mirror of
				https://github.com/AxioDL/metaforce.git
				synced 2025-10-26 08:50:25 +00:00 
			
		
		
		
	
		
			
				
	
	
		
			458 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			458 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| /* G.721 decoder, from Sun's public domain CCITT-ADPCM sources,
 | |
|  * retrieved from ftp://ftp.cwi.nl/pub/audio/ccitt-adpcm.tar.gz
 | |
|  *
 | |
|  * For reference, here's the original license:
 | |
|  *
 | |
|  * This source code is a product of Sun Microsystems, Inc. and is provided
 | |
|  * for unrestricted use.  Users may copy or modify this source code without
 | |
|  * charge.
 | |
|  *
 | |
|  * SUN SOURCE CODE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND INCLUDING
 | |
|  * THE WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A PARTICULAR
 | |
|  * PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR TRADE PRACTICE.
 | |
|  *
 | |
|  * Sun source code is provided with no support and without any obligation on
 | |
|  * the part of Sun Microsystems, Inc. to assist in its use, correction,
 | |
|  * modification or enhancement.
 | |
|  *
 | |
|  * SUN MICROSYSTEMS, INC. SHALL HAVE NO LIABILITY WITH RESPECT TO THE
 | |
|  * INFRINGEMENT OF COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS SOFTWARE
 | |
|  * OR ANY PART THEREOF.
 | |
|  *
 | |
|  * In no event will Sun Microsystems, Inc. be liable for any lost revenue
 | |
|  * or profits or other special, indirect and consequential damages, even if
 | |
|  * Sun has been advised of the possibility of such damages.
 | |
|  *
 | |
|  * Sun Microsystems, Inc.
 | |
|  * 2550 Garcia Avenue
 | |
|  * Mountain View, California  94043
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include "g721.h"
 | |
| 
 | |
| static short power2[15] = {1, 2, 4, 8, 0x10, 0x20, 0x40, 0x80,
 | |
|     0x100, 0x200, 0x400, 0x800, 0x1000, 0x2000, 0x4000};
 | |
| 
 | |
| /*
 | |
|  * quan()
 | |
|  *
 | |
|  * quantizes the input val against the table of size short integers.
 | |
|  * It returns i if table[i - 1] <= val < table[i].
 | |
|  *
 | |
|  * Using linear search for simple coding.
 | |
|  */
 | |
| static int
 | |
| quan(
 | |
|      int     val,
 | |
|      short   *table,
 | |
|      int     size)
 | |
| {
 | |
|     int     i;
 | |
|     
 | |
|     for (i = 0; i < size; i++)
 | |
|         if (val < *table++)
 | |
|             break;
 | |
|     return (i);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * fmult()
 | |
|  *
 | |
|  * returns the integer product of the 14-bit integer "an" and
 | |
|  * "floating point" representation (4-bit exponent, 6-bit mantessa) "srn".
 | |
|  */
 | |
| static int
 | |
| fmult(
 | |
|       int		an,
 | |
|       int		srn)
 | |
| {
 | |
| 	short		anmag, anexp, anmant;
 | |
| 	short		wanexp, wanmant;
 | |
| 	short		retval;
 | |
|     
 | |
| 	anmag = (an > 0) ? an : ((-an) & 0x1FFF);
 | |
| 	anexp = quan(anmag, power2, 15) - 6;
 | |
| 	anmant = (anmag == 0) ? 32 :
 | |
|     (anexp >= 0) ? anmag >> anexp : anmag << -anexp;
 | |
| 	wanexp = anexp + ((srn >> 6) & 0xF) - 13;
 | |
|     
 | |
| 	wanmant = (anmant * (srn & 077) + 0x30) >> 4;
 | |
| 	retval = (wanexp >= 0) ? ((wanmant << wanexp) & 0x7FFF) :
 | |
|     (wanmant >> -wanexp);
 | |
|     
 | |
| 	return (((an ^ srn) < 0) ? -retval : retval);
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * g72x_init_state()
 | |
|  *
 | |
|  * This routine initializes and/or resets the g72x_state structure
 | |
|  * pointed to by 'state_ptr'.
 | |
|  * All the initial state values are specified in the CCITT G.721 document.
 | |
|  */
 | |
| void
 | |
| g72x_init_state(struct g72x_state *state_ptr)
 | |
| {
 | |
| 	int		cnta;
 | |
|     
 | |
| 	state_ptr->yl = 34816;
 | |
| 	state_ptr->yu = 544;
 | |
| 	state_ptr->dms = 0;
 | |
| 	state_ptr->dml = 0;
 | |
| 	state_ptr->ap = 0;
 | |
| 	for (cnta = 0; cnta < 2; cnta++) {
 | |
| 		state_ptr->a[cnta] = 0;
 | |
| 		state_ptr->pk[cnta] = 0;
 | |
| 		state_ptr->sr[cnta] = 32;
 | |
| 	}
 | |
| 	for (cnta = 0; cnta < 6; cnta++) {
 | |
| 		state_ptr->b[cnta] = 0;
 | |
| 		state_ptr->dq[cnta] = 32;
 | |
| 	}
 | |
| 	state_ptr->td = 0;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * predictor_zero()
 | |
|  *
 | |
|  * computes the estimated signal from 6-zero predictor.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| predictor_zero(
 | |
|                struct g72x_state *state_ptr)
 | |
| {
 | |
| 	int		i;
 | |
| 	int		sezi;
 | |
|     
 | |
| 	sezi = fmult(state_ptr->b[0] >> 2, state_ptr->dq[0]);
 | |
| 	for (i = 1; i < 6; i++)			/* ACCUM */
 | |
| 		sezi += fmult(state_ptr->b[i] >> 2, state_ptr->dq[i]);
 | |
| 	return (sezi);
 | |
| }
 | |
| /*
 | |
|  * predictor_pole()
 | |
|  *
 | |
|  * computes the estimated signal from 2-pole predictor.
 | |
|  *
 | |
|  */
 | |
| static int
 | |
| predictor_pole(
 | |
|                struct g72x_state *state_ptr)
 | |
| {
 | |
| 	return (fmult(state_ptr->a[1] >> 2, state_ptr->sr[1]) +
 | |
|             fmult(state_ptr->a[0] >> 2, state_ptr->sr[0]));
 | |
| }
 | |
| /*
 | |
|  * step_size()
 | |
|  *
 | |
|  * computes the quantization step size of the adaptive quantizer.
 | |
|  *
 | |
|  */
 | |
| static long
 | |
| step_size(
 | |
|           struct g72x_state *state_ptr)
 | |
| {
 | |
| 	long		y;
 | |
| 	long		dif;
 | |
| 	long		al;
 | |
|     
 | |
| 	if (state_ptr->ap >= 256)
 | |
| 		return (state_ptr->yu);
 | |
| 	else {
 | |
| 		y = state_ptr->yl >> 6;
 | |
| 		dif = state_ptr->yu - y;
 | |
| 		al = state_ptr->ap >> 2;
 | |
| 		if (dif > 0)
 | |
| 			y += (dif * al) >> 6;
 | |
| 		else if (dif < 0)
 | |
| 			y += (dif * al + 0x3F) >> 6;
 | |
| 		return (y);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * reconstruct()
 | |
|  *
 | |
|  * Returns reconstructed difference signal 'dq' obtained from
 | |
|  * codeword 'i' and quantization step size scale factor 'y'.
 | |
|  * Multiplication is performed in log base 2 domain as addition.
 | |
|  */
 | |
| static int
 | |
| reconstruct(
 | |
|             int		sign,	/* 0 for non-negative value */
 | |
|             int		dqln,	/* G.72x codeword */
 | |
|             int		y)	/* Step size multiplier */
 | |
| {
 | |
| 	short		dql;	/* Log of 'dq' magnitude */
 | |
| 	short		dex;	/* Integer part of log */
 | |
| 	short		dqt;
 | |
| 	short		dq;	/* Reconstructed difference signal sample */
 | |
|     
 | |
| 	dql = dqln + (y >> 2);	/* ADDA */
 | |
|     
 | |
| 	if (dql < 0) {
 | |
| 		return ((sign) ? -0x8000 : 0);
 | |
| 	} else {		/* ANTILOG */
 | |
| 		dex = (dql >> 7) & 15;
 | |
| 		dqt = 128 + (dql & 127);
 | |
| 		dq = (dqt << 7) >> (14 - dex);
 | |
| 		return ((sign) ? (dq - 0x8000) : dq);
 | |
| 	}
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
|  * update()
 | |
|  *
 | |
|  * updates the state variables for each output code
 | |
|  */
 | |
| static void
 | |
| update(
 | |
|        /*int		code_size,*/	/* distinguish 723_40 with others */
 | |
|        int		y,		/* quantizer step size */
 | |
|        int		wi,		/* scale factor multiplier */
 | |
|        int		fi,		/* for long/short term energies */
 | |
|        int		dq,		/* quantized prediction difference */
 | |
|        int		sr,		/* reconstructed signal */
 | |
|        int		dqsez,		/* difference from 2-pole predictor */
 | |
|        struct g72x_state *state_ptr)	/* coder state pointer */
 | |
| {
 | |
| 	int		cnt;
 | |
| 	short		mag, exp;	/* Adaptive predictor, FLOAT A */
 | |
| 	short		a2p;		/* LIMC */
 | |
| 	short		a1ul;		/* UPA1 */
 | |
| 	short		pks1;	/* UPA2 */
 | |
| 	short		fa1;
 | |
| 	char		tr;		/* tone/transition detector */
 | |
| 	short		ylint, thr2, dqthr;
 | |
| 	short  		ylfrac, thr1;
 | |
| 	short		pk0;
 | |
|     
 | |
| 	pk0 = (dqsez < 0) ? 1 : 0;	/* needed in updating predictor poles */
 | |
|     
 | |
| 	mag = dq & 0x7FFF;		/* prediction difference magnitude */
 | |
| 	/* TRANS */
 | |
| 	ylint = state_ptr->yl >> 15;	/* exponent part of yl */
 | |
| 	ylfrac = (state_ptr->yl >> 10) & 0x1F;	/* fractional part of yl */
 | |
| 	thr1 = (32 + ylfrac) << ylint;		/* threshold */
 | |
| 	thr2 = (ylint > 9) ? 31 << 10 : thr1;	/* limit thr2 to 31 << 10 */
 | |
| 	dqthr = (thr2 + (thr2 >> 1)) >> 1;	/* dqthr = 0.75 * thr2 */
 | |
| 	if (state_ptr->td == 0)		/* signal supposed voice */
 | |
| 		tr = 0;
 | |
| 	else if (mag <= dqthr)		/* supposed data, but small mag */
 | |
| 		tr = 0;			/* treated as voice */
 | |
| 	else				/* signal is data (modem) */
 | |
| 		tr = 1;
 | |
|     
 | |
| 	/*
 | |
| 	 * Quantizer scale factor adaptation.
 | |
| 	 */
 | |
|     
 | |
| 	/* FUNCTW & FILTD & DELAY */
 | |
| 	/* update non-steady state step size multiplier */
 | |
| 	state_ptr->yu = y + ((wi - y) >> 5);
 | |
|     
 | |
| 	/* LIMB */
 | |
| 	if (state_ptr->yu < 544)	/* 544 <= yu <= 5120 */
 | |
| 		state_ptr->yu = 544;
 | |
| 	else if (state_ptr->yu > 5120)
 | |
| 		state_ptr->yu = 5120;
 | |
|     
 | |
| 	/* FILTE & DELAY */
 | |
| 	/* update steady state step size multiplier */
 | |
| 	state_ptr->yl += state_ptr->yu + ((-state_ptr->yl) >> 6);
 | |
|     
 | |
| 	/*
 | |
| 	 * Adaptive predictor coefficients.
 | |
| 	 */
 | |
| 	if (tr == 1) {			/* reset a's and b's for modem signal */
 | |
| 		state_ptr->a[0] = 0;
 | |
| 		state_ptr->a[1] = 0;
 | |
| 		state_ptr->b[0] = 0;
 | |
| 		state_ptr->b[1] = 0;
 | |
| 		state_ptr->b[2] = 0;
 | |
| 		state_ptr->b[3] = 0;
 | |
| 		state_ptr->b[4] = 0;
 | |
| 		state_ptr->b[5] = 0;
 | |
|         a2p=0;          /* won't be used, clear warning */
 | |
| 	} else {			/* update a's and b's */
 | |
| 		pks1 = pk0 ^ state_ptr->pk[0];		/* UPA2 */
 | |
|         
 | |
| 		/* update predictor pole a[1] */
 | |
| 		a2p = state_ptr->a[1] - (state_ptr->a[1] >> 7);
 | |
| 		if (dqsez != 0) {
 | |
| 			fa1 = (pks1) ? state_ptr->a[0] : -state_ptr->a[0];
 | |
| 			if (fa1 < -8191)	/* a2p = function of fa1 */
 | |
| 				a2p -= 0x100;
 | |
| 			else if (fa1 > 8191)
 | |
| 				a2p += 0xFF;
 | |
| 			else
 | |
| 				a2p += fa1 >> 5;
 | |
|             
 | |
| 			if (pk0 ^ state_ptr->pk[1])
 | |
|             /* LIMC */
 | |
| 				if (a2p <= -12160)
 | |
| 					a2p = -12288;
 | |
| 				else if (a2p >= 12416)
 | |
| 					a2p = 12288;
 | |
| 				else
 | |
| 					a2p -= 0x80;
 | |
|                 else if (a2p <= -12416)
 | |
|                     a2p = -12288;
 | |
|                 else if (a2p >= 12160)
 | |
|                     a2p = 12288;
 | |
|                 else
 | |
|                     a2p += 0x80;
 | |
| 		}
 | |
|         
 | |
| 		/* TRIGB & DELAY */
 | |
| 		state_ptr->a[1] = a2p;
 | |
|         
 | |
| 		/* UPA1 */
 | |
| 		/* update predictor pole a[0] */
 | |
| 		state_ptr->a[0] -= state_ptr->a[0] >> 8;
 | |
| 		if (dqsez != 0) {
 | |
| 			if (pks1 == 0)
 | |
| 				state_ptr->a[0] += 192;
 | |
| 			else
 | |
| 				state_ptr->a[0] -= 192;
 | |
|         }
 | |
|         
 | |
| 		/* LIMD */
 | |
| 		a1ul = 15360 - a2p;
 | |
| 		if (state_ptr->a[0] < -a1ul)
 | |
| 			state_ptr->a[0] = -a1ul;
 | |
| 		else if (state_ptr->a[0] > a1ul)
 | |
| 			state_ptr->a[0] = a1ul;
 | |
|         
 | |
| 		/* UPB : update predictor zeros b[6] */
 | |
| 		for (cnt = 0; cnt < 6; cnt++) {
 | |
| 			/*if (code_size == 5)*/		/* for 40Kbps G.723 */
 | |
| 			/*	state_ptr->b[cnt] -= state_ptr->b[cnt] >> 9;*/
 | |
| 			/*else*/			/* for G.721 and 24Kbps G.723 */
 | |
|             state_ptr->b[cnt] -= state_ptr->b[cnt] >> 8;
 | |
| 			if (dq & 0x7FFF) {			/* XOR */
 | |
| 				if ((dq ^ state_ptr->dq[cnt]) >= 0)
 | |
| 					state_ptr->b[cnt] += 128;
 | |
| 				else
 | |
| 					state_ptr->b[cnt] -= 128;
 | |
| 			}
 | |
| 		}
 | |
| 	}
 | |
|     
 | |
| 	for (cnt = 5; cnt > 0; cnt--)
 | |
| 		state_ptr->dq[cnt] = state_ptr->dq[cnt-1];
 | |
| 	/* FLOAT A : convert dq[0] to 4-bit exp, 6-bit mantissa f.p. */
 | |
| 	if (mag == 0) {
 | |
| 		state_ptr->dq[0] = (dq >= 0) ? 0x20 : 0xFC20;
 | |
| 	} else {
 | |
| 		exp = quan(mag, power2, 15);
 | |
| 		state_ptr->dq[0] = (dq >= 0) ?
 | |
|         (exp << 6) + ((mag << 6) >> exp) :
 | |
|         (exp << 6) + ((mag << 6) >> exp) - 0x400;
 | |
| 	}
 | |
|     
 | |
| 	state_ptr->sr[1] = state_ptr->sr[0];
 | |
| 	/* FLOAT B : convert sr to 4-bit exp., 6-bit mantissa f.p. */
 | |
| 	if (sr == 0) {
 | |
| 		state_ptr->sr[0] = 0x20;
 | |
| 	} else if (sr > 0) {
 | |
| 		exp = quan(sr, power2, 15);
 | |
| 		state_ptr->sr[0] = (exp << 6) + ((sr << 6) >> exp);
 | |
| 	} else if (sr > -32768) {
 | |
| 		mag = -sr;
 | |
| 		exp = quan(mag, power2, 15);
 | |
| 		state_ptr->sr[0] =  (exp << 6) + ((mag << 6) >> exp) - 0x400;
 | |
| 	} else
 | |
| 		state_ptr->sr[0] = 0xFC20;
 | |
|     
 | |
| 	/* DELAY A */
 | |
| 	state_ptr->pk[1] = state_ptr->pk[0];
 | |
| 	state_ptr->pk[0] = pk0;
 | |
|     
 | |
| 	/* TONE */
 | |
| 	if (tr == 1)		/* this sample has been treated as data */
 | |
| 		state_ptr->td = 0;	/* next one will be treated as voice */
 | |
| 	else if (a2p < -11776)	/* small sample-to-sample correlation */
 | |
| 		state_ptr->td = 1;	/* signal may be data */
 | |
| 	else				/* signal is voice */
 | |
| 		state_ptr->td = 0;
 | |
|     
 | |
| 	/*
 | |
| 	 * Adaptation speed control.
 | |
| 	 */
 | |
| 	state_ptr->dms += (fi - state_ptr->dms) >> 5;		/* FILTA */
 | |
| 	state_ptr->dml += (((fi << 2) - state_ptr->dml) >> 7);	/* FILTB */
 | |
|     
 | |
| 	if (tr == 1)
 | |
| 		state_ptr->ap = 256;
 | |
| 	else if (y < 1536)					/* SUBTC */
 | |
| 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
 | |
| 	else if (state_ptr->td == 1)
 | |
| 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
 | |
| 	else if (abs((state_ptr->dms << 2) - state_ptr->dml) >=
 | |
|              (state_ptr->dml >> 3))
 | |
| 		state_ptr->ap += (0x200 - state_ptr->ap) >> 4;
 | |
| 	else
 | |
| 		state_ptr->ap += (-state_ptr->ap) >> 4;
 | |
| }
 | |
| 
 | |
| /*
 | |
|  * Maps G.721 code word to reconstructed scale factor normalized log
 | |
|  * magnitude values.
 | |
|  */
 | |
| static short	_dqlntab[16] = {-2048, 4, 135, 213, 273, 323, 373, 425,
 | |
|     425, 373, 323, 273, 213, 135, 4, -2048};
 | |
| 
 | |
| /* Maps G.721 code word to log of scale factor multiplier. */
 | |
| static short	_witab[16] = {-12, 18, 41, 64, 112, 198, 355, 1122,
 | |
|     1122, 355, 198, 112, 64, 41, 18, -12};
 | |
| /*
 | |
|  * Maps G.721 code words to a set of values whose long and short
 | |
|  * term averages are computed and then compared to give an indication
 | |
|  * how stationary (steady state) the signal is.
 | |
|  */
 | |
| static short	_fitab[16] = {0, 0, 0, 0x200, 0x200, 0x200, 0x600, 0xE00,
 | |
|     0xE00, 0x600, 0x200, 0x200, 0x200, 0, 0, 0};
 | |
| /*
 | |
|  * g721_decoder()
 | |
|  *
 | |
|  * Description:
 | |
|  *
 | |
|  * Decodes a 4-bit code of G.721 encoded data of i and
 | |
|  * returns the resulting linear PCM, A-law or u-law value.
 | |
|  * return -1 for unknown out_coding value.
 | |
|  */
 | |
| int
 | |
| g721_decoder(int		i,
 | |
|              struct g72x_state *state_ptr)
 | |
| {
 | |
| 	short		sezi, sei, sez, se;	/* ACCUM */
 | |
| 	short		y;			/* MIX */
 | |
| 	short		sr;			/* ADDB */
 | |
| 	short		dq;
 | |
| 	short		dqsez;
 | |
|     
 | |
| 	i &= 0x0f;			/* mask to get proper bits */
 | |
| 	sezi = predictor_zero(state_ptr);
 | |
| 	sez = sezi >> 1;
 | |
| 	sei = sezi + predictor_pole(state_ptr);
 | |
| 	se = sei >> 1;			/* se = estimated signal */
 | |
|     
 | |
| 	y = step_size(state_ptr);	/* dynamic quantizer step size */
 | |
|     
 | |
| 	dq = reconstruct(i & 0x08, _dqlntab[i], y); /* quantized diff. */
 | |
|     
 | |
| 	sr = (dq < 0) ? (se - (dq & 0x3FFF)) : se + dq;	/* reconst. signal */
 | |
|     
 | |
| 	dqsez = sr - se + sez;			/* pole prediction diff. */
 | |
|     
 | |
| 	update(y, _witab[i] << 5, _fitab[i], dq, sr, dqsez, state_ptr);
 | |
|     
 | |
| 	return (sr << 2);	/* sr was 14-bit dynamic range */
 | |
| }
 | |
| 
 |