metaforce/DataSpec/DNAMP3/ANIM.cpp

536 lines
17 KiB
C++

#include "ANIM.hpp"
#include <float.h>
#include <math.h>
namespace DataSpec
{
namespace DNAMP3
{
using ANIMOutStream = HECL::BlenderConnection::PyOutStream::ANIMOutStream;
void ANIM::IANIM::sendANIMToBlender(HECL::BlenderConnection::PyOutStream& os, const CINF& cinf, bool additive) const
{
os.format("act.hecl_fps = round(%f)\n"
"act.hecl_additive = %s\n",
1.0f / mainInterval, additive ? "True" : "False");
auto kit = chanKeys.begin() + 1;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
const std::string* bName = cinf.getBoneNameFromId(bone.first);
if (!bName)
{
if (std::get<0>(bone.second))
++kit;
if (std::get<1>(bone.second))
++kit;
if (std::get<2>(bone.second))
++kit;
continue;
}
os.format("bone_string = '%s'\n", bName->c_str());
os << "action_group = act.groups.new(bone_string)\n"
"\n";
if (std::get<0>(bone.second))
os << "rotCurves = []\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=0, action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=1, action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=2, action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=3, action_group=bone_string))\n"
"\n";
if (std::get<1>(bone.second))
{
if (!additive)
os << "bone_trans_head = (0.0,0.0,0.0)\n"
"if arm_obj.data.bones[bone_string].parent is not None:\n"
" bone_trans_head = Vector(arm_obj.data.bones[bone_string].head_local) - Vector(arm_obj.data.bones[bone_string].parent.head_local)\n";
else
os << "bone_trans_head = (0.0,0.0,0.0)\n";
os << "transCurves = []\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=0, action_group=bone_string))\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=1, action_group=bone_string))\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=2, action_group=bone_string))\n"
"\n";
}
if (std::get<2>(bone.second))
os << "scaleCurves = []\n"
"scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=0, action_group=bone_string))\n"
"scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=1, action_group=bone_string))\n"
"scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=2, action_group=bone_string))\n"
"\n";
os << "crv = act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_mode', action_group=bone_string)\n"
"crv.keyframe_points.add()\n"
"crv.keyframe_points[-1].co = (0, 0)\n"
"crv.keyframe_points[-1].interpolation = 'LINEAR'\n"
"\n";
ANIMOutStream ao = os.beginANIMCurve();
if (std::get<0>(bone.second))
{
const std::vector<DNAANIM::Value>& rotKeys = *kit++;
for (int c=0 ; c<4 ; ++c)
{
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Rotate, c, rotKeys.size());
for (const DNAANIM::Value& val : rotKeys)
ao.write(*frameit++, val.v4.vec[c]);
}
}
if (std::get<1>(bone.second))
{
const std::vector<DNAANIM::Value>& transKeys = *kit++;
for (int c=0 ; c<3 ; ++c)
{
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Translate, c, transKeys.size());
for (const DNAANIM::Value& val : transKeys)
ao.write(*frameit++, val.v3.vec[c]);
}
}
if (std::get<2>(bone.second))
{
const std::vector<DNAANIM::Value>& scaleKeys = *kit++;
for (int c=0 ; c<3 ; ++c)
{
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Scale, c, scaleKeys.size());
for (const DNAANIM::Value& val : scaleKeys)
ao.write(*frameit++, val.v3.vec[c]);
}
}
}
}
void ANIM::ANIM0::read(Athena::io::IStreamReader& reader)
{
Header head;
head.read(reader);
mainInterval = head.interval;
frames.clear();
frames.reserve(head.keyCount);
for (size_t k=0 ; k<head.keyCount ; ++k)
frames.push_back(k);
std::map<atUint8, atUint32> boneMap;
for (size_t b=0 ; b<head.boneSlotCount ; ++b)
{
atUint8 idx = reader.readUByte();
if (idx == 0xff)
continue;
boneMap[idx] = b;
}
atUint32 boneCount = reader.readUint32Big();
bones.clear();
bones.reserve(boneCount);
for (size_t b=0 ; b<boneCount ; ++b)
{
bones.emplace_back(boneMap[b], std::make_tuple(false, false, false));
atUint8 idx = reader.readUByte();
if (idx != 0xff)
std::get<0>(bones.back().second) = true;
}
boneCount = reader.readUint32Big();
for (size_t b=0 ; b<boneCount ; ++b)
{
atUint8 idx = reader.readUByte();
if (idx != 0xff)
std::get<1>(bones[b].second) = true;
}
boneCount = reader.readUint32Big();
for (size_t b=0 ; b<boneCount ; ++b)
{
atUint8 idx = reader.readUByte();
if (idx != 0xff)
std::get<2>(bones[b].second) = true;
}
channels.clear();
chanKeys.clear();
channels.emplace_back();
channels.back().type = DNAANIM::Channel::Type::KfHead;
chanKeys.emplace_back();
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Rotation;
chanKeys.emplace_back();
}
if (std::get<1>(bone.second))
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
chanKeys.emplace_back();
}
if (std::get<2>(bone.second))
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Scale;
chanKeys.emplace_back();
}
}
reader.readUint32Big();
auto kit = chanKeys.begin() + 1;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
++kit;
if (std::get<1>(bone.second))
++kit;
if (std::get<2>(bone.second))
{
std::vector<DNAANIM::Value>& keys = *kit++;
for (size_t k=0 ; k<head.keyCount ; ++k)
keys.emplace_back(reader.readVec3fBig());
}
}
reader.readUint32Big();
kit = chanKeys.begin() + 1;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
{
std::vector<DNAANIM::Value>& keys = *kit++;
for (size_t k=0 ; k<head.keyCount ; ++k)
keys.emplace_back(reader.readVec4fBig());
}
if (std::get<1>(bone.second))
++kit;
if (std::get<2>(bone.second))
++kit;
}
reader.readUint32Big();
kit = chanKeys.begin() + 1;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
++kit;
if (std::get<1>(bone.second))
{
std::vector<DNAANIM::Value>& keys = *kit++;
for (size_t k=0 ; k<head.keyCount ; ++k)
keys.emplace_back(reader.readVec3fBig());
}
if (std::get<2>(bone.second))
++kit;
}
}
void ANIM::ANIM0::write(Athena::io::IStreamWriter& writer) const
{
Header head;
head.unk0 = 0;
head.unk1 = 0;
head.unk2 = 0;
head.keyCount = frames.size();
head.duration = head.keyCount * mainInterval;
head.interval = mainInterval;
atUint32 maxId = 0;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
maxId = std::max(maxId, bone.first);
head.boneSlotCount = maxId + 1;
head.write(writer);
for (size_t s=0 ; s<head.boneSlotCount ; ++s)
{
size_t boneIdx = 0;
bool found = false;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (s == bone.first)
{
writer.writeUByte(boneIdx);
found = true;
break;
}
++boneIdx;
}
if (!found)
writer.writeUByte(0xff);
}
writer.writeUint32Big(bones.size());
size_t boneIdx = 0;
size_t rotKeyCount = 0;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
{
writer.writeUByte(boneIdx);
++rotKeyCount;
}
else
writer.writeUByte(0xff);
++boneIdx;
}
writer.writeUint32Big(bones.size());
boneIdx = 0;
size_t transKeyCount = 0;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<1>(bone.second))
{
writer.writeUByte(boneIdx);
++transKeyCount;
}
else
writer.writeUByte(0xff);
++boneIdx;
}
writer.writeUint32Big(bones.size());
boneIdx = 0;
size_t scaleKeyCount = 0;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<2>(bone.second))
{
writer.writeUByte(boneIdx);
++scaleKeyCount;
}
else
writer.writeUByte(0xff);
++boneIdx;
}
writer.writeUint32Big(scaleKeyCount * head.keyCount);
auto cit = chanKeys.begin();
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
++cit;
if (std::get<1>(bone.second))
++cit;
if (std::get<2>(bone.second))
{
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k=0 ; k<head.keyCount ; ++k)
writer.writeVec3fBig((*kit++).v3);
}
}
writer.writeUint32Big(rotKeyCount * head.keyCount);
cit = chanKeys.begin();
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
{
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k=0 ; k<head.keyCount ; ++k)
writer.writeVec4fBig((*kit++).v4);
}
if (std::get<1>(bone.second))
++cit;
if (std::get<2>(bone.second))
++cit;
}
writer.writeUint32Big(transKeyCount * head.keyCount);
cit = chanKeys.begin();
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
++cit;
if (std::get<1>(bone.second))
{
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k=0 ; k<head.keyCount ; ++k)
writer.writeVec3fBig((*kit++).v3);
}
if (std::get<2>(bone.second))
++cit;
}
}
size_t ANIM::ANIM0::binarySize(size_t __isz) const
{
Header head;
atUint32 maxId = 0;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
maxId = std::max(maxId, bone.first);
__isz = head.binarySize(__isz);
__isz += maxId + 1;
__isz += bones.size() * 3 + 12;
__isz += 12;
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
__isz += head.keyCount * 16;
if (std::get<1>(bone.second))
__isz += head.keyCount * 12;
if (std::get<2>(bone.second))
__isz += head.keyCount * 12;
}
return __isz;
}
static float ComputeFrames(const std::vector<float>& keyTimes, std::vector<atUint32>& framesOut)
{
if (keyTimes.size() <= 1)
return 0.0;
float mainInterval = FLT_MAX;
float lastTime = keyTimes[0];
for (auto it=keyTimes.begin() + 1 ; it != keyTimes.end() ; ++it)
{
float diff = *it - lastTime;
if (diff < mainInterval)
mainInterval = diff;
lastTime = *it;
}
float fps = round(1.0 / mainInterval);
if (fps < 15.0)
fps = 15.0;
mainInterval = 1.0 / fps;
framesOut.clear();
framesOut.reserve(keyTimes.size());
atUint32 frameAccum = 0;
for (float time : keyTimes)
{
while (frameAccum * mainInterval < time)
++frameAccum;
framesOut.push_back(frameAccum);
}
return mainInterval;
}
void ANIM::ANIM1::read(Athena::io::IStreamReader& reader)
{
Header head;
head.read(reader);
std::vector<float> keyTimes;
keyTimes.reserve(head.keyCount);
for (size_t k=0 ; k<head.keyCount ; ++k)
keyTimes.push_back(reader.readFloatBig());
mainInterval = ComputeFrames(keyTimes, frames);
atUint8 boneFlagCount = reader.readUByte();
bones.clear();
bones.reserve(boneFlagCount);
atUint32 boneChannelCount = 0;
for (atUint8 f=0 ; f<boneFlagCount ; ++f)
{
atUint8 flag = reader.readUByte();
bones.emplace_back(f, std::make_tuple(flag & 0x1, flag & 0x2, flag & 0x4));
if (flag & 0x1)
++boneChannelCount;
if (flag & 0x2)
++boneChannelCount;
if (flag & 0x4)
++boneChannelCount;
}
std::vector<atInt16> initBlock;
initBlock.reserve(head.initBlockSize/2);
for (size_t i=0 ; i<head.initBlockSize/2 ; ++i)
initBlock.push_back(reader.readInt16Big());
atUint32 rawChannelCount = reader.readUint32Big();
atUint32 scratchSize1 = reader.readUint32Big();
atUint32 scratchSize2 = reader.readUint32Big();
std::vector<atUint8> chanBitCounts;
chanBitCounts.reserve(rawChannelCount);
for (size_t c=0 ; c<rawChannelCount ; ++c)
chanBitCounts.push_back(reader.readUByte());
channels.clear();
channels.reserve(boneChannelCount + 1);
channels.emplace_back();
channels.back().type = DNAANIM::Channel::Type::KfHead;
auto initsIt = initBlock.begin();
auto bitsIt = chanBitCounts.begin();
for (const std::pair<atUint32, std::tuple<bool,bool,bool>>& bone : bones)
{
if (std::get<0>(bone.second))
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::RotationMP3;
chan.i[0] = *initsIt++;
chan.q[0] = *bitsIt++;
chan.i[1] = *initsIt++;
chan.q[1] = *bitsIt++;
chan.i[2] = *initsIt++;
chan.q[2] = *bitsIt++;
chan.i[3] = *initsIt++;
chan.q[3] = *bitsIt++;
}
if (std::get<1>(bone.second))
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
chan.i[0] = *initsIt++;
chan.q[0] = *bitsIt++;
chan.i[1] = *initsIt++;
chan.q[1] = *bitsIt++;
chan.i[2] = *initsIt++;
chan.q[2] = *bitsIt++;
}
if (std::get<2>(bone.second))
{
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Scale;
chan.i[0] = *initsIt++;
chan.q[0] = *bitsIt++;
chan.i[1] = *initsIt++;
chan.q[1] = *bitsIt++;
chan.i[2] = *initsIt++;
chan.q[2] = *bitsIt++;
}
}
size_t bsSize = DNAANIM::ComputeBitstreamSize(head.keyCount-1, channels);
std::unique_ptr<atUint8[]> bsData = reader.readUBytes(bsSize);
DNAANIM::BitstreamReader bsReader;
chanKeys = bsReader.read(bsData.get(), head.keyCount-1, channels, 32767, head.translationMult);
}
void ANIM::ANIM1::write(Athena::io::IStreamWriter& writer) const
{
}
size_t ANIM::ANIM1::binarySize(size_t __isz) const
{
return __isz;
}
}
}