metaforce/DataSpec/DNACommon/CMDL.hpp

809 lines
32 KiB
C++

#ifndef _DNACOMMON_CMDL_HPP_
#define _DNACOMMON_CMDL_HPP_
#include "PAK.hpp"
#include "BlenderConnection.hpp"
#include "GX.hpp"
#include "TXTR.hpp"
namespace Retro
{
namespace DNACMDL
{
struct Header : BigDNA
{
DECL_DNA
Value<atUint32> magic;
Value<atUint32> version;
struct Flags : BigDNA
{
DECL_DNA
Value<atUint32> flags;
inline bool shortNormals() const {return (flags & 0x2) != 0;}
inline void setShortNormals(bool val) {flags &= ~0x2; flags |= val << 1;}
inline bool shortUVs() const {return (flags & 0x4) != 0;}
inline void setShortUVs(bool val) {flags &= ~0x4; flags |= val << 2;}
} flags;
Value<atVec3f> aabbMin;
Value<atVec3f> aabbMax;
Value<atUint32> secCount;
Value<atUint32> matSetCount;
Vector<atUint32, DNA_COUNT(secCount)> secSizes;
Align<32> align;
};
struct SurfaceHeader : BigDNA
{
DECL_DNA
Value<atVec3f> centroid;
Value<atUint32> matIdx;
Value<atInt16> qDiv;
Value<atUint16> dlSize;
Seek<8, Athena::Current> seek;
Value<atUint32> aabbSz;
Value<atVec3f> reflectionNormal;
Seek<DNA_COUNT(aabbSz), Athena::Current> seek2;
Align<32> align;
};
struct VertexAttributes
{
GX::AttrType pos = GX::NONE;
GX::AttrType norm = GX::NONE;
GX::AttrType color0 = GX::NONE;
GX::AttrType color1 = GX::NONE;
unsigned uvCount = 0;
GX::AttrType uvs[7] = {GX::NONE};
GX::AttrType pnMtxIdx = GX::NONE;
unsigned texMtxIdxCount = 0;
GX::AttrType texMtxIdx[7] = {GX::NONE};
bool shortUVs;
};
template <class MaterialSet>
void GetVertexAttributes(const MaterialSet& matSet,
std::vector<VertexAttributes>& attributesOut)
{
attributesOut.clear();
attributesOut.reserve(matSet.materials.size());
for (const typename MaterialSet::Material& mat : matSet.materials)
{
const typename MaterialSet::Material::VAFlags& vaFlags = mat.getVAFlags();
attributesOut.emplace_back();
VertexAttributes& va = attributesOut.back();
va.pos = vaFlags.position();
va.norm = vaFlags.normal();
va.color0 = vaFlags.color0();
va.color1 = vaFlags.color1();
if ((va.uvs[0] = vaFlags.tex0()))
++va.uvCount;
if ((va.uvs[1] = vaFlags.tex1()))
++va.uvCount;
if ((va.uvs[2] = vaFlags.tex2()))
++va.uvCount;
if ((va.uvs[3] = vaFlags.tex3()))
++va.uvCount;
if ((va.uvs[4] = vaFlags.tex4()))
++va.uvCount;
if ((va.uvs[5] = vaFlags.tex5()))
++va.uvCount;
if ((va.uvs[6] = vaFlags.tex6()))
++va.uvCount;
va.pnMtxIdx = vaFlags.pnMatIdx();
if ((va.texMtxIdx[0] = vaFlags.tex0MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[1] = vaFlags.tex1MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[2] = vaFlags.tex2MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[3] = vaFlags.tex3MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[4] = vaFlags.tex4MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[5] = vaFlags.tex5MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[6] = vaFlags.tex6MatIdx()))
++va.texMtxIdxCount;
va.shortUVs = mat.getFlags().lightmapUVArray();
}
}
template <class PAKRouter, class MaterialSet>
void ReadMaterialSetToBlender_1_2(HECL::BlenderConnection::PyOutStream& os,
const MaterialSet& matSet,
const PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
unsigned setIdx,
const SpecBase& dataspec)
{
/* Texmaps */
os << "texmap_list = []\n";
for (const UniqueID32& tex : matSet.head.textureIDs)
{
std::string texName = pakRouter.getBestEntryName(tex);
const NOD::DiscBase::IPartition::Node* node;
const typename PAKRouter::EntryType* texEntry = pakRouter.lookupEntry(tex, &node);
HECL::ProjectPath txtrPath = pakRouter.getWorking(texEntry);
if (txtrPath.getPathType() == HECL::ProjectPath::PT_NONE)
{
PAKEntryReadStream rs = texEntry->beginReadStream(*node);
TXTR::Extract(dataspec, rs, txtrPath);
}
HECL::SystemString resPath = pakRouter.getResourceRelativePath(entry, tex);
HECL::SystemUTF8View resPathView(resPath);
os.format("if '%s' in bpy.data.textures:\n"
" image = bpy.data.images['%s']\n"
" texture = bpy.data.textures[image.name]\n"
"else:\n"
" image = bpy.data.images.load('''//%s''')\n"
" image.name = '%s'\n"
" texture = bpy.data.textures.new(image.name, 'IMAGE')\n"
" texture.image = image\n"
"texmap_list.append(texture)\n"
"\n", texName.c_str(), texName.c_str(),
resPathView.str().c_str(), texName.c_str());
}
unsigned m=0;
for (const typename MaterialSet::Material& mat : matSet.materials)
{
MaterialSet::ConstructMaterial(os, mat, setIdx, m++);
os << "materials.append(new_material)\n";
}
}
template <class PAKRouter, class MaterialSet>
void ReadMaterialSetToBlender_3(HECL::BlenderConnection::PyOutStream& os,
const MaterialSet& matSet,
const PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
unsigned setIdx,
const SpecBase& dataspec)
{
unsigned m=0;
for (const typename MaterialSet::Material& mat : matSet.materials)
{
MaterialSet::ConstructMaterial(os, mat, setIdx, m++);
os << "materials.append(new_material)\n";
}
}
class DLReader
{
const VertexAttributes& m_va;
std::unique_ptr<atUint8[]> m_dl;
size_t m_dlSize;
atUint8* m_cur;
atUint16 readVal(GX::AttrType type)
{
atUint16 retval = 0;
switch (type)
{
case GX::DIRECT:
case GX::INDEX8:
if ((m_cur - m_dl.get()) >= intptr_t(m_dlSize))
return 0;
retval = *m_cur;
++m_cur;
break;
case GX::INDEX16:
if ((m_cur - m_dl.get() + 1) >= intptr_t(m_dlSize))
return 0;
retval = HECL::SBig(*(atUint16*)m_cur);
m_cur += 2;
break;
default: break;
}
return retval;
}
public:
DLReader(const VertexAttributes& va, std::unique_ptr<atUint8[]>&& dl, size_t dlSize)
: m_va(va), m_dl(std::move(dl)), m_dlSize(dlSize)
{
m_cur = m_dl.get();
}
operator bool()
{
return ((m_cur - m_dl.get()) < intptr_t(m_dlSize)) && *m_cur;
}
GX::Primitive readPrimitive()
{
return GX::Primitive(*m_cur++ & 0xf8);
}
atUint16 readVertCount()
{
atUint16 retval = HECL::SBig(*(atUint16*)m_cur);
m_cur += 2;
return retval;
}
struct DLPrimVert
{
atUint16 pos = 0;
atUint16 norm = 0;
atUint16 color[2] = {0};
atUint16 uvs[7] = {0};
atUint8 pnMtxIdx = 0;
atUint8 texMtxIdx[7] = {0};
};
DLPrimVert readVert(bool peek=false)
{
atUint8* bakCur = m_cur;
DLPrimVert retval;
retval.pnMtxIdx = readVal(m_va.pnMtxIdx);
retval.texMtxIdx[0] = readVal(m_va.texMtxIdx[0]);
retval.texMtxIdx[1] = readVal(m_va.texMtxIdx[1]);
retval.texMtxIdx[2] = readVal(m_va.texMtxIdx[2]);
retval.texMtxIdx[3] = readVal(m_va.texMtxIdx[3]);
retval.texMtxIdx[4] = readVal(m_va.texMtxIdx[4]);
retval.texMtxIdx[5] = readVal(m_va.texMtxIdx[5]);
retval.texMtxIdx[6] = readVal(m_va.texMtxIdx[6]);
retval.pos = readVal(m_va.pos);
retval.norm = readVal(m_va.norm);
retval.color[0] = readVal(m_va.color0);
retval.color[1] = readVal(m_va.color1);
retval.uvs[0] = readVal(m_va.uvs[0]);
retval.uvs[1] = readVal(m_va.uvs[1]);
retval.uvs[2] = readVal(m_va.uvs[2]);
retval.uvs[3] = readVal(m_va.uvs[3]);
retval.uvs[4] = readVal(m_va.uvs[4]);
retval.uvs[5] = readVal(m_va.uvs[5]);
retval.uvs[6] = readVal(m_va.uvs[6]);
if (peek)
m_cur = bakCur;
return retval;
}
void preReadMaxIdxs(DLPrimVert& out)
{
atUint8* bakCur = m_cur;
while (*this)
{
readPrimitive();
atUint16 vc = readVertCount();
for (atUint16 v=0 ; v<vc ; ++v)
{
atUint16 val;
val = readVal(m_va.pnMtxIdx);
out.pnMtxIdx = MAX(out.pnMtxIdx, val);
val = readVal(m_va.texMtxIdx[0]);
out.texMtxIdx[0] = MAX(out.texMtxIdx[0], val);
val = readVal(m_va.texMtxIdx[1]);
out.texMtxIdx[1] = MAX(out.texMtxIdx[1], val);
val = readVal(m_va.texMtxIdx[2]);
out.texMtxIdx[2] = MAX(out.texMtxIdx[2], val);
val = readVal(m_va.texMtxIdx[3]);
out.texMtxIdx[3] = MAX(out.texMtxIdx[3], val);
val = readVal(m_va.texMtxIdx[4]);
out.texMtxIdx[4] = MAX(out.texMtxIdx[4], val);
val = readVal(m_va.texMtxIdx[5]);
out.texMtxIdx[5] = MAX(out.texMtxIdx[5], val);
val = readVal(m_va.texMtxIdx[6]);
out.texMtxIdx[6] = MAX(out.texMtxIdx[6], val);
val = readVal(m_va.pos);
out.pos = MAX(out.pos, val);
val = readVal(m_va.norm);
out.norm = MAX(out.norm, val);
val = readVal(m_va.color0);
out.color[0] = MAX(out.color[0], val);
val = readVal(m_va.color1);
out.color[1] = MAX(out.color[1], val);
val = readVal(m_va.uvs[0]);
out.uvs[0] = MAX(out.uvs[0], val);
val = readVal(m_va.uvs[1]);
out.uvs[1] = MAX(out.uvs[1], val);
val = readVal(m_va.uvs[2]);
out.uvs[2] = MAX(out.uvs[2], val);
val = readVal(m_va.uvs[3]);
out.uvs[3] = MAX(out.uvs[3], val);
val = readVal(m_va.uvs[4]);
out.uvs[4] = MAX(out.uvs[4], val);
val = readVal(m_va.uvs[5]);
out.uvs[5] = MAX(out.uvs[5], val);
val = readVal(m_va.uvs[6]);
out.uvs[6] = MAX(out.uvs[6], val);
}
}
m_cur = bakCur;
}
};
void InitGeomBlenderContext(HECL::BlenderConnection::PyOutStream& os,
const HECL::ProjectPath& masterShaderPath);
void FinishBlenderMesh(HECL::BlenderConnection::PyOutStream& os,
unsigned matSetCount, int meshIdx);
template <class PAKRouter, class MaterialSet, class RIGPAIR>
atUint32 ReadGeomSectionsToBlender(HECL::BlenderConnection::PyOutStream& os,
Athena::io::IStreamReader& reader,
PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
const SpecBase& dataspec,
const RIGPAIR& rp,
bool shortNormals,
bool shortUVs,
std::vector<VertexAttributes>& vertAttribs,
int meshIdx,
atUint32 secCount,
atUint32 matSetCount,
const atUint32* secSizes)
{
os << "# Begin bmesh\n"
"bm = bmesh.new()\n"
"\n";
if (rp.first)
os << "dvert_lay = bm.verts.layers.deform.verify()\n";
os << "# Overdraw-tracking\n"
"od_list = []\n"
"\n";
/* Pre-read pass to determine maximum used vert indices */
bool visitedDLOffsets = false;
atUint32 lastDlSec = secCount;
atUint64 afterHeaderPos = reader.position();
DLReader::DLPrimVert maxIdxs;
for (size_t s=0 ; s<lastDlSec ; ++s)
{
atUint64 secStart = reader.position();
if (s < matSetCount)
{
if (!s)
{
MaterialSet matSet;
matSet.read(reader);
GetVertexAttributes(matSet, vertAttribs);
}
}
else
{
switch (s-matSetCount)
{
case 0:
{
/* Positions */
break;
}
case 1:
{
/* Normals */
break;
}
case 2:
{
/* Colors */
break;
}
case 3:
{
/* Float UVs */
break;
}
case 4:
{
/* Short UVs */
if (shortUVs)
break;
/* DL Offsets (here or next section) */
visitedDLOffsets = true;
lastDlSec = s + reader.readUint32Big() + 1;
break;
}
default:
{
if (!visitedDLOffsets)
{
visitedDLOffsets = true;
lastDlSec = s + reader.readUint32Big() + 1;
break;
}
/* GX Display List (surface) */
SurfaceHeader sHead;
sHead.read(reader);
/* Do max index pre-read */
atUint32 realDlSize = secSizes[s] - (reader.position() - secStart);
DLReader dl(vertAttribs[sHead.matIdx], reader.readUBytes(realDlSize), realDlSize);
dl.preReadMaxIdxs(maxIdxs);
}
}
}
if (s < secCount - 1)
reader.seek(secStart + secSizes[s], Athena::Begin);
}
reader.seek(afterHeaderPos, Athena::Begin);
visitedDLOffsets = false;
unsigned createdUVLayers = 0;
unsigned surfIdx = 0;
for (size_t s=0 ; s<lastDlSec ; ++s)
{
atUint64 secStart = reader.position();
if (s < matSetCount)
{
MaterialSet matSet;
matSet.read(reader);
matSet.readToBlender(os, pakRouter, entry, s, dataspec);
if (!s)
GetVertexAttributes(matSet, vertAttribs);
}
else
{
switch (s-matSetCount)
{
case 0:
{
/* Positions */
for (size_t i=0 ; i<=maxIdxs.pos ; ++i)
{
atVec3f pos = reader.readVec3fBig();
os.format("vert = bm.verts.new((%f,%f,%f))\n",
pos.vec[0], pos.vec[1], pos.vec[2]);
if (rp.first)
rp.first->weightVertex(os, *rp.second, i);
}
break;
}
case 1:
{
/* Normals */
os << "norm_list = []\n";
if (shortNormals)
{
size_t normCount = secSizes[s] / 6;
for (size_t i=0 ; i<normCount ; ++i)
{
float x = reader.readInt16Big() / 16834.0f;
float y = reader.readInt16Big() / 16834.0f;
float z = reader.readInt16Big() / 16834.0f;
os.format("norm_list.append((%f,%f,%f))\n",
x, y, z);
}
}
else
{
size_t normCount = secSizes[s] / 12;
for (size_t i=0 ; i<normCount ; ++i)
{
atVec3f norm = reader.readVec3fBig();
os.format("norm_list.append((%f,%f,%f))\n",
norm.vec[0], norm.vec[1], norm.vec[2]);
}
}
break;
}
case 2:
{
/* Colors */
break;
}
case 3:
{
/* Float UVs */
os << "uv_list = []\n";
size_t uvCount = secSizes[s] / 8;
for (size_t i=0 ; i<uvCount ; ++i)
{
atVec2f uv = reader.readVec2fBig();
os.format("uv_list.append((%f,%f))\n",
uv.vec[0], uv.vec[1]);
}
break;
}
case 4:
{
/* Short UVs */
os << "suv_list = []\n";
if (shortUVs)
{
size_t uvCount = secSizes[s] / 4;
for (size_t i=0 ; i<uvCount ; ++i)
{
float x = reader.readInt16Big() / 32768.0f;
float y = reader.readInt16Big() / 32768.0f;
os.format("suv_list.append((%f,%f))\n",
x, y);
}
break;
}
/* DL Offsets (here or next section) */
visitedDLOffsets = true;
break;
}
default:
{
if (!visitedDLOffsets)
{
visitedDLOffsets = true;
break;
}
/* GX Display List (surface) */
SurfaceHeader sHead;
sHead.read(reader);
VertexAttributes& curVA = vertAttribs[sHead.matIdx];
unsigned matUVCount = curVA.uvCount;
bool matShortUVs = curVA.shortUVs;
os.format("materials[%u].pass_index = %u\n", sHead.matIdx, surfIdx++);
if (matUVCount > createdUVLayers)
{
for (unsigned l=createdUVLayers ; l<matUVCount ; ++l)
os.format("bm.loops.layers.uv.new('UV_%u')\n", l);
createdUVLayers = matUVCount;
}
atUint32 realDlSize = secSizes[s] - (reader.position() - secStart);
DLReader dl(vertAttribs[sHead.matIdx], reader.readUBytes(realDlSize), realDlSize);
while (dl)
{
GX::Primitive ptype = dl.readPrimitive();
atUint16 vertCount = dl.readVertCount();
/* First vert */
DLReader::DLPrimVert firstPrimVert = dl.readVert(true);
/* 3 Prim Verts to start */
int c = 0;
DLReader::DLPrimVert primVerts[3] =
{
dl.readVert(),
dl.readVert(),
dl.readVert()
};
if (ptype == GX::TRIANGLESTRIP)
{
atUint8 flip = 0;
for (int v=0 ; v<vertCount-2 ; ++v)
{
if (flip)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
primVerts[c%3].pos,
primVerts[(c+2)%3].pos,
primVerts[(c+1)%3].pos,
primVerts[c%3].norm,
primVerts[(c+2)%3].norm,
primVerts[(c+1)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (unsigned j=0 ; j<matUVCount ; ++j)
{
if (j==0 && matShortUVs)
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n",
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+2)%3].pos, j, primVerts[(c+2)%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j]);
else
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+2)%3].pos, j, primVerts[(c+2)%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j]);
}
}
}
else
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
primVerts[c%3].pos,
primVerts[(c+1)%3].pos,
primVerts[(c+2)%3].pos,
primVerts[c%3].norm,
primVerts[(c+1)%3].norm,
primVerts[(c+2)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (unsigned j=0 ; j<matUVCount ; ++j)
{
if (j==0 && matShortUVs)
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n",
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j],
primVerts[(c+2)%3].pos, j, primVerts[(c+2)%3].uvs[j]);
else
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j],
primVerts[(c+2)%3].pos, j, primVerts[(c+2)%3].uvs[j]);
}
}
}
flip ^= 1;
bool peek = (v >= vertCount - 3);
/* Advance one prim vert */
primVerts[c%3] = dl.readVert(peek);
++c;
}
}
else if (ptype == GX::TRIANGLES)
{
for (int v=0 ; v<vertCount ; v+=3)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
primVerts[0].pos,
primVerts[1].pos,
primVerts[2].pos,
primVerts[0].norm,
primVerts[1].norm,
primVerts[2].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (unsigned j=0 ; j<matUVCount ; ++j)
{
if (j==0 && matShortUVs)
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n",
primVerts[0].pos, j, primVerts[0].uvs[j],
primVerts[1].pos, j, primVerts[1].uvs[j],
primVerts[2].pos, j, primVerts[2].uvs[j]);
else
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
primVerts[0].pos, j, primVerts[0].uvs[j],
primVerts[1].pos, j, primVerts[1].uvs[j],
primVerts[2].pos, j, primVerts[2].uvs[j]);
}
}
/* Break if done */
if (v+3 >= vertCount)
break;
/* Advance 3 Prim Verts */
for (int pv=0 ; pv<3 ; ++pv)
primVerts[pv] = dl.readVert();
}
}
else if (ptype == GX::TRIANGLEFAN)
{
++c;
for (int v=0 ; v<vertCount-2 ; ++v)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
firstPrimVert.pos,
primVerts[c%3].pos,
primVerts[(c+1)%3].pos,
firstPrimVert.norm,
primVerts[c%3].norm,
primVerts[(c+1)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (unsigned j=0 ; j<matUVCount ; ++j)
{
if (j==0 && matShortUVs)
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = suv_list[%u]\n",
firstPrimVert.pos, j, firstPrimVert.uvs[j],
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j]);
else
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
firstPrimVert.pos, j, firstPrimVert.uvs[j],
primVerts[c%3].pos, j, primVerts[c%3].uvs[j],
primVerts[(c+1)%3].pos, j, primVerts[(c+1)%3].uvs[j]);
}
}
/* Break if done */
if (v+3 >= vertCount)
break;
/* Advance one prim vert */
primVerts[(c+2)%3] = dl.readVert();
++c;
}
}
os << "\n";
}
}
}
}
if (s < secCount - 1)
reader.seek(secStart + secSizes[s], Athena::Begin);
}
/* Finish Mesh */
FinishBlenderMesh(os, matSetCount, meshIdx);
if (rp.first)
rp.second->sendVertexGroupsToBlender(os);
return lastDlSec;
}
template <class PAKRouter, class MaterialSet, class RIGPAIR, atUint32 Version>
bool ReadCMDLToBlender(HECL::BlenderConnection& conn,
Athena::io::IStreamReader& reader,
PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
const SpecBase& dataspec,
const RIGPAIR& rp)
{
Header head;
head.read(reader);
if (head.magic != 0xDEADBABE)
{
LogDNACommon.report(LogVisor::Error, "invalid CMDL magic");
return false;
}
if (head.version != Version)
{
LogDNACommon.report(LogVisor::Error, "invalid CMDL version");
return false;
}
/* Open Py Stream and read sections */
HECL::BlenderConnection::PyOutStream os = conn.beginPythonOut(true);
os.format("import bpy\n"
"import bmesh\n"
"\n"
"bpy.context.scene.name = '%s'\n"
"bpy.context.scene.hecl_type = 'MESH'\n"
"bpy.context.scene.hecl_mesh_obj = bpy.context.scene.name\n",
pakRouter.getBestEntryName(entry).c_str());
InitGeomBlenderContext(os, dataspec.getMasterShaderPath());
MaterialSet::RegisterMaterialProps(os);
os << "# Materials\n"
"materials = []\n"
"\n";
std::vector<VertexAttributes> vertAttribs;
ReadGeomSectionsToBlender<PAKRouter, MaterialSet, RIGPAIR>
(os, reader, pakRouter, entry, dataspec, rp, head.flags.shortNormals(),
head.flags.shortUVs(), vertAttribs, -1,
head.secCount, head.matSetCount, head.secSizes.data());
return true;
}
}
}
#endif // _DNACOMMON_CMDL_HPP_