metaforce/DataSpec/DNAMP1/ANIM.cpp

625 lines
18 KiB
C++

#include "ANIM.hpp"
#include "zeus/CVector3f.hpp"
#include "hecl/Blender/Connection.hpp"
namespace DataSpec::DNAMP1 {
using ANIMOutStream = hecl::blender::ANIMOutStream;
void ANIM::IANIM::sendANIMToBlender(hecl::blender::PyOutStream& os, const DNAANIM::RigInverter<CINF>& rig) const {
os.format(FMT_STRING("act.hecl_fps = round({})\n"
"act.hecl_looping = {}\n"),
(1.0f / mainInterval), looping ? "True" : "False");
auto kit = chanKeys.begin();
std::vector<zeus::CQuaternion> fixedRotKeys;
std::vector<zeus::CVector3f> fixedTransKeys;
for (const std::pair<atUint32, bool>& bone : bones) {
const std::string* bName = rig.getCINF().getBoneNameFromId(bone.first);
if (!bName) {
++kit;
if (bone.second)
++kit;
continue;
}
os.format(FMT_STRING("bone_string = '{}'\n"), *bName);
os << "action_group = act.groups.new(bone_string)\n"
"\n"
"rotCurves = []\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=0, "
"action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=1, "
"action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=2, "
"action_group=bone_string))\n"
"rotCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].rotation_quaternion', index=3, "
"action_group=bone_string))\n"
"\n";
if (bone.second)
os << "transCurves = []\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=0, "
"action_group=bone_string))\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=1, "
"action_group=bone_string))\n"
"transCurves.append(act.fcurves.new('pose.bones[\"'+bone_string+'\"].location', index=2, "
"action_group=bone_string))\n"
"\n";
ANIMOutStream ao = os.beginANIMCurve();
{
const std::vector<DNAANIM::Value>& rotKeys = *kit++;
fixedRotKeys.clear();
fixedRotKeys.resize(rotKeys.size());
for (int c = 0; c < 4; ++c) {
size_t idx = 0;
for (const DNAANIM::Value& val : rotKeys)
fixedRotKeys[idx++][c] = val.simd[c];
}
for (zeus::CQuaternion& rot : fixedRotKeys)
rot = rig.invertRotation(bone.first, rot);
for (int c = 0; c < 4; ++c) {
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Rotate, c, rotKeys.size());
for (const zeus::CQuaternion& val : fixedRotKeys)
ao.write(*frameit++, val[c]);
}
}
if (bone.second) {
const std::vector<DNAANIM::Value>& transKeys = *kit++;
fixedTransKeys.clear();
fixedTransKeys.resize(transKeys.size());
for (int c = 0; c < 3; ++c) {
size_t idx = 0;
for (const DNAANIM::Value& val : transKeys)
fixedTransKeys[idx++][c] = val.simd[c];
}
for (zeus::CVector3f& t : fixedTransKeys)
t = rig.invertPosition(bone.first, t, true);
for (int c = 0; c < 3; ++c) {
auto frameit = frames.begin();
ao.changeCurve(ANIMOutStream::CurveType::Translate, c, fixedTransKeys.size());
for (const zeus::CVector3f& val : fixedTransKeys)
ao.write(*frameit++, val[c]);
}
}
}
}
UniqueID32 ANIM::GetEVNTId(athena::io::IStreamReader& reader) {
atUint32 version = reader.readUint32Big();
switch (version) {
case 0: {
ANIM0 anim0;
anim0.read(reader);
return anim0.evnt;
}
case 2:
case 3:
reader.seek(4);
return reader.readUint32Big();
default:
Log.report(logvisor::Error, FMT_STRING("unrecognized ANIM version"));
break;
}
return {};
}
template <>
void ANIM::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) {
atUint32 version = reader.readUint32Big();
switch (version) {
case 0:
m_anim = std::make_unique<ANIM0>();
m_anim->read(reader);
break;
case 2:
m_anim = std::make_unique<ANIM2>(false);
m_anim->read(reader);
break;
case 3:
m_anim = std::make_unique<ANIM2>(true);
m_anim->read(reader);
break;
default:
Log.report(logvisor::Error, FMT_STRING("unrecognized ANIM version"));
break;
}
}
template <>
void ANIM::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) {
writer.writeUint32Big(m_anim->m_version);
m_anim->write(writer);
}
template <>
void ANIM::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) {
s += 4;
m_anim->binarySize(s);
}
std::string_view ANIM::ANIM0::DNAType() { return "ANIM0"sv; }
template <>
void ANIM::ANIM0::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader) {
Header head;
head.read(reader);
mainInterval = head.interval;
frames.clear();
frames.reserve(head.keyCount);
for (size_t k = 0; k < head.keyCount; ++k)
frames.push_back(k);
std::map<atUint8, atUint32> boneMap;
for (size_t b = 0; b < head.boneSlotCount; ++b) {
atUint8 idx = reader.readUByte();
if (idx == 0xff)
continue;
boneMap[idx] = b;
}
atUint32 boneCount = reader.readUint32Big();
bones.clear();
bones.reserve(boneCount);
channels.clear();
for (size_t b = 0; b < boneCount; ++b) {
bones.emplace_back(boneMap[b], false);
atUint8 idx = reader.readUByte();
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Rotation;
if (idx != 0xff) {
bones.back().second = true;
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
}
}
reader.readUint32Big();
chanKeys.clear();
chanKeys.reserve(channels.size());
for (const std::pair<atUint32, bool>& bone : bones) {
chanKeys.emplace_back();
std::vector<DNAANIM::Value>& keys = chanKeys.back();
for (size_t k = 0; k < head.keyCount; ++k)
keys.emplace_back(reader.readVec4fBig());
if (bone.second)
chanKeys.emplace_back();
}
reader.readUint32Big();
auto kit = chanKeys.begin();
for (const std::pair<atUint32, bool>& bone : bones) {
++kit;
if (bone.second) {
std::vector<DNAANIM::Value>& keys = *kit++;
for (size_t k = 0; k < head.keyCount; ++k)
keys.emplace_back(reader.readVec3fBig());
}
}
evnt.read(reader);
}
template <>
void ANIM::ANIM0::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer) {
Header head;
head.unk0 = 0;
head.unk1 = 0;
head.unk2 = 0;
head.keyCount = frames.size();
head.duration = head.keyCount * mainInterval;
head.interval = mainInterval;
atUint32 maxId = 0;
for (const std::pair<atUint32, bool>& bone : bones)
maxId = std::max(maxId, bone.first);
head.boneSlotCount = maxId + 1;
head.write(writer);
for (size_t s = 0; s < head.boneSlotCount; ++s) {
size_t boneIdx = 0;
bool found = false;
for (const std::pair<atUint32, bool>& bone : bones) {
if (s == bone.first) {
writer.writeUByte(boneIdx);
found = true;
break;
}
++boneIdx;
}
if (!found)
writer.writeUByte(0xff);
}
writer.writeUint32Big(bones.size());
size_t boneIdx = 0;
for (const std::pair<atUint32, bool>& bone : bones) {
if (bone.second)
writer.writeUByte(boneIdx);
else
writer.writeUByte(0xff);
++boneIdx;
}
writer.writeUint32Big(bones.size() * head.keyCount);
auto cit = chanKeys.begin();
atUint32 transKeyCount = 0;
for (const std::pair<atUint32, bool>& bone : bones) {
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k = 0; k < head.keyCount; ++k)
writer.writeVec4fBig(atVec4f{(*kit++).simd});
if (bone.second) {
transKeyCount += head.keyCount;
++cit;
}
}
writer.writeUint32Big(transKeyCount);
cit = chanKeys.begin();
for (const std::pair<atUint32, bool>& bone : bones) {
++cit;
if (bone.second) {
const std::vector<DNAANIM::Value>& keys = *cit++;
auto kit = keys.begin();
for (size_t k = 0; k < head.keyCount; ++k)
writer.writeVec3fBig(atVec3f{(*kit++).simd});
}
}
evnt.write(writer);
}
template <>
void ANIM::ANIM0::Enumerate<BigDNA::BinarySize>(size_t& __isz) {
Header head;
atUint32 maxId = 0;
for (const std::pair<atUint32, bool>& bone : bones)
maxId = std::max(maxId, bone.first);
head.binarySize(__isz);
__isz += maxId + 1;
__isz += bones.size() + 4;
__isz += 8;
for (const std::pair<atUint32, bool>& bone : bones) {
__isz += head.keyCount * 16;
if (bone.second)
__isz += head.keyCount * 12;
}
__isz += 4;
}
std::string_view ANIM::ANIM2::DNAType() { return "ANIM2"sv; }
template <>
void ANIM::ANIM2::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader) {
Header head;
head.read(reader);
evnt = head.evnt;
mainInterval = head.interval;
looping = bool(head.looping);
WordBitmap keyBmp;
keyBmp.read(reader, head.keyBitmapBitCount);
frames.clear();
atUint32 frameAccum = 0;
for (bool bit : keyBmp) {
if (bit)
frames.push_back(frameAccum);
++frameAccum;
}
reader.seek(8);
bones.clear();
bones.reserve(head.boneChannelCount);
channels.clear();
channels.reserve(head.boneChannelCount);
atUint32 keyframeCount = 0;
if (m_version == 3) {
for (size_t b = 0; b < head.boneChannelCount; ++b) {
ChannelDescPC desc;
desc.read(reader);
bones.emplace_back(desc.id, desc.keyCount2 != 0);
if (desc.keyCount1) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Rotation;
chan.id = desc.id;
chan.i[0] = atInt32(desc.QinitRX) >> 8;
chan.q[0] = desc.QinitRX & 0xff;
chan.i[1] = atInt32(desc.QinitRY) >> 8;
chan.q[1] = desc.QinitRY & 0xff;
chan.i[2] = atInt32(desc.QinitRZ) >> 8;
chan.q[2] = desc.QinitRZ & 0xff;
}
keyframeCount = std::max(keyframeCount, desc.keyCount1);
if (desc.keyCount2) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
chan.id = desc.id;
chan.i[0] = atInt32(desc.QinitTX) >> 8;
chan.q[0] = desc.QinitTX & 0xff;
chan.i[1] = atInt32(desc.QinitTY) >> 8;
chan.q[1] = desc.QinitTY & 0xff;
chan.i[2] = atInt32(desc.QinitTZ) >> 8;
chan.q[2] = desc.QinitTZ & 0xff;
}
}
} else {
for (size_t b = 0; b < head.boneChannelCount; ++b) {
ChannelDesc desc;
desc.read(reader);
bones.emplace_back(desc.id, desc.keyCount2 != 0);
if (desc.keyCount1) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Rotation;
chan.id = desc.id;
chan.i[0] = desc.initRX;
chan.q[0] = desc.qRX;
chan.i[1] = desc.initRY;
chan.q[1] = desc.qRY;
chan.i[2] = desc.initRZ;
chan.q[2] = desc.qRZ;
}
keyframeCount = std::max(keyframeCount, atUint32(desc.keyCount1));
if (desc.keyCount2) {
channels.emplace_back();
DNAANIM::Channel& chan = channels.back();
chan.type = DNAANIM::Channel::Type::Translation;
chan.id = desc.id;
chan.i[0] = desc.initTX;
chan.q[0] = desc.qTX;
chan.i[1] = desc.initTY;
chan.q[1] = desc.qTY;
chan.i[2] = desc.initTZ;
chan.q[2] = desc.qTZ;
}
}
}
size_t bsSize = DNAANIM::ComputeBitstreamSize(keyframeCount, channels);
std::unique_ptr<atUint8[]> bsData = reader.readUBytes(bsSize);
DNAANIM::BitstreamReader bsReader;
chanKeys = bsReader.read(bsData.get(), keyframeCount, channels, head.rotDiv, head.translationMult, 0.f);
}
template <>
void ANIM::ANIM2::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer) {
Header head;
head.evnt = evnt;
head.unk0 = 1;
head.interval = mainInterval;
head.rootBoneId = 3;
head.looping = looping;
head.unk3 = 1;
WordBitmap keyBmp;
size_t frameCount = 0;
for (atUint32 frame : frames) {
if (!keyBmp.getBit(frame)) {
keyBmp.setBit(frame);
frameCount += 1;
}
}
head.keyBitmapBitCount = keyBmp.getBitCount();
head.duration = frames.back() * mainInterval;
head.boneChannelCount = bones.size();
size_t keyframeCount = frameCount - 1;
std::vector<DNAANIM::Channel> qChannels = channels;
DNAANIM::BitstreamWriter bsWriter;
size_t bsSize;
float scaleMult;
std::unique_ptr<atUint8[]> bsData =
bsWriter.write(chanKeys, keyframeCount, qChannels, m_version == 3 ? 0x7fffff : 0x7fff, head.rotDiv,
head.translationMult, scaleMult, bsSize);
/* Tally up buffer size */
size_t scratchSize = 0;
head.binarySize(scratchSize);
keyBmp.binarySize(scratchSize);
scratchSize += bsSize;
if (m_version == 3) {
for (const std::pair<atUint32, bool>& bone : bones) {
ChannelDescPC desc;
desc.keyCount1 = keyframeCount;
if (bone.second)
desc.keyCount2 = keyframeCount;
desc.binarySize(scratchSize);
}
} else {
for (const std::pair<atUint32, bool>& bone : bones) {
ChannelDesc desc;
desc.keyCount1 = keyframeCount;
if (bone.second)
desc.keyCount2 = keyframeCount;
desc.binarySize(scratchSize);
}
}
head.scratchSize = scratchSize;
head.write(writer);
keyBmp.write(writer);
writer.writeUint32Big(head.boneChannelCount);
writer.writeUint32Big(head.boneChannelCount);
auto cit = qChannels.begin();
if (m_version == 3) {
for (const std::pair<atUint32, bool>& bone : bones) {
ChannelDescPC desc;
desc.id = bone.first;
DNAANIM::Channel& chan = *cit++;
desc.keyCount1 = keyframeCount;
desc.QinitRX = (chan.i[0] << 8) | chan.q[0];
desc.QinitRY = (chan.i[1] << 8) | chan.q[1];
desc.QinitRZ = (chan.i[2] << 8) | chan.q[2];
if (bone.second) {
DNAANIM::Channel& chan = *cit++;
desc.keyCount2 = keyframeCount;
desc.QinitTX = (chan.i[0] << 8) | chan.q[0];
desc.QinitTY = (chan.i[1] << 8) | chan.q[1];
desc.QinitTZ = (chan.i[2] << 8) | chan.q[2];
}
desc.write(writer);
}
} else {
for (const std::pair<atUint32, bool>& bone : bones) {
ChannelDesc desc;
desc.id = bone.first;
DNAANIM::Channel& chan = *cit++;
desc.keyCount1 = keyframeCount;
desc.initRX = chan.i[0];
desc.qRX = chan.q[0];
desc.initRY = chan.i[1];
desc.qRY = chan.q[1];
desc.initRZ = chan.i[2];
desc.qRZ = chan.q[2];
if (bone.second) {
DNAANIM::Channel& chan = *cit++;
desc.keyCount2 = keyframeCount;
desc.initTX = chan.i[0];
desc.qTX = chan.q[0];
desc.initTY = chan.i[1];
desc.qTY = chan.q[1];
desc.initTZ = chan.i[2];
desc.qTZ = chan.q[2];
}
desc.write(writer);
}
}
writer.writeUBytes(bsData.get(), bsSize);
}
template <>
void ANIM::ANIM2::Enumerate<BigDNA::BinarySize>(size_t& __isz) {
Header head;
WordBitmap keyBmp;
for (atUint32 frame : frames)
keyBmp.setBit(frame);
head.binarySize(__isz);
keyBmp.binarySize(__isz);
__isz += 8;
if (m_version == 3) {
for (const std::pair<atUint32, bool>& bone : bones) {
__isz += 24;
if (bone.second)
__isz += 12;
}
} else {
for (const std::pair<atUint32, bool>& bone : bones) {
__isz += 17;
if (bone.second)
__isz += 9;
}
}
__isz += DNAANIM::ComputeBitstreamSize(frames.size(), channels);
}
ANIM::ANIM(const BlenderAction& act, const std::unordered_map<std::string, atInt32>& idMap,
const DNAANIM::RigInverter<CINF>& rig, bool pc) {
m_anim = std::make_unique<ANIM2>(pc);
IANIM& newAnim = *m_anim;
newAnim.looping = act.looping;
newAnim.bones.reserve(act.channels.size());
size_t extChanCount = 0;
std::unordered_set<atInt32> addedBones;
addedBones.reserve(act.channels.size());
for (const BlenderAction::Channel& chan : act.channels) {
auto search = idMap.find(chan.boneName);
if (search == idMap.cend()) {
Log.report(logvisor::Warning, FMT_STRING("unable to find id for bone '{}'"), chan.boneName);
continue;
}
if (addedBones.find(search->second) != addedBones.cend())
continue;
addedBones.insert(search->second);
extChanCount += std::max(zeus::PopCount(chan.attrMask), 2);
newAnim.bones.emplace_back(search->second, (chan.attrMask & 0x2) != 0);
}
newAnim.frames.reserve(act.frames.size());
for (int32_t frame : act.frames)
newAnim.frames.push_back(frame);
newAnim.channels.reserve(extChanCount);
newAnim.chanKeys.reserve(extChanCount);
for (const BlenderAction::Channel& chan : act.channels) {
auto search = idMap.find(chan.boneName);
if (search == idMap.cend())
continue;
newAnim.channels.emplace_back();
DNAANIM::Channel& newChan = newAnim.channels.back();
newChan.type = DNAANIM::Channel::Type::Rotation;
newChan.id = search->second;
newAnim.chanKeys.emplace_back();
std::vector<DNAANIM::Value>& rotVals = newAnim.chanKeys.back();
rotVals.reserve(chan.keys.size());
float sign = 0.f;
for (const BlenderAction::Channel::Key& key : chan.keys) {
zeus::CQuaternion q(key.rotation.val);
q = rig.restoreRotation(newChan.id, q);
if (sign == 0.f)
sign = q.w() < 0.f ? -1.f : 1.f;
q *= sign;
q.normalize();
rotVals.emplace_back(q.mSimd);
}
if (chan.attrMask & 0x2) {
newAnim.channels.emplace_back();
DNAANIM::Channel& newChan = newAnim.channels.back();
newChan.type = DNAANIM::Channel::Type::Translation;
newChan.id = search->second;
newAnim.chanKeys.emplace_back();
std::vector<DNAANIM::Value>& transVals = newAnim.chanKeys.back();
transVals.reserve(chan.keys.size());
for (const BlenderAction::Channel::Key& key : chan.keys) {
zeus::CVector3f pos(key.position.val);
pos = rig.restorePosition(newChan.id, pos, true);
transVals.emplace_back(pos.mSimd);
}
}
}
/* Retro's original data uses microsecond precision */
newAnim.mainInterval = std::trunc(act.interval * 1000000.0) / 1000000.0;
}
} // namespace DataSpec::DNAMP1