|
#define AXISTEST_Y02(a, b, fa, fb) \
|
|
p0 = -a * v0.x() + b * v0.z(); \
|
|
p2 = -a * v2.x() + b * v2.z(); \
|
|
if (p0 < p2) { \
|
|
min = p0; \
|
|
max = p2; \
|
|
} else { \
|
|
min = p2; \
|
|
max = p0; \
|
|
} \
|
|
rad = fa * boxhalfsize.x() + fb * boxhalfsize.z(); \
|
|
if (min > rad || max < -rad) \
|
|
return false;
|
|
|
|
#define AXISTEST_Y1(a, b, fa, fb) \
|
|
p0 = -a * v0.x() + b * v0.z(); \
|
|
p1 = -a * v1.x() + b * v1.z(); \
|
|
if (p0 < p1) { \
|
|
min = p0; \
|
|
max = p1; \
|
|
} else { \
|
|
min = p1; \
|
|
max = p0; \
|
|
} \
|
|
rad = fa * boxhalfsize.x() + fb * boxhalfsize.z(); \
|
|
if (min > rad || max < -rad) \
|
|
return false;
|
|
|
|
/*======================== Z-tests ========================*/
|
|
|
|
#define AXISTEST_Z12(a, b, fa, fb) \
|
|
p1 = a * v1.x() - b * v1.y(); \
|
|
p2 = a * v2.x() - b * v2.y(); \
|
|
if (p2 < p1) { \
|
|
min = p2; \
|
|
max = p1; \
|
|
} else { \
|
|
min = p1; \
|
|
max = p2; \
|
|
} \
|
|
rad = fa * boxhalfsize.x() + fb * boxhalfsize.y(); \
|
|
if (min > rad || max < -rad) \
|
|
return false;
|
|
|
|
#define AXISTEST_Z0(a, b, fa, fb) \
|
|
p0 = a * v0.x() - b * v0.y(); \
|
|
p1 = a * v1.x() - b * v1.y(); \
|
|
if (p0 < p1) { \
|
|
min = p0; \
|
|
max = p1; \
|
|
} else { \
|
|
min = p1; \
|
|
max = p0; \
|
|
} \
|
|
rad = fa * boxhalfsize.x() + fb * boxhalfsize.y(); \
|
|
if (min > rad || max < -rad) \
|
|
return false;
|
|
|
|
bool TriBoxOverlap(const zeus::CVector3f& boxcenter, const zeus::CVector3f& boxhalfsize,
|
|
const zeus::CVector3f& trivert0, const zeus::CVector3f& trivert1, const zeus::CVector3f& trivert2) {
|
|
|
|
/* use separating axis theorem to test overlap between triangle and box */
|
|
/* need to test for overlap in these directions: */
|
|
/* 1) the {x,y,z}-directions (actually, since we use the AABB of the triangle */
|
|
/* we do not even need to test these) */
|
|
/* 2) normal of the triangle */
|
|
/* 3) crossproduct(edge from tri, {x,y,z}-directin) */
|
|
/* this gives 3x3=9 more tests */
|
|
float min, max, d, p0, p1, p2, rad, fex, fey, fez;
|
|
|
|
/* This is the fastest branch on Sun */
|
|
/* move everything so that the boxcenter is in (0,0,0) */
|
|
const zeus::CVector3f v0 = trivert0 - boxcenter;
|
|
const zeus::CVector3f v1 = trivert1 - boxcenter;
|
|
const zeus::CVector3f v2 = trivert2 - boxcenter;
|
|
|
|
/* compute triangle edges */
|
|
const zeus::CVector3f e0 = v1 - v0; // Tri edge 0
|
|
const zeus::CVector3f e1 = v2 - v1; // Tri edge 1
|
|
const zeus::CVector3f e2 = v0 - v2; // Tri edge 2
|
|
|
|
/* Bullet 3: */
|
|
/* test the 9 tests first (this was faster) */
|
|
fex = std::fabs(e0.x());
|
|
fey = std::fabs(e0.y());
|
|
fez = std::fabs(e0.z());
|
|
AXISTEST_X01(e0.z(), e0.y(), fez, fey);
|
|
AXISTEST_Y02(e0.z(), e0.x(), fez, fex);
|
|
AXISTEST_Z12(e0.y(), e0.x(), fey, fex);
|
|
|
|
fex = std::fabs(e1.x());
|
|
fey = std::fabs(e1.y());
|
|
fez = std::fabs(e1.z());
|
|
AXISTEST_X01(e1.z(), e1.y(), fez, fey);
|
|
AXISTEST_Y02(e1.z(), e1.x(), fez, fex);
|
|
AXISTEST_Z0(e1.y(), e1.x(), fey, fex);
|
|
|
|
fex = std::fabs(e2.x());
|
|
fey = std::fabs(e2.y());
|
|
fez = std::fabs(e2.z());
|
|
AXISTEST_X2(e2.z(), e2.y(), fez, fey);
|
|
AXISTEST_Y1(e2.z(), e2.x(), fez, fex);
|
|
AXISTEST_Z12(e2.y(), e2.x(), fey, fex);
|
|
|
|
/* Bullet 1: */
|
|
/* first test overlap in the {x,y,z}-directions */
|
|
/* find min, max of the triangle each direction, and test for overlap in */
|
|
/* that direction -- this is equivalent to testing a minimal AABB around */
|
|
/* the triangle against the AABB */
|
|
|
|
/* test in X-direction */
|
|
std::tie(min, max) = std::minmax<float>({v0.x(), v1.x(), v2.x()});
|
|
if (min > boxhalfsize.x() || max < -boxhalfsize.x()) {
|
|
return false;
|
|
}
|
|
|
|
/* test in Y-direction */
|
|
std::tie(min, max) = std::minmax<float>({v0.y(), v1.y(), v2.y()});
|
|
if (min > boxhalfsize.y() || max < -boxhalfsize.y()) {
|
|
return false;
|
|
}
|
|
|
|
/* test in Z-direction */
|
|
std::tie(min, max) = std::minmax<float>({v0.z(), v1.z(), v2.z()});
|
|
if (min > boxhalfsize.z() || max < -boxhalfsize.z()) {
|
|
return false;
|
|
}
|
|
|
|
/* Bullet 2: */
|
|
/* test if the box intersects the plane of the triangle */
|
|
/* compute plane equation of triangle: normal*x+d=0 */
|
|
const zeus::CVector3f normal = e0.cross(e1);
|
|
d = -normal.dot(v0); /* plane eq: normal.x+d=0 */
|
|
if (!planeBoxOverlap(normal, d, boxhalfsize)) {
|
|
return false;
|
|
}
|
|
|
|
return true; /* box and triangle overlaps */
|
|
}
|
|
|
|
double TriPointSqrDist(const zeus::CVector3f& point, const zeus::CVector3f& trivert0, const zeus::CVector3f& trivert1,
|
|
const zeus::CVector3f& trivert2, float* baryX, float* baryY) {
|
|
const zeus::CVector3d A = trivert0 - point;
|
|
const zeus::CVector3d B = trivert1 - trivert0;
|
|
const zeus::CVector3d C = trivert2 - trivert0;
|
|
|
|
const double bMag = B.magSquared();
|
|
const double cMag = C.magSquared();
|
|
const double bDotC = B.dot(C);
|
|
const double aDotB = A.dot(B);
|
|
const double aDotC = A.dot(C);
|
|
double ret = A.magSquared();
|
|
|
|
const double rej = std::fabs(bMag * cMag - bDotC * bDotC);
|
|
double retB = bDotC * aDotC - cMag * aDotB;
|
|
double retA = bDotC * aDotB - bMag * aDotC;
|
|
|
|
if (retB + retA <= rej) {
|
|
if (retB < 0.0) {
|
|
if (retA < 0.0) {
|
|
if (aDotB < 0.0) {
|
|
retA = 0.0;
|
|
if (-aDotB >= bMag) {
|
|
retB = 1.0;
|
|
ret += 2.0 * aDotB + bMag;
|
|
} else {
|
|
retB = -aDotB / bMag;
|
|
ret += aDotB * retB;
|
|
}
|
|
} else {
|
|
retB = 0.0;
|
|
if (aDotC >= 0.0) {
|
|
retA = 0.0;
|
|
} else if (-aDotC >= cMag) {
|
|
retA = 1.0;
|
|
ret += 2.0 * aDotC + cMag;
|
|
} else {
|
|
retA = -aDotC / cMag;
|
|
ret += aDotC * retA;
|
|
}
|
|
}
|
|
} else {
|
|
retB = 0.0;
|
|
if (aDotC >= 0.0) {
|
|
retA = 0.0;
|
|
} else if (-aDotC >= cMag) {
|
|
retA = 1.0;
|
|
ret += 2.0 * aDotC + cMag;
|
|
} else {
|
|
retA = -aDotC / cMag;
|
|
ret += aDotC * retA;
|
|
}
|
|
}
|
|
} else if (retA < 0.0) {
|
|
retA = 0.0;
|
|
if (aDotB >= 0.0) {
|
|
retB = 0.0;
|
|
} else if (-aDotB >= bMag) {
|
|
retB = 1.0;
|
|
ret += 2.0 * aDotB + bMag;
|
|
} else {
|
|
retB = -aDotB / bMag;
|
|
ret += aDotB * retB;
|
|
}
|
|
} else {
|
|
const float f3 = 1.0 / rej;
|
|
retA *= f3;
|
|
retB *= f3;
|
|
ret += retB * (2.0 * aDotB + (bMag * retB + bDotC * retA)) + retA * (2.0 * aDotC + (bDotC * retB + cMag * retA));
|
|
}
|
|
} else if (retB < 0.0) {
|
|
retB = bDotC + aDotB;
|
|
retA = cMag + aDotC;
|
|
if (retA > retB) {
|
|
retA -= retB;
|
|
retB = bMag - 2.0 * bDotC;
|
|
retB += cMag;
|
|
if (retA >= retB) {
|
|
retB = 1.0;
|
|
retA = 0.0;
|
|
ret += 2.0 * aDotB + bMag;
|
|
} else {
|
|
retB = retA / retB;
|
|
retA = 1.0 - retB;
|
|
ret +=
|
|
retB * (2.0 * aDotB + (bMag * retB + bDotC * retA)) + retA * (2.0 * aDotC + (bDotC * retB + cMag * retA));
|
|
}
|
|
} else {
|
|
retB = 0.0;
|
|
if (retA <= 0.0) {
|
|
retA = 1.0;
|
|
ret += 2.0 * aDotC + cMag;
|
|
} else if (aDotC >= 0.0) {
|
|
retA = 0.0;
|
|
} else {
|
|
retA = -aDotC / cMag;
|
|
ret += aDotC * retA;
|
|
}
|
|
}
|
|
} else {
|
|
if (retA < 0.0) {
|
|
retB = bDotC + aDotC;
|
|
retA = bMag + aDotB;
|
|
if (retA > retB) {
|
|
retA -= retB;
|
|
retB = bMag - 2.0 * bDotC;
|
|
retB += cMag;
|
|
if (retA >= retB) {
|
|
retA = 1.0;
|
|
retB = 0.0;
|
|
ret += 2.0 * aDotC + cMag;
|
|
} else {
|
|
retA /= retB;
|
|
retB = 1.0 - retA;
|
|
ret +=
|
|
retB * (2.0 * aDotB + (bMag * retB + bDotC * retA)) + retA * (2.0 * aDotC + (bDotC * retB + cMag * retA));
|
|
}
|
|
} else {
|
|
retA = 0.0;
|
|
if (retA <= 0.0) {
|
|
retB = 1.0;
|
|
ret += 2.0 * aDotB + bMag;
|
|
} else if (aDotB >= 0.0) {
|
|
retB = 0.0;
|
|
} else {
|
|
retB = -aDotB / bMag;
|
|
ret += aDotB * retB;
|
|
}
|
|
}
|
|
} else {
|
|
retB = cMag + aDotC;
|
|
retB -= bDotC;
|
|
retA = retB - aDotB;
|
|
if (retA <= 0.0) {
|
|
retB = 0.0;
|
|
retA = 1.0;
|
|
ret += 2.0 * aDotC + cMag;
|
|
} else {
|
|
retB = bMag - 2.0 * bDotC;
|
|
retB += cMag;
|
|
if (retA >= retB) {
|
|
retB = 1.0;
|
|
retA = 0.0;
|
|
ret += 2.0 * aDotB + bMag;
|
|
} else {
|
|
retB = retA / retB;
|
|
retA = 1.0 - retB;
|
|
ret +=
|
|
retB * (2.0 * aDotB + (bMag * retB + bDotC * retA)) + retA * (2.0 * aDotC + (bDotC * retB + cMag * retA));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (baryX != nullptr) {
|
|
*baryX = float(retA);
|
|
}
|
|
if (baryY != nullptr) {
|
|
*baryY = float(retB);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
bool TriSphereOverlap(const zeus::CSphere& sphere, const zeus::CVector3f& trivert0, const zeus::CVector3f& trivert1,
|
|
const zeus::CVector3f& trivert2) {
|
|
return TriPointSqrDist(sphere.position, trivert0, trivert1, trivert2, nullptr, nullptr) <=
|
|
sphere.radius * sphere.radius;
|
|
}
|
|
|
|
bool TriSphereIntersection(const zeus::CSphere& sphere, const zeus::CVector3f& trivert0,
|
|
const zeus::CVector3f& trivert1, const zeus::CVector3f& trivert2, zeus::CVector3f& point,
|
|
zeus::CVector3f& normal) {
|
|
float baryX;
|
|
float baryY;
|
|
if (TriPointSqrDist(sphere.position, trivert0, trivert1, trivert2, &baryX, &baryY) > sphere.radius * sphere.radius) {
|
|
return false;
|
|
}
|
|
|
|
const zeus::CVector3f barys(baryX, baryY, 1.f - (baryX + baryY));
|
|
point = zeus::baryToWorld(trivert2, trivert1, trivert0, barys);
|
|
|
|
if (baryX == 0.f || baryX == 1.f || baryY == 0.f || baryY == 1.f || barys.z() == 0.f || barys.z() == 1.f) {
|
|
normal = -sphere.getSurfaceNormal(point);
|
|
} else {
|
|
normal = (trivert1 - trivert0).cross(trivert2 - trivert0).normalized();
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool BoxLineTest(const zeus::CAABox& aabb, const zeus::CVector3f& point, const zeus::CVector3f& dir, float& tMin,
|
|
float& tMax, int& axis, bool& sign) {
|
|
tMin = -999999.f;
|
|
tMax = 999999.f;
|
|
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
if (dir[i] == 0.f) {
|
|
if (point[i] < aabb.min[i] || point[i] > aabb.max[i]) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
const float dirRecip = 1.f / dir[i];
|
|
float tmpMin;
|
|
float tmpMax;
|
|
if (dir[i] < 0.f) {
|
|
tmpMin = (aabb.max[i] - point[i]) * dirRecip;
|
|
tmpMax = (aabb.min[i] - point[i]) * dirRecip;
|
|
} else {
|
|
tmpMin = (aabb.min[i] - point[i]) * dirRecip;
|
|
tmpMax = (aabb.max[i] - point[i]) * dirRecip;
|
|
}
|
|
|
|
if (tmpMin > tMin) {
|
|
sign = dir[i] < 0.f;
|
|
axis = i;
|
|
tMin = tmpMin;
|
|
}
|
|
|
|
if (tmpMax < tMax) {
|
|
tMax = tmpMax;
|
|
}
|
|
}
|
|
|
|
return tMin <= tMax;
|
|
}
|
|
|
|
bool LineCircleIntersection2d(const zeus::CVector3f& point, const zeus::CVector3f& dir, const zeus::CSphere& sphere,
|
|
int axis1, int axis2, float& d) {
|
|
const zeus::CVector3f delta = sphere.position - point;
|
|
const zeus::CVector2f deltaVec(delta[axis1], delta[axis2]);
|
|
const zeus::CVector2f dirVec(dir[axis1], dir[axis2]);
|
|
|
|
const float dirVecMag = dirVec.magnitude();
|
|
if (dirVecMag < FLT_EPSILON) {
|
|
return false;
|
|
}
|
|
|
|
const float deltaVecDot = deltaVec.dot(dirVec / dirVecMag);
|
|
const float deltaVecMagSq = deltaVec.magSquared();
|
|
|
|
const float sphereRadSq = sphere.radius * sphere.radius;
|
|
if (deltaVecDot < 0.f && deltaVecMagSq > sphereRadSq) {
|
|
return false;
|
|
}
|
|
|
|
const float tSq = sphereRadSq - (deltaVecMagSq - deltaVecDot * deltaVecDot);
|
|
if (tSq < 0.f) {
|
|
return false;
|
|
}
|
|
|
|
const float t = std::sqrt(tSq);
|
|
|
|
d = (deltaVecMagSq > sphereRadSq) ? deltaVecDot - t : deltaVecDot + t;
|
|
d /= dirVecMag;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MovingSphereAABox(const zeus::CSphere& sphere, const zeus::CAABox& aabb, const zeus::CVector3f& dir, double& dOut,
|
|
zeus::CVector3f& point, zeus::CVector3f& normal) {
|
|
const zeus::CAABox expAABB(aabb.min - sphere.radius, aabb.max + sphere.radius);
|
|
float tMin;
|
|
float tMax;
|
|
int axis;
|
|
bool sign;
|
|
if (!BoxLineTest(expAABB, sphere.position, dir, tMin, tMax, axis, sign)) {
|
|
return false;
|
|
}
|
|
|
|
point = sphere.position + tMin * dir;
|
|
|
|
const int nextAxis1 = (axis + 1) % 3; // r0
|
|
const int nextAxis2 = (axis + 2) % 3; // r5
|
|
|
|
const bool inMin1 = point[nextAxis1] >= aabb.min[nextAxis1]; // r6
|
|
const bool inMax1 = point[nextAxis1] <= aabb.max[nextAxis1]; // r8
|
|
const bool inBounds1 = inMin1 && inMax1; // r9
|
|
const bool inMin2 = point[nextAxis2] >= aabb.min[nextAxis2]; // r7
|
|
const bool inMax2 = point[nextAxis2] <= aabb.max[nextAxis2]; // r4
|
|
const bool inBounds2 = inMin2 && inMax2; // r8
|
|
|
|
if (inBounds1 && inBounds2) {
|
|
if (tMin < 0.f || tMin > dOut) {
|
|
return false;
|
|
}
|
|
normal[axis] = sign ? 1.f : -1.f;
|
|
dOut = tMin;
|
|
point -= normal * sphere.radius;
|
|
return true;
|
|
}
|
|
|
|
if (!inBounds1 && !inBounds2) {
|
|
const int pointFlags = (1 << axis) * sign | (1 << nextAxis1) * inMin1 | (1 << nextAxis2) * inMin2;
|
|
const zeus::CVector3f aabbPoint = aabb.getPoint(pointFlags);
|
|
float d;
|
|
if (CollisionUtil::RaySphereIntersection(zeus::CSphere(aabbPoint, sphere.radius), sphere.position, dir, dOut, d,
|
|
point)) {
|
|
int useAxis = -1;
|
|
for (int i = 0; i < 3; ++i) {
|
|
if ((pointFlags & (1 << i)) ? aabbPoint[i] > point[i] : aabbPoint[i] < point[i]) {
|
|
useAxis = i;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (useAxis == -1) {
|
|
normal = (point - aabbPoint).normalized();
|
|
point -= sphere.radius * normal;
|
|
return true;
|
|
}
|
|
|
|
const int useAxisNext1 = (useAxis + 1) % 3;
|
|
const int useAxisNext2 = (useAxis + 2) % 3;
|
|
|
|
float d;
|
|
if (CollisionUtil::LineCircleIntersection2d(sphere.position, dir, zeus::CSphere(aabbPoint, sphere.radius),
|
|
useAxisNext1, useAxisNext2, d) &&
|
|
d > 0.f && d < dOut) {
|
|
if (point[useAxis] > aabb.max[useAxis]) {
|
|
const int useAxisBit = 1 << useAxis;
|
|
if (pointFlags & useAxisBit) {
|
|
return false;
|
|
}
|
|
|
|
const zeus::CVector3f aabbPoint1 = aabb.getPoint(pointFlags | useAxisBit);
|
|
if (CollisionUtil::RaySphereIntersection(zeus::CSphere(aabbPoint1, sphere.radius), sphere.position, dir, dOut,
|
|
d, point)) {
|
|
dOut = d;
|
|
normal = (point - aabbPoint1).normalized();
|
|
point -= normal * sphere.radius;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else if (point[useAxis] < aabb.min[useAxis]) {
|
|
const int useAxisBit = 1 << useAxis;
|
|
if (!(pointFlags & useAxisBit)) {
|
|
return false;
|
|
}
|
|
|
|
const zeus::CVector3f aabbPoint1 = aabb.getPoint(pointFlags ^ useAxisBit);
|
|
if (CollisionUtil::RaySphereIntersection(zeus::CSphere(aabbPoint1, sphere.radius), sphere.position, dir, dOut,
|
|
d, point)) {
|
|
dOut = d;
|
|
normal = (point - aabbPoint1).normalized();
|
|
point -= normal * sphere.radius;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
} else {
|
|
normal = point - aabbPoint;
|
|
normal.normalize();
|
|
point -= normal * sphere.radius;
|
|
return true;
|
|
}
|
|
}
|
|
} else {
|
|
int reverseCount = 0;
|
|
float dMin = 1.0e10f;
|
|
int minAxis = 0;
|
|
for (int i = 0; i < 3; ++i) {
|
|
if (std::fabs(dir[i]) > FLT_EPSILON) {
|
|
const bool pointMax = (pointFlags & (1 << i)) != 0;
|
|
if (pointMax != (dir[i] > 0.f)) {
|
|
++reverseCount;
|
|
const float d = 1.f / dir[i] * ((pointMax ? aabb.max[i] : aabb.min[i]) - sphere.position[i]);
|
|
if (d < 0.f) {
|
|
return false;
|
|
}
|
|
if (d < dMin) {
|
|
dMin = d;
|
|
minAxis = i;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (reverseCount < 2) {
|
|
return false;
|
|
}
|
|
|
|
const int useAxisNext1 = (minAxis + 1) % 3;
|
|
const int useAxisNext2 = (minAxis + 2) % 3;
|
|
float d;
|
|
if (CollisionUtil::LineCircleIntersection2d(sphere.position, dir, zeus::CSphere(aabbPoint, sphere.radius),
|
|
useAxisNext1, useAxisNext2, d) &&
|
|
d > 0.f && d < dOut) {
|
|
point = sphere.position + d * dir;
|
|
if (point[minAxis] > aabb.max[minAxis]) {
|
|
return false;
|
|
}
|
|
if (point[minAxis] < aabb.min[minAxis]) {
|
|
return false;
|
|
}
|
|
|
|
dOut = d;
|
|
normal = point - aabbPoint;
|
|
normal.normalize();
|
|
point -= sphere.radius * normal;
|
|
return true;
|
|
} else {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
const bool useNextAxis1 = inBounds1 ? nextAxis2 : nextAxis1;
|
|
const bool useNextAxis2 = inBounds1 ? nextAxis1 : nextAxis2;
|
|
|
|
const int pointFlags = ((1 << int(useNextAxis1)) * (inBounds1 ? inMin2 : inMin1)) | ((1 << axis) * sign);
|
|
const zeus::CVector3f aabbPoint2 = aabb.getPoint(pointFlags);
|
|
float d;
|
|
if (LineCircleIntersection2d(sphere.position, dir, zeus::CSphere(aabbPoint2, sphere.radius), axis, useNextAxis1, d) &&
|
|
d > 0.f && d < dOut) {
|
|
point = sphere.position + d * dir;
|
|
if (point[useNextAxis2] > aabb.max[useNextAxis2]) {
|
|
const zeus::CVector3f aabbPoint3 = aabb.getPoint(pointFlags | (1 << int(useNextAxis2)));
|
|
if (point[useNextAxis2] < expAABB.max[useNextAxis2]) {
|
|
if (RaySphereIntersection(zeus::CSphere(aabbPoint3, sphere.radius), sphere.position, dir, dOut, d, point)) {
|
|
dOut = d;
|
|
normal = (point - aabbPoint3).normalized();
|
|
point -= sphere.radius * normal;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
if (point[useNextAxis2] < aabb.min[useNextAxis2]) {
|
|
if (point[useNextAxis2] > expAABB.min[useNextAxis2]) {
|
|
if (RaySphereIntersection(zeus::CSphere(aabbPoint2, sphere.radius), sphere.position, dir, dOut, d, point)) {
|
|
dOut = d;
|
|
normal = (point - aabbPoint2).normalized();
|
|
point -= sphere.radius * normal;
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
} else {
|
|
dOut = d;
|
|
normal = point - aabbPoint2;
|
|
normal.normalize();
|
|
point -= sphere.radius * normal;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AABox_AABox_Moving(const zeus::CAABox& aabb0, const zeus::CAABox& aabb1, const zeus::CVector3f& dir, double& d,
|
|
zeus::CVector3f& point, zeus::CVector3f& normal) {
|
|
zeus::CVector3d vecMin(-FLT_MAX);
|
|
zeus::CVector3d vecMax(FLT_MAX);
|
|
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
if (std::fabs(dir[i]) < FLT_EPSILON) {
|
|
if (aabb0.min[i] >= aabb1.min[i] && aabb0.min[i] <= aabb1.max[i]) {
|
|
continue;
|
|
}
|
|
if (aabb0.max[i] >= aabb1.min[i] && aabb0.max[i] <= aabb1.max[i]) {
|
|
continue;
|
|
}
|
|
if (aabb0.min[i] < aabb1.min[i] && aabb0.max[i] > aabb1.max[i]) {
|
|
continue;
|
|
}
|
|
return false;
|
|
} else {
|
|
if (aabb0.max[i] < aabb1.min[i] && dir[i] > 0.f) {
|
|
vecMin[i] = (aabb1.min[i] - aabb0.max[i]) / dir[i];
|
|
} else if (aabb1.max[i] < aabb0.min[i] && dir[i] < 0.f) {
|
|
vecMin[i] = (aabb1.max[i] - aabb0.min[i]) / dir[i];
|
|
} else if (aabb1.max[i] > aabb0.min[i] && dir[i] < 0.f) {
|
|
vecMin[i] = (aabb1.max[i] - aabb0.min[i]) / dir[i];
|
|
} else if (aabb0.max[i] > aabb1.min[i] && dir[i] > 0.f) {
|
|
vecMin[i] = (aabb1.min[i] - aabb0.max[i]) / dir[i];
|
|
}
|
|
|
|
if (aabb1.max[i] > aabb0.min[i] && dir[i] > 0.f) {
|
|
vecMax[i] = (aabb1.max[i] - aabb0.min[i]) / dir[i];
|
|
} else if (aabb0.max[i] > aabb1.min[i] && dir[i] < 0.f) {
|
|
vecMax[i] = (aabb1.min[i] - aabb0.max[i]) / dir[i];
|
|
} else if (aabb0.max[i] < aabb1.min[i] && dir[i] < 0.f) {
|
|
vecMax[i] = (aabb1.min[i] - aabb0.max[i]) / dir[i];
|
|
} else if (aabb1.max[i] < aabb0.min[i] && dir[i] > 0.f) {
|
|
vecMax[i] = (aabb1.max[i] - aabb0.min[i]) / dir[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
int maxAxis = 0;
|
|
if (vecMin[1] > vecMin[0]) {
|
|
maxAxis = 1;
|
|
}
|
|
if (vecMin[2] > vecMin[maxAxis]) {
|
|
maxAxis = 2;
|
|
}
|
|
|
|
const double minMax = std::min(std::min(vecMax[2], vecMax[1]), vecMax[0]);
|
|
if (vecMin[maxAxis] > minMax) {
|
|
return false;
|
|
}
|
|
d = vecMin[maxAxis];
|
|
|
|
normal = zeus::skZero3f;
|
|
normal[maxAxis] = dir[maxAxis] > 0.f ? -1.f : 1.f;
|
|
|
|
for (size_t i = 0; i < 3; ++i) {
|
|
point[i] = dir[i] > 0.f ? aabb0.max[i] : aabb0.min[i];
|
|
}
|
|
|
|
point += float(d) * dir;
|
|
return true;
|
|
}
|
|
|
|
void AddAverageToFront(const CCollisionInfoList& in, CCollisionInfoList& out) {
|
|
if (in.GetCount() > 1) {
|
|
zeus::CVector3f pointAccum;
|
|
zeus::CVector3f normAccum;
|
|
|
|
for (const CCollisionInfo& info : in) {
|
|
pointAccum += info.GetPoint();
|
|
normAccum += info.GetNormalLeft();
|
|
}
|
|
|
|
if (normAccum.canBeNormalized()) {
|
|
out.Add(CCollisionInfo(pointAccum / float(in.GetCount()), in.GetItem(0).GetMaterialRight(),
|
|
in.GetItem(0).GetMaterialLeft(), normAccum.normalized()),
|
|
false);
|
|
}
|
|
}
|
|
|
|
for (const CCollisionInfo& info : in) {
|
|
out.Add(info, false);
|
|
}
|
|
}
|
|
} // namespace urde::CollisionUtil
|