metaforce/DataSpec/DNAMP1/CMDLMaterials.hpp

498 lines
24 KiB
C++

#ifndef _DNAMP1_CMDL_MATERIALS_HPP_
#define _DNAMP1_CMDL_MATERIALS_HPP_
#include <BlenderConnection.hpp>
#include "../DNACommon/DNACommon.hpp"
#include "../DNACommon/GX.hpp"
#include "../DNACommon/CMDL.hpp"
#include "DNAMP1.hpp"
namespace Retro
{
namespace DNAMP1
{
struct MaterialSet : BigDNA
{
static constexpr bool OneSection() {return false;}
DECL_DNA
struct MaterialSetHead : BigDNA
{
DECL_DNA
Value<atUint32> textureCount = 0;
Vector<UniqueID32, DNA_COUNT(textureCount)> textureIDs;
Value<atUint32> materialCount = 0;
Vector<atUint32, DNA_COUNT(materialCount)> materialEndOffs;
void addTexture(const UniqueID32& id) {textureIDs.push_back(id); ++textureCount;}
void addMaterialEndOff(atUint32 off) {materialEndOffs.push_back(off); ++materialCount;}
} head;
struct Material : BigDNA
{
DECL_DNA
struct Flags : BigDNA
{
DECL_DNA
Value<atUint32> flags = 0;
bool konstValuesEnabled() const {return (flags & 0x8) != 0;}
void setKonstValuesEnabled(bool enabled) {flags &= ~0x8; flags |= atUint32(enabled) << 3;}
bool depthSorting() const {return (flags & 0x10) != 0;}
void setDepthSorting(bool enabled) {flags &= ~0x10; flags |= atUint32(enabled) << 4;}
bool punchthroughAlpha() const {return (flags & 0x20) != 0;}
void setPunchthroughAlpha(bool enabled) {flags &= ~0x20; flags |= atUint32(enabled) << 5;}
bool samusReflection() const {return (flags & 0x40) != 0;}
void setSamusReflection(bool enabled) {flags &= ~0x40; flags |= atUint32(enabled) << 6;}
bool depthWrite() const {return (flags & 0x80) != 0;}
void setDepthWrite(bool enabled) {flags &= ~0x80; flags |= atUint32(enabled) << 7;}
bool samusReflectionSurfaceEye() const {return (flags & 0x100) != 0;}
void setSamusReflectionSurfaceEye(bool enabled) {flags &= ~0x100; flags |= atUint32(enabled) << 8;}
bool shadowOccluderMesh() const {return (flags & 0x200) != 0;}
void setShadowOccluderMesh(bool enabled) {flags &= ~0x200; flags |= atUint32(enabled) << 9;}
bool samusReflectionIndirectTexture() const {return (flags & 0x400) != 0;}
void setSamusReflectionIndirectTexture(bool enabled) {flags &= ~0x400; flags |= atUint32(enabled) << 10;}
bool lightmap() const {return (flags & 0x800) != 0;}
void setLightmap(bool enabled) {flags &= ~0x800; flags |= atUint32(enabled) << 11;}
bool lightmapUVArray() const {return (flags & 0x2000) != 0;}
void setLightmapUVArray(bool enabled) {flags &= ~0x2000; flags |= atUint32(enabled) << 13;}
atUint16 textureSlots() const {return (flags >> 16) != 0;}
void setTextureSlots(atUint16 texslots) {flags &= ~0xffff0000; flags |= atUint32(texslots) << 16;}
} flags;
const Flags& getFlags() const {return flags;}
Value<atUint32> textureCount = 0;
Vector<atUint32, DNA_COUNT(textureCount)> textureIdxs;
struct VAFlags : BigDNA
{
DECL_DNA
Value<atUint32> vaFlags = 0;
GX::AttrType position() const {return GX::AttrType(vaFlags & 0x3);}
void setPosition(GX::AttrType val) {vaFlags &= ~0x3; vaFlags |= atUint32(val);}
GX::AttrType normal() const {return GX::AttrType(vaFlags >> 2 & 0x3);}
void setNormal(GX::AttrType val) {vaFlags &= ~0xC; vaFlags |= atUint32(val) << 2;}
GX::AttrType color0() const {return GX::AttrType(vaFlags >> 4 & 0x3);}
void setColor0(GX::AttrType val) {vaFlags &= ~0x30; vaFlags |= atUint32(val) << 4;}
GX::AttrType color1() const {return GX::AttrType(vaFlags >> 6 & 0x3);}
void setColor1(GX::AttrType val) {vaFlags &= ~0xC0; vaFlags |= atUint32(val) << 6;}
GX::AttrType tex0() const {return GX::AttrType(vaFlags >> 8 & 0x3);}
void setTex0(GX::AttrType val) {vaFlags &= ~0x300; vaFlags |= atUint32(val) << 8;}
GX::AttrType tex1() const {return GX::AttrType(vaFlags >> 10 & 0x3);}
void setTex1(GX::AttrType val) {vaFlags &= ~0xC00; vaFlags |= atUint32(val) << 10;}
GX::AttrType tex2() const {return GX::AttrType(vaFlags >> 12 & 0x3);}
void setTex2(GX::AttrType val) {vaFlags &= ~0x3000; vaFlags |= atUint32(val) << 12;}
GX::AttrType tex3() const {return GX::AttrType(vaFlags >> 14 & 0x3);}
void setTex3(GX::AttrType val) {vaFlags &= ~0xC000; vaFlags |= atUint32(val) << 14;}
GX::AttrType tex4() const {return GX::AttrType(vaFlags >> 16 & 0x3);}
void setTex4(GX::AttrType val) {vaFlags &= ~0x30000; vaFlags |= atUint32(val) << 16;}
GX::AttrType tex5() const {return GX::AttrType(vaFlags >> 18 & 0x3);}
void setTex5(GX::AttrType val) {vaFlags &= ~0xC0000; vaFlags |= atUint32(val) << 18;}
GX::AttrType tex6() const {return GX::AttrType(vaFlags >> 20 & 0x3);}
void setTex6(GX::AttrType val) {vaFlags &= ~0x300000; vaFlags |= atUint32(val) << 20;}
GX::AttrType pnMatIdx() const {return GX::AttrType(vaFlags >> 24 & 0x1);}
void setPnMatIdx(GX::AttrType val) {vaFlags &= ~0x1000000; vaFlags |= atUint32(val & 0x1) << 24;}
GX::AttrType tex0MatIdx() const {return GX::AttrType(vaFlags >> 25 & 0x1);}
void setTex0MatIdx(GX::AttrType val) {vaFlags &= ~0x2000000; vaFlags |= atUint32(val & 0x1) << 25;}
GX::AttrType tex1MatIdx() const {return GX::AttrType(vaFlags >> 26 & 0x1);}
void setTex1MatIdx(GX::AttrType val) {vaFlags &= ~0x4000000; vaFlags |= atUint32(val & 0x1) << 26;}
GX::AttrType tex2MatIdx() const {return GX::AttrType(vaFlags >> 27 & 0x1);}
void setTex2MatIdx(GX::AttrType val) {vaFlags &= ~0x8000000; vaFlags |= atUint32(val & 0x1) << 27;}
GX::AttrType tex3MatIdx() const {return GX::AttrType(vaFlags >> 28 & 0x1);}
void setTex3MatIdx(GX::AttrType val) {vaFlags &= ~0x10000000; vaFlags |= atUint32(val & 0x1) << 28;}
GX::AttrType tex4MatIdx() const {return GX::AttrType(vaFlags >> 29 & 0x1);}
void setTex4MatIdx(GX::AttrType val) {vaFlags &= ~0x20000000; vaFlags |= atUint32(val & 0x1) << 29;}
GX::AttrType tex5MatIdx() const {return GX::AttrType(vaFlags >> 30 & 0x1);}
void setTex5MatIdx(GX::AttrType val) {vaFlags &= ~0x40000000; vaFlags |= atUint32(val & 0x1) << 30;}
GX::AttrType tex6MatIdx() const {return GX::AttrType(vaFlags >> 31 & 0x1);}
void setTex6MatIdx(GX::AttrType val) {vaFlags &= ~0x80000000; vaFlags |= atUint32(val & 0x1) << 31;}
size_t vertDLSize() const
{
static size_t ATTR_SZ[] = {0,1,1,2};
size_t ret = 0;
ret += ATTR_SZ[position()];
ret += ATTR_SZ[normal()];
ret += ATTR_SZ[color0()];
ret += ATTR_SZ[color1()];
ret += ATTR_SZ[tex0()];
ret += ATTR_SZ[tex1()];
ret += ATTR_SZ[tex2()];
ret += ATTR_SZ[tex3()];
ret += ATTR_SZ[tex4()];
ret += ATTR_SZ[tex5()];
ret += ATTR_SZ[tex6()];
ret += ATTR_SZ[pnMatIdx()];
ret += ATTR_SZ[tex0MatIdx()];
ret += ATTR_SZ[tex1MatIdx()];
ret += ATTR_SZ[tex2MatIdx()];
ret += ATTR_SZ[tex3MatIdx()];
ret += ATTR_SZ[tex4MatIdx()];
ret += ATTR_SZ[tex5MatIdx()];
ret += ATTR_SZ[tex6MatIdx()];
return ret;
}
} vaFlags;
const VAFlags& getVAFlags() const {return vaFlags;}
Value<atUint32> groupIdx;
Vector<atUint32, DNA_COUNT(flags.konstValuesEnabled())> konstCount;
Vector<GX::Color, DNA_COUNT(flags.konstValuesEnabled() ? konstCount[0] : 0)> konstColors;
/** Slightly modified blend enums in Retro's implementation */
enum BlendFactor : atUint16
{
GX_BL_ZERO,
GX_BL_ONE,
GX_BL_SRCCLR,
GX_BL_INVSRCCLR,
GX_BL_SRCALPHA,
GX_BL_INVSRCALPHA,
GX_BL_DSTALPHA,
GX_BL_INVDSTALPHA
};
Value<BlendFactor> blendDstFac;
Value<BlendFactor> blendSrcFac;
Vector<atUint32, DNA_COUNT(flags.samusReflectionIndirectTexture())> indTexSlot;
Value<atUint32> colorChannelCount = 0;
struct ColorChannel : BigDNA
{
DECL_DNA
Value<atUint32> flags = 0;
bool lighting() const {return (flags & 0x1) != 0;}
void setLighting(bool enabled) {flags &= ~0x1; flags |= atUint32(enabled);}
bool useAmbient() const {return (flags & 0x2) != 0;}
void setUseAmbient(bool enabled) {flags &= ~0x2; flags |= atUint32(enabled) << 1;}
bool useMaterial() const {return (flags & 0x4) != 0;}
void setUseMaterial(bool enabled) {flags &= ~0x4; flags |= atUint32(enabled) << 2;}
atUint8 lightmask() const {return atUint8(flags >> 3 & 0xff);}
void setLightmask(atUint8 mask) {flags &= ~0x7f8; flags |= atUint32(mask) << 3;}
GX::DiffuseFn diffuseFn() const {return GX::DiffuseFn(flags >> 11 & 0x3);}
void setDiffuseFn(GX::DiffuseFn fn) {flags &= ~0x1800; flags |= atUint32(fn) << 11;}
GX::AttnFn attenuationFn() const {return GX::AttnFn(flags >> 13 & 0x3);}
void setAttenuationFn(GX::AttnFn fn) {flags &= ~0x6000; flags |= atUint32(fn) << 13;}
};
Vector<ColorChannel, DNA_COUNT(colorChannelCount)> colorChannels;
Value<atUint32> tevStageCount = 0;
struct TEVStage : BigDNA
{
DECL_DNA
Value<atUint32> ciFlags = 0;
Value<atUint32> aiFlags = 0;
Value<atUint32> ccFlags = 0;
Value<atUint32> acFlags = 0;
Value<atUint8> pad = 0;
Value<atUint8> kaInput = 0;
Value<atUint8> kcInput = 0;
Value<atUint8> rascInput = 0;
GX::TevColorArg colorInA() const {return GX::TevColorArg(ciFlags & 0xf);}
void setColorInA(GX::TevColorArg val) {ciFlags &= ~0x1f; ciFlags |= atUint32(val);}
GX::TevColorArg colorInB() const {return GX::TevColorArg(ciFlags >> 5 & 0xf);}
void setColorInB(GX::TevColorArg val) {ciFlags &= ~0x3e0; ciFlags |= atUint32(val) << 5;}
GX::TevColorArg colorInC() const {return GX::TevColorArg(ciFlags >> 10 & 0xf);}
void setColorInC(GX::TevColorArg val) {ciFlags &= ~0x7c00; ciFlags |= atUint32(val) << 10;}
GX::TevColorArg colorInD() const {return GX::TevColorArg(ciFlags >> 15 & 0xf);}
void setColorInD(GX::TevColorArg val) {ciFlags &= ~0xf8000; ciFlags |= atUint32(val) << 15;}
GX::TevAlphaArg alphaInA() const {return GX::TevAlphaArg(aiFlags & 0x7);}
void setAlphaInA(GX::TevAlphaArg val) {aiFlags &= ~0x1f; aiFlags |= atUint32(val);}
GX::TevAlphaArg alphaInB() const {return GX::TevAlphaArg(aiFlags >> 5 & 0x7);}
void setAlphaInB(GX::TevAlphaArg val) {aiFlags &= ~0x3e0; aiFlags |= atUint32(val) << 5;}
GX::TevAlphaArg alphaInC() const {return GX::TevAlphaArg(aiFlags >> 10 & 0x7);}
void setAlphaInC(GX::TevAlphaArg val) {aiFlags &= ~0x7c00; aiFlags |= atUint32(val) << 10;}
GX::TevAlphaArg alphaInD() const {return GX::TevAlphaArg(aiFlags >> 15 & 0x7);}
void setAlphaInD(GX::TevAlphaArg val) {aiFlags &= ~0xf8000; aiFlags |= atUint32(val) << 15;}
GX::TevOp colorOp() const {return GX::TevOp(ccFlags & 0xf);}
void setColorOp(GX::TevOp val) {ccFlags &= ~0x1; ccFlags |= atUint32(val);}
GX::TevBias colorOpBias() const {return GX::TevBias(ccFlags >> 4 & 0x3);}
void setColorOpBias(GX::TevBias val) {ccFlags &= ~0x30; ccFlags |= atUint32(val) << 4;}
GX::TevScale colorOpScale() const {return GX::TevScale(ccFlags >> 6 & 0x3);}
void setColorOpScale(GX::TevScale val) {ccFlags &= ~0xc0; ccFlags |= atUint32(val) << 6;}
bool colorOpClamp() const {return ccFlags >> 8 & 0x1;}
void setColorOpClamp(bool val) {ccFlags &= ~0x100; ccFlags |= atUint32(val) << 8;}
GX::TevRegID colorOpOutReg() const {return GX::TevRegID(ccFlags >> 9 & 0x3);}
void setColorOpOutReg(GX::TevRegID val) {ccFlags &= ~0x600; ccFlags |= atUint32(val) << 9;}
GX::TevOp alphaOp() const {return GX::TevOp(acFlags & 0xf);}
void setAlphaOp(GX::TevOp val) {acFlags &= ~0x1; acFlags |= atUint32(val);}
GX::TevBias alphaOpBias() const {return GX::TevBias(acFlags >> 4 & 0x3);}
void setAlphaOpBias(GX::TevBias val) {acFlags &= ~0x30; acFlags |= atUint32(val) << 4;}
GX::TevScale alphaOpScale() const {return GX::TevScale(acFlags >> 6 & 0x3);}
void setAlphaOpScale(GX::TevScale val) {acFlags &= ~0xc0; acFlags |= atUint32(val) << 6;}
bool alphaOpClamp() const {return acFlags >> 8 & 0x1;}
void setAlphaOpClamp(bool val) {acFlags &= ~0x100; acFlags |= atUint32(val) << 8;}
GX::TevRegID alphaOpOutReg() const {return GX::TevRegID(acFlags >> 9 & 0x3);}
void setAlphaOpOutReg(GX::TevRegID val) {acFlags &= ~0x600; acFlags |= atUint32(val) << 9;}
GX::TevKColorSel kColorIn() const {return GX::TevKColorSel(kcInput);}
void setKColorIn(GX::TevKColorSel val) {kcInput = val;}
GX::TevKAlphaSel kAlphaIn() const {return GX::TevKAlphaSel(kaInput);}
void setKAlphaIn(GX::TevKAlphaSel val) {kaInput = val;}
};
Vector<TEVStage, DNA_COUNT(tevStageCount)> tevStages;
struct TEVStageTexInfo : BigDNA
{
DECL_DNA
Value<atUint16> pad = 0;
Value<atUint8> texSlot = 0xff;
Value<atUint8> tcgSlot = 0xff;
};
Vector<TEVStageTexInfo, DNA_COUNT(tevStageCount)> tevStageTexInfo;
Value<atUint32> tcgCount = 0;
struct TexCoordGen : BigDNA
{
DECL_DNA
Value<atUint32> flags = 0;
GX::TexGenType type() const {return GX::TexGenType(flags & 0xf);}
void setType(GX::TexGenType val) {flags &= ~0xf; flags |= atUint32(val);}
GX::TexGenSrc source() const {return GX::TexGenSrc(flags >> 4 & 0x1f);}
void setSource(GX::TexGenSrc val) {flags &= ~0x1f0; flags |= atUint32(val) << 4;}
GX::TexMtx mtx() const {return GX::TexMtx((flags >> 9 & 0x1f) + 30);}
void setMtx(GX::TexMtx val) {flags &= ~0x3e00; flags |= (atUint32(val)-30) << 9;}
bool normalize() const {return flags >> 14 & 0x1;}
void setNormalize(bool val) {flags &= ~0x4000; flags |= atUint32(val) << 14;}
GX::PTTexMtx postMtx() const {return GX::PTTexMtx((flags >> 15 & 0x3f) + 64);}
void setPostMtx(GX::PTTexMtx val) {flags &= ~0x1f8000; flags |= (atUint32(val)-64) << 15;}
};
Vector<TexCoordGen, DNA_COUNT(tcgCount)> tcgs;
Value<atUint32> uvAnimsSize = 4;
Value<atUint32> uvAnimsCount = 0;
struct UVAnimation : BigDNA
{
Delete expl;
enum Mode : atUint32
{
ANIM_MV_INV_NOTRANS,
ANIM_MV_INV,
ANIM_SCROLL,
ANIM_ROTATION,
ANIM_HSTRIP,
ANIM_VSTRIP,
ANIM_MODEL,
ANIM_MODE_WHO_MUST_NOT_BE_NAMED,
ANIM_MODE_8
} mode;
float vals[9];
void read(Athena::io::IStreamReader& reader)
{
mode = Mode(reader.readUint32Big());
switch (mode)
{
case ANIM_MV_INV_NOTRANS:
case ANIM_MV_INV:
case ANIM_MODEL:
break;
case ANIM_SCROLL:
case ANIM_HSTRIP:
case ANIM_VSTRIP:
vals[0] = reader.readFloatBig();
vals[1] = reader.readFloatBig();
vals[2] = reader.readFloatBig();
vals[3] = reader.readFloatBig();
break;
case ANIM_ROTATION:
case ANIM_MODE_WHO_MUST_NOT_BE_NAMED:
vals[0] = reader.readFloatBig();
vals[1] = reader.readFloatBig();
break;
case ANIM_MODE_8:
vals[0] = reader.readFloatBig();
vals[1] = reader.readFloatBig();
vals[2] = reader.readFloatBig();
vals[3] = reader.readFloatBig();
vals[4] = reader.readFloatBig();
vals[5] = reader.readFloatBig();
vals[6] = reader.readFloatBig();
vals[7] = reader.readFloatBig();
vals[8] = reader.readFloatBig();
break;
}
}
void write(Athena::io::IStreamWriter& writer) const
{
writer.writeUint32Big(mode);
switch (mode)
{
case ANIM_MV_INV_NOTRANS:
case ANIM_MV_INV:
case ANIM_MODEL:
break;
case ANIM_SCROLL:
case ANIM_HSTRIP:
case ANIM_VSTRIP:
writer.writeFloatBig(vals[0]);
writer.writeFloatBig(vals[1]);
writer.writeFloatBig(vals[2]);
writer.writeFloatBig(vals[3]);
break;
case ANIM_ROTATION:
case ANIM_MODE_WHO_MUST_NOT_BE_NAMED:
writer.writeFloatBig(vals[0]);
writer.writeFloatBig(vals[1]);
break;
case ANIM_MODE_8:
writer.writeFloatBig(vals[0]);
writer.writeFloatBig(vals[1]);
writer.writeFloatBig(vals[2]);
writer.writeFloatBig(vals[3]);
writer.writeFloatBig(vals[4]);
writer.writeFloatBig(vals[5]);
writer.writeFloatBig(vals[6]);
writer.writeFloatBig(vals[7]);
writer.writeFloatBig(vals[8]);
break;
}
}
size_t binarySize(size_t __isz) const
{
switch (mode)
{
case ANIM_MV_INV_NOTRANS:
case ANIM_MV_INV:
case ANIM_MODEL:
return __isz + 4;
case ANIM_SCROLL:
case ANIM_HSTRIP:
case ANIM_VSTRIP:
return __isz + 20;
case ANIM_ROTATION:
case ANIM_MODE_WHO_MUST_NOT_BE_NAMED:
return __isz + 12;
case ANIM_MODE_8:
return __isz + 40;
}
return __isz + 4;
}
UVAnimation() = default;
UVAnimation(const std::string& gameFunction,
const std::vector<atVec4f>& gameArgs);
};
Vector<UVAnimation, DNA_COUNT(uvAnimsCount)> uvAnims;
static void AddTexture(HECL::BlenderConnection::PyOutStream& out,
GX::TexGenSrc type, int mtxIdx, uint32_t texIdx);
static void AddTextureAnim(HECL::BlenderConnection::PyOutStream& out,
MaterialSet::Material::UVAnimation::Mode type,
unsigned idx, const float* vals);
static void AddKcolor(HECL::BlenderConnection::PyOutStream& out,
const GX::Color& col, unsigned idx);
static void AddDynamicColor(HECL::BlenderConnection::PyOutStream& out, unsigned idx);
static void AddDynamicAlpha(HECL::BlenderConnection::PyOutStream& out, unsigned idx);
Material() = default;
Material(const HECL::Backend::GX& gx,
const std::unordered_map<std::string, int32_t>& iprops,
const std::vector<HECL::ProjectPath>& texPathsIn,
std::vector<HECL::ProjectPath>& texPathsOut,
int colorCount,
int uvCount,
bool lightmapUVs,
bool matrixSkinning,
atUint32 grpIdx);
};
Vector<Material, DNA_COUNT(head.materialCount)> materials;
static void RegisterMaterialProps(HECL::BlenderConnection::PyOutStream& out);
static void ConstructMaterial(HECL::BlenderConnection::PyOutStream& out,
const MaterialSet::Material& material,
unsigned groupIdx, unsigned matIdx);
void readToBlender(HECL::BlenderConnection::PyOutStream& os,
const PAKRouter<PAKBridge>& pakRouter,
const PAKRouter<PAKBridge>::EntryType& entry,
unsigned setIdx)
{
DNACMDL::ReadMaterialSetToBlender_1_2(os, *this, pakRouter, entry, setIdx);
}
template <class PAKRouter>
void nameTextures(PAKRouter& pakRouter, const char* prefix, int setIdx) const
{
int matIdx = 0;
for (const Material& mat : materials)
{
int stageIdx = 0;
for (const Material::TEVStage& stage : mat.tevStages)
{
const Material::TEVStageTexInfo& texInfo = mat.tevStageTexInfo[stageIdx];
if (texInfo.texSlot == 0xff)
{
++stageIdx;
continue;
}
const NOD::Node* node;
typename PAKRouter::EntryType* texEntry = (typename PAKRouter::EntryType*)
pakRouter.lookupEntry(head.textureIDs[mat.textureIdxs[texInfo.texSlot]], &node);
if (texEntry->name.size())
{
if (texEntry->name.size() < 5 || texEntry->name.compare(0, 5, "mult_"))
texEntry->name = "mult_" + texEntry->name;
++stageIdx;
continue;
}
if (setIdx < 0)
texEntry->name = HECL::Format("%s_%d_%d", prefix, matIdx, stageIdx);
else
texEntry->name = HECL::Format("%s_%d_%d_%d", prefix, setIdx, matIdx, stageIdx);
if (mat.flags.lightmap() && stageIdx == 0)
{
texEntry->name += "light";
++stageIdx;
continue;
}
++stageIdx;
}
++matIdx;
}
}
};
struct HMDLMaterialSet : BigDNA
{
static constexpr bool OneSection() {return false;}
DECL_DNA
MaterialSet::MaterialSetHead head;
struct Material : BigDNA
{
DECL_DNA
MaterialSet::Material::Flags flags;
Value<atUint32> textureCount = 0;
Vector<atUint32, DNA_COUNT(textureCount)> textureIdxs;
Vector<atUint32, DNA_COUNT(flags.samusReflectionIndirectTexture())> indTexSlot;
Value<atUint32> uvAnimsSize = 4;
Value<atUint32> uvAnimsCount = 0;
Vector<MaterialSet::Material::UVAnimation, DNA_COUNT(uvAnimsCount)> uvAnims;
String<-1> heclSource;
HECL::Frontend::IR heclIr;
Material() = default;
Material(HECL::Frontend::Frontend& FE,
const std::string& diagName,
const HECL::BlenderConnection::DataStream::Mesh::Material& mat,
const std::unordered_map<std::string, int32_t>& iprops,
const std::vector<HECL::ProjectPath>& texPaths);
};
Vector<Material, DNA_COUNT(head.materialCount)> materials;
};
}
}
#endif // _DNAMP1_CMDL_MATERIALS_HPP_