mirror of https://github.com/AxioDL/metaforce.git
264 lines
10 KiB
C++
264 lines
10 KiB
C++
/* -*- c++ -*- (enables emacs c++ mode) */
|
|
/*===========================================================================
|
|
|
|
Copyright (C) 2002-2017 Yves Renard
|
|
|
|
This file is a part of GetFEM++
|
|
|
|
GetFEM++ is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version along with the GCC Runtime Library
|
|
Exception either version 3.1 or (at your option) any later version.
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License and GCC Runtime Library Exception for more details.
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
As a special exception, you may use this file as it is a part of a free
|
|
software library without restriction. Specifically, if other files
|
|
instantiate templates or use macros or inline functions from this file,
|
|
or you compile this file and link it with other files to produce an
|
|
executable, this file does not by itself cause the resulting executable
|
|
to be covered by the GNU Lesser General Public License. This exception
|
|
does not however invalidate any other reasons why the executable file
|
|
might be covered by the GNU Lesser General Public License.
|
|
|
|
===========================================================================*/
|
|
|
|
// This file is a modified version of ilut.h from ITL.
|
|
// See http://osl.iu.edu/research/itl/
|
|
// Following the corresponding Copyright notice.
|
|
//===========================================================================
|
|
//
|
|
// Copyright (c) 1998-2001, University of Notre Dame. All rights reserved.
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above copyright
|
|
// notice, this list of conditions and the following disclaimer in the
|
|
// documentation and/or other materials provided with the distribution.
|
|
// * Neither the name of the University of Notre Dame nor the
|
|
// names of its contributors may be used to endorse or promote products
|
|
// derived from this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE TRUSTEES OF INDIANA UNIVERSITY AND
|
|
// CONTRIBUTORS ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING,
|
|
// BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
|
|
// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE TRUSTEES
|
|
// OF INDIANA UNIVERSITY AND CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|
// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
// NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|
// THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
//===========================================================================
|
|
|
|
#ifndef GMM_PRECOND_ILUT_H
|
|
#define GMM_PRECOND_ILUT_H
|
|
|
|
/**@file gmm_precond_ilut.h
|
|
@author Andrew Lumsdaine <lums@osl.iu.edu>, Lie-Quan Lee <llee@osl.iu.edu>
|
|
@date June 5, 2003.
|
|
@brief ILUT: Incomplete LU with threshold and K fill-in Preconditioner.
|
|
*/
|
|
|
|
/*
|
|
Performane comparing for SSOR, ILU and ILUT based on sherman 5 matrix
|
|
in Harwell-Boeing collection on Sun Ultra 30 UPA/PCI (UltraSPARC-II 296MHz)
|
|
Preconditioner & Factorization time & Number of Iteration \\ \hline
|
|
SSOR & 0.010577 & 41 \\
|
|
ILU & 0.019336 & 32 \\
|
|
ILUT with 0 fill-in and threshold of 1.0e-6 & 0.343612 & 23 \\
|
|
ILUT with 5 fill-in and threshold of 1.0e-6 & 0.343612 & 18 \\ \hline
|
|
*/
|
|
|
|
#include "gmm_precond.h"
|
|
|
|
namespace gmm {
|
|
|
|
template<typename T> struct elt_rsvector_value_less_ {
|
|
inline bool operator()(const elt_rsvector_<T>& a,
|
|
const elt_rsvector_<T>& b) const
|
|
{ return (gmm::abs(a.e) > gmm::abs(b.e)); }
|
|
};
|
|
|
|
/** Incomplete LU with threshold and K fill-in Preconditioner.
|
|
|
|
The algorithm of ILUT(A, 0, 1.0e-6) is slower than ILU(A). If No
|
|
fill-in is arrowed, you can use ILU instead of ILUT.
|
|
|
|
Notes: The idea under a concrete Preconditioner such as ilut is to
|
|
create a Preconditioner object to use in iterative methods.
|
|
*/
|
|
template <typename Matrix>
|
|
class ilut_precond {
|
|
public :
|
|
typedef typename linalg_traits<Matrix>::value_type value_type;
|
|
typedef wsvector<value_type> _wsvector;
|
|
typedef rsvector<value_type> _rsvector;
|
|
typedef row_matrix<_rsvector> LU_Matrix;
|
|
|
|
bool invert;
|
|
LU_Matrix L, U;
|
|
|
|
protected:
|
|
size_type K;
|
|
double eps;
|
|
|
|
template<typename M> void do_ilut(const M&, row_major);
|
|
void do_ilut(const Matrix&, col_major);
|
|
|
|
public:
|
|
void build_with(const Matrix& A, int k_ = -1, double eps_ = double(-1)) {
|
|
if (k_ >= 0) K = k_;
|
|
if (eps_ >= double(0)) eps = eps_;
|
|
invert = false;
|
|
gmm::resize(L, mat_nrows(A), mat_ncols(A));
|
|
gmm::resize(U, mat_nrows(A), mat_ncols(A));
|
|
do_ilut(A, typename principal_orientation_type<typename
|
|
linalg_traits<Matrix>::sub_orientation>::potype());
|
|
}
|
|
ilut_precond(const Matrix& A, int k_, double eps_)
|
|
: L(mat_nrows(A), mat_ncols(A)), U(mat_nrows(A), mat_ncols(A)),
|
|
K(k_), eps(eps_) { build_with(A); }
|
|
ilut_precond(size_type k_, double eps_) : K(k_), eps(eps_) {}
|
|
ilut_precond(void) { K = 10; eps = 1E-7; }
|
|
size_type memsize() const {
|
|
return sizeof(*this) + (nnz(U)+nnz(L))*sizeof(value_type);
|
|
}
|
|
};
|
|
|
|
template<typename Matrix> template<typename M>
|
|
void ilut_precond<Matrix>::do_ilut(const M& A, row_major) {
|
|
typedef value_type T;
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
|
|
size_type n = mat_nrows(A);
|
|
if (n == 0) return;
|
|
std::vector<T> indiag(n);
|
|
_wsvector w(mat_ncols(A));
|
|
_rsvector ww(mat_ncols(A)), wL(mat_ncols(A)), wU(mat_ncols(A));
|
|
T tmp;
|
|
gmm::clear(U); gmm::clear(L);
|
|
R prec = default_tol(R());
|
|
R max_pivot = gmm::abs(A(0,0)) * prec;
|
|
|
|
for (size_type i = 0; i < n; ++i) {
|
|
gmm::copy(mat_const_row(A, i), w);
|
|
double norm_row = gmm::vect_norm2(w);
|
|
|
|
typename _wsvector::iterator wkold = w.end();
|
|
for (typename _wsvector::iterator wk = w.begin();
|
|
wk != w.end() && wk->first < i; ) {
|
|
size_type k = wk->first;
|
|
tmp = (wk->second) * indiag[k];
|
|
if (gmm::abs(tmp) < eps * norm_row) w.erase(k);
|
|
else { wk->second += tmp; gmm::add(scaled(mat_row(U, k), -tmp), w); }
|
|
if (wkold == w.end()) wk = w.begin(); else { wk = wkold; ++wk; }
|
|
if (wk != w.end() && wk->first == k)
|
|
{ if (wkold == w.end()) wkold = w.begin(); else ++wkold; ++wk; }
|
|
}
|
|
tmp = w[i];
|
|
|
|
if (gmm::abs(tmp) <= max_pivot) {
|
|
GMM_WARNING2("pivot " << i << " too small. try with ilutp ?");
|
|
w[i] = tmp = T(1);
|
|
}
|
|
|
|
max_pivot = std::max(max_pivot, std::min(gmm::abs(tmp) * prec, R(1)));
|
|
indiag[i] = T(1) / tmp;
|
|
gmm::clean(w, eps * norm_row);
|
|
gmm::copy(w, ww);
|
|
std::sort(ww.begin(), ww.end(), elt_rsvector_value_less_<T>());
|
|
typename _rsvector::const_iterator wit = ww.begin(), wite = ww.end();
|
|
|
|
size_type nnl = 0, nnu = 0;
|
|
wL.base_resize(K); wU.base_resize(K+1);
|
|
typename _rsvector::iterator witL = wL.begin(), witU = wU.begin();
|
|
for (; wit != wite; ++wit)
|
|
if (wit->c < i) { if (nnl < K) { *witL++ = *wit; ++nnl; } }
|
|
else { if (nnu < K || wit->c == i) { *witU++ = *wit; ++nnu; } }
|
|
wL.base_resize(nnl); wU.base_resize(nnu);
|
|
std::sort(wL.begin(), wL.end());
|
|
std::sort(wU.begin(), wU.end());
|
|
gmm::copy(wL, L.row(i));
|
|
gmm::copy(wU, U.row(i));
|
|
}
|
|
|
|
}
|
|
|
|
template<typename Matrix>
|
|
void ilut_precond<Matrix>::do_ilut(const Matrix& A, col_major) {
|
|
do_ilut(gmm::transposed(A), row_major());
|
|
invert = true;
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
|
|
gmm::copy(v1, v2);
|
|
if (P.invert) {
|
|
gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
|
|
gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
|
|
}
|
|
else {
|
|
gmm::lower_tri_solve(P.L, v2, true);
|
|
gmm::upper_tri_solve(P.U, v2, false);
|
|
}
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void transposed_mult(const ilut_precond<Matrix>& P,const V1 &v1,V2 &v2) {
|
|
gmm::copy(v1, v2);
|
|
if (P.invert) {
|
|
gmm::lower_tri_solve(P.L, v2, true);
|
|
gmm::upper_tri_solve(P.U, v2, false);
|
|
}
|
|
else {
|
|
gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
|
|
gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
|
|
}
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void left_mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
|
|
copy(v1, v2);
|
|
if (P.invert) gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
|
|
else gmm::lower_tri_solve(P.L, v2, true);
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void right_mult(const ilut_precond<Matrix>& P, const V1 &v1, V2 &v2) {
|
|
copy(v1, v2);
|
|
if (P.invert) gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
|
|
else gmm::upper_tri_solve(P.U, v2, false);
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void transposed_left_mult(const ilut_precond<Matrix>& P, const V1 &v1,
|
|
V2 &v2) {
|
|
copy(v1, v2);
|
|
if (P.invert) gmm::upper_tri_solve(P.U, v2, false);
|
|
else gmm::upper_tri_solve(gmm::transposed(P.L), v2, true);
|
|
}
|
|
|
|
template <typename Matrix, typename V1, typename V2> inline
|
|
void transposed_right_mult(const ilut_precond<Matrix>& P, const V1 &v1,
|
|
V2 &v2) {
|
|
copy(v1, v2);
|
|
if (P.invert) gmm::lower_tri_solve(P.L, v2, true);
|
|
else gmm::lower_tri_solve(gmm::transposed(P.U), v2, false);
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|