metaforce/DataSpec/DNAMP3/ANIM.cpp

539 lines
16 KiB
C++

#include "ANIM.hpp"
#include <cfloat>
#include "zeus/Math.hpp"
#include "hecl/Blender/Connection.hpp"
namespace DataSpec::DNAMP3 {
using ANIMOutStream = hecl::blender::ANIMOutStream;
void ANIM::IANIM::sendANIMToBlender(hecl::blender::PyOutStream& os, const DNAANIM::RigInverter<CINF>& rig,
bool additive) const {
os.format(
"act.hecl_fps = round(%f)\n"
"act.hecl_additive = %s\n"
"act.hecl_looping = %s\n",
1.0f / mainInterval, additive ? "True" : "False", looping ? "True" : "False");
auto kit = chanKeys.begin() + 1;
std::vector<zeus::CQuaternion> fixedRotKeys;
std::vector<zeus::CVector3f> fixedTransKeys;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
const std::string* bName = rig.getCINF().getBoneNameFromId(bone.first);
if (!bName) {
if (std::get<0>(bone.second))
++kit;
if (std::get<1>(bone.second))
++kit;
if (std::get<2>(bone.second))
++kit;
continue;
}
os.format("bone_string = '%s'\n", bName->c_str());
os << "action_group = act.groups.new(bone_string)\n"
"\n";
if (std::get<0>(bone.second))
os << "rotCurves = []\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=0, "
"action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=1, "
"action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=2, "
"action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=3, "
"action_group=bone_string))\n"
"\n";
if (std::get<1>(bone.second))
os << "transCurves = []\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=0, "
"action_group=bone_string))\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=1, "
"action_group=bone_string))\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=2, "
"action_group=bone_string))\n"
"\n";
if (std::get<2>(bone.second))
os << "scaleCurves = []\n"
"scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=0, "
"action_group=bone_string))\n"
"scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=1, "
"action_group=bone_string))\n"
"scaleCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].scale', index=2, "
"action_group=bone_string))\n"
"\n";
ANIMOutStream ao = os.beginANIMCurve();
if (std::get<0>(bone.second)) {
const std::vector<DNAANIM::Value>& rotKeys = *kit++;
fixedRotKeys.clear();
fixedRotKeys.resize(rotKeys.size());
for (int c = 0; c < 4; ++c) {
size_t idx = 0;
for (const DNAANIM::Value& val : rotKeys)
fixedRotKeys[idx++][c] = val.simd[c];
}
for (zeus::CQuaternion& rot : fixedRotKeys)
rot = rig.invertRotation(bone.first, rot);
for (int c = 0; c < 4; ++c) {
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Rotate, c, rotKeys.size());
for (const zeus::CQuaternion& val : fixedRotKeys)
ao.write(*frameit++, val[c]);
}
}
if (std::get<1>(bone.second)) {
const std::vector<DNAANIM::Value>& transKeys = *kit++;
fixedTransKeys.clear();
fixedTransKeys.resize(transKeys.size());
for (int c = 0; c < 3; ++c) {
size_t idx = 0;
for (const DNAANIM::Value& val : transKeys)
fixedTransKeys[idx++][c] = val.simd[c];
}
for (zeus::CVector3f& t : fixedTransKeys)
t = rig.invertPosition(bone.first, t, !additive);
for (int c = 0; c < 3; ++c) {
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Translate, c, fixedTransKeys.size());
for (const zeus::CVector3f& val : fixedTransKeys)
ao.write(*frameit++, val[c]);
}
}
if (std::get<2>(bone.second)) {
const std::vector<DNAANIM::Value>& scaleKeys = *kit++;
for (int c = 0; c < 3; ++c) {
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Scale, c, scaleKeys.size());
for (const DNAANIM::Value& val : scaleKeys)
ao.write(*frameit++, val.simd[c]);
}
}
}
}
template <>
void ANIM::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) {
atUint32 version = reader.readUint32Big();
switch (version) {
case 0:
m_anim.reset(new struct ANIM0);
m_anim->read(reader);
break;
case 1:
m_anim.reset(new struct ANIM1);
m_anim->read(reader);
break;
default:
Log.report(logvisor::Fatal, "unrecognized ANIM version");
break;
}
}
template <>
void ANIM::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) {
writer.writeUint32Big(m_anim->m_version);
m_anim->write(writer);
}
template <>
void ANIM::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) {
s += 4;
m_anim->binarySize(s);
}
const char* ANIM::ANIM0::DNAType() { return "ANIM0"; }
template <>
void ANIM::ANIM0::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader) {
Header head;
head.read(reader);
mainInterval = head.interval;
frames.clear();
frames.reserve(head.keyCount);
for (size_t k = 0; k < head.keyCount; ++k)
frames.push_back(k);
std::map<atUint8, atUint32> boneMap;
for (size_t b = 0; b < head.boneSlotCount; ++b) {
atUint8 idx = reader.readUByte();
if (idx == 0xff)
continue;
boneMap[idx] = b;
}
atUint32 boneCount = reader.readUint32Big();
bones.clear();
bones.reserve(boneCount);
for (size_t b = 0; b < boneCount; ++b) {
bones.emplace_back(boneMap[b], std::make_tuple(false, false, false));
atUint8 idx = reader.readUByte();
if (idx != 0xff)
std::get<0>(bones.back().second) = true;
}
boneCount = reader.readUint32Big();
for (size_t b = 0; b < boneCount; ++b) {
atUint8 idx = reader.readUByte();
if (idx != 0xff)
std::get<1>(bones[b].second) = true;
}
boneCount = reader.readUint32Big();
for (size_t b = 0; b < boneCount; ++b) {
atUint8 idx = reader.readUByte();
if (idx != 0xff)
std::get<2>(bones[b].second) = true;
}
channels.clear();
chanKeys.clear();
channels.emplace_back();
channels.back().type = DNAANIM::Channel::Type::KfHead;
chanKeys.emplace_back();
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second)) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Rotation;
chanKeys.emplace_back();
}
if (std::get<1>(bone.second)) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
chanKeys.emplace_back();
}
if (std::get<2>(bone.second)) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Scale;
chanKeys.emplace_back();
}
}
reader.readUint32Big();
auto kit = chanKeys.begin() + 1;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second))
++kit;
if (std::get<1>(bone.second))
++kit;
if (std::get<2>(bone.second)) {
std::vector<DNAANIM::Value>& keys = *kit++;
for (size_t k = 0; k < head.keyCount; ++k)
keys.emplace_back(reader.readVec3fBig());
}
}
reader.readUint32Big();
kit = chanKeys.begin() + 1;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second)) {
std::vector<DNAANIM::Value>& keys = *kit++;
for (size_t k = 0; k < head.keyCount; ++k)
keys.emplace_back(reader.readVec4fBig());
}
if (std::get<1>(bone.second))
++kit;
if (std::get<2>(bone.second))
++kit;
}
reader.readUint32Big();
kit = chanKeys.begin() + 1;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second))
++kit;
if (std::get<1>(bone.second)) {
std::vector<DNAANIM::Value>& keys = *kit++;
for (size_t k = 0; k < head.keyCount; ++k)
keys.emplace_back(reader.readVec3fBig());
}
if (std::get<2>(bone.second))
++kit;
}
}
template <>
void ANIM::ANIM0::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer) {
Header head;
head.unk0 = 0;
head.unk1 = 0;
head.unk2 = 0;
head.keyCount = frames.size();
head.duration = head.keyCount * mainInterval;
head.interval = mainInterval;
atUint32 maxId = 0;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones)
maxId = std::max(maxId, bone.first);
head.boneSlotCount = maxId + 1;
head.write(writer);
for (size_t s = 0; s < head.boneSlotCount; ++s) {
size_t boneIdx = 0;
bool found = false;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (s == bone.first) {
writer.writeUByte(boneIdx);
found = true;
break;
}
++boneIdx;
}
if (!found)
writer.writeUByte(0xff);
}
writer.writeUint32Big(bones.size());
size_t boneIdx = 0;
size_t rotKeyCount = 0;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second)) {
writer.writeUByte(boneIdx);
++rotKeyCount;
} else
writer.writeUByte(0xff);
++boneIdx;
}
writer.writeUint32Big(bones.size());
boneIdx = 0;
size_t transKeyCount = 0;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<1>(bone.second)) {
writer.writeUByte(boneIdx);
++transKeyCount;
} else
writer.writeUByte(0xff);
++boneIdx;
}
writer.writeUint32Big(bones.size());
boneIdx = 0;
size_t scaleKeyCount = 0;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<2>(bone.second)) {
writer.writeUByte(boneIdx);
++scaleKeyCount;
} else
writer.writeUByte(0xff);
++boneIdx;
}
writer.writeUint32Big(scaleKeyCount * head.keyCount);
auto cit = chanKeys.begin();
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second))
++cit;
if (std::get<1>(bone.second))
++cit;
if (std::get<2>(bone.second)) {
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k = 0; k < head.keyCount; ++k)
writer.writeVec3fBig(atVec3f{(*kit++).simd});
}
}
writer.writeUint32Big(rotKeyCount * head.keyCount);
cit = chanKeys.begin();
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second)) {
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k = 0; k < head.keyCount; ++k)
writer.writeVec4fBig(atVec4f{(*kit++).simd});
}
if (std::get<1>(bone.second))
++cit;
if (std::get<2>(bone.second))
++cit;
}
writer.writeUint32Big(transKeyCount * head.keyCount);
cit = chanKeys.begin();
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second))
++cit;
if (std::get<1>(bone.second)) {
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k = 0; k < head.keyCount; ++k)
writer.writeVec3fBig(atVec3f{(*kit++).simd});
}
if (std::get<2>(bone.second))
++cit;
}
}
template <>
void ANIM::ANIM0::Enumerate<BigDNA::BinarySize>(size_t& __isz) {
Header head;
atUint32 maxId = 0;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones)
maxId = std::max(maxId, bone.first);
head.binarySize(__isz);
__isz += maxId + 1;
__isz += bones.size() * 3 + 12;
__isz += 12;
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second))
__isz += head.keyCount * 16;
if (std::get<1>(bone.second))
__isz += head.keyCount * 12;
if (std::get<2>(bone.second))
__isz += head.keyCount * 12;
}
}
static float ComputeFrames(const std::vector<float>& keyTimes, std::vector<atUint32>& framesOut) {
if (keyTimes.size() <= 1)
return 0.0;
float mainInterval = FLT_MAX;
float lastTime = keyTimes[0];
for (auto it = keyTimes.begin() + 1; it != keyTimes.end(); ++it) {
float diff = *it - lastTime;
if (diff < mainInterval)
mainInterval = diff;
lastTime = *it;
}
float fps = round(1.0 / mainInterval);
if (fps < 15.0)
fps = 15.0;
mainInterval = 1.0 / fps;
framesOut.clear();
framesOut.reserve(keyTimes.size());
atUint32 frameAccum = 0;
for (float time : keyTimes) {
while (frameAccum * mainInterval < time)
++frameAccum;
framesOut.push_back(frameAccum);
}
return mainInterval;
}
const char* ANIM::ANIM1::DNAType() { return "ANIM1"; }
template <>
void ANIM::ANIM1::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader) {
Header head;
head.read(reader);
std::vector<float> keyTimes;
keyTimes.reserve(head.keyCount);
for (size_t k = 0; k < head.keyCount; ++k)
keyTimes.push_back(reader.readFloatBig());
mainInterval = ComputeFrames(keyTimes, frames);
atUint8 boneFlagCount = reader.readUByte();
bones.clear();
bones.reserve(boneFlagCount);
atUint32 boneChannelCount = 0;
for (atUint8 f = 0; f < boneFlagCount; ++f) {
atUint8 flag = reader.readUByte();
bones.emplace_back(f, std::make_tuple(bool(flag & 0x1), bool(flag & 0x2), bool(flag & 0x4)));
if (flag & 0x1)
++boneChannelCount;
if (flag & 0x2)
++boneChannelCount;
if (flag & 0x4)
++boneChannelCount;
}
std::vector<atInt16> initBlock;
initBlock.reserve(head.initBlockSize / 2);
for (size_t i = 0; i < head.initBlockSize / 2; ++i)
initBlock.push_back(reader.readInt16Big());
atUint32 rawChannelCount = reader.readUint32Big();
reader.readUint32Big();
reader.readUint32Big();
std::vector<atUint8> chanBitCounts;
chanBitCounts.reserve(rawChannelCount);
for (size_t c = 0; c < rawChannelCount; ++c)
chanBitCounts.push_back(reader.readUByte());
channels.clear();
channels.reserve(boneChannelCount + 1);
channels.emplace_back();
channels.back().type = DNAANIM::Channel::Type::KfHead;
auto initsIt = initBlock.begin();
auto bitsIt = chanBitCounts.begin();
for (const std::pair<atUint32, std::tuple<bool, bool, bool>>& bone : bones) {
if (std::get<0>(bone.second)) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::RotationMP3;
chan.i[0] = *initsIt++;
chan.q[0] = *bitsIt++;
chan.i[1] = *initsIt++;
chan.q[1] = *bitsIt++;
chan.i[2] = *initsIt++;
chan.q[2] = *bitsIt++;
chan.i[3] = *initsIt++;
chan.q[3] = *bitsIt++;
}
if (std::get<1>(bone.second)) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
chan.i[0] = *initsIt++;
chan.q[0] = *bitsIt++;
chan.i[1] = *initsIt++;
chan.q[1] = *bitsIt++;
chan.i[2] = *initsIt++;
chan.q[2] = *bitsIt++;
}
if (std::get<2>(bone.second)) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Scale;
chan.i[0] = *initsIt++;
chan.q[0] = *bitsIt++;
chan.i[1] = *initsIt++;
chan.q[1] = *bitsIt++;
chan.i[2] = *initsIt++;
chan.q[2] = *bitsIt++;
}
}
size_t bsSize = DNAANIM::ComputeBitstreamSize(head.keyCount - 1, channels);
std::unique_ptr<atUint8[]> bsData = reader.readUBytes(bsSize);
DNAANIM::BitstreamReader bsReader;
chanKeys = bsReader.read(bsData.get(), head.keyCount - 1, channels, 32767, head.translationMult, head.scaleMult);
}
template <>
void ANIM::ANIM1::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer) {}
template <>
void ANIM::ANIM1::Enumerate<BigDNA::BinarySize>(size_t& __isz) {}
} // namespace DataSpec::DNAMP3