metaforce/DataSpec/DNAMP1/ANCS.cpp

1647 lines
49 KiB
C++

#include "ANCS.hpp"
#include "hecl/Blender/Connection.hpp"
namespace DataSpec
{
extern hecl::Database::DataSpecEntry SpecEntMP1;
extern hecl::Database::DataSpecEntry SpecEntMP1PC;
namespace DNAMP1
{
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::Enumerate<BigDNA::Read>
(athena::io::IStreamReader& reader)
{
parmType = reader.readUint32Big();
weightFunction = reader.readUint32Big();
weight = reader.readFloatBig();
switch (DataType(parmType))
{
case DataType::Int32:
range[0].int32 = reader.readInt32Big();
range[1].int32 = reader.readInt32Big();
break;
case DataType::UInt32:
case DataType::Enum:
range[0].uint32 = reader.readUint32Big();
range[1].uint32 = reader.readUint32Big();
break;
case DataType::Float:
range[0].float32 = reader.readFloatBig();
range[1].float32 = reader.readFloatBig();
break;
case DataType::Bool:
range[0].bool1 = reader.readBool();
range[1].bool1 = reader.readBool();
break;
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::Enumerate<BigDNA::Write>
(athena::io::IStreamWriter& writer)
{
writer.writeUint32Big(parmType);
writer.writeUint32Big(weightFunction);
writer.writeFloatBig(weight);
switch (DataType(parmType))
{
case DataType::Int32:
writer.writeInt32Big(range[0].int32);
writer.writeInt32Big(range[1].int32);
break;
case DataType::UInt32:
case DataType::Enum:
writer.writeUint32Big(range[0].uint32);
writer.writeUint32Big(range[0].uint32);
break;
case DataType::Float:
writer.writeFloatBig(range[0].float32);
writer.writeFloatBig(range[0].float32);
break;
case DataType::Bool:
writer.writeBool(range[0].bool1);
writer.writeBool(range[0].bool1);
break;
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::Enumerate<BigDNA::BinarySize>(size_t& __isz)
{
__isz += 12;
switch (DataType(parmType))
{
case DataType::Int32:
case DataType::UInt32:
case DataType::Enum:
case DataType::Float:
__isz += 8;
break;
case DataType::Bool:
__isz += 2;
break;
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::Enumerate<BigDNA::ReadYaml>
(athena::io::YAMLDocReader& reader)
{
parmType = reader.readUint32("parmType");
weightFunction = reader.readUint32("weightFunction");
weight = reader.readFloat("weight");
size_t parmValCount;
if (auto v = reader.enterSubVector("range", parmValCount))
{
switch (DataType(parmType))
{
case DataType::Int32:
range[0].int32 = reader.readInt32(nullptr);
range[1].int32 = reader.readInt32(nullptr);
break;
case DataType::UInt32:
case DataType::Enum:
range[0].uint32 = reader.readUint32(nullptr);
range[1].uint32 = reader.readUint32(nullptr);
break;
case DataType::Float:
range[0].float32 = reader.readFloat(nullptr);
range[1].float32 = reader.readFloat(nullptr);
break;
case DataType::Bool:
range[0].bool1 = reader.readBool(nullptr);
range[1].bool1 = reader.readBool(nullptr);
break;
default: break;
}
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::Enumerate<BigDNA::WriteYaml>
(athena::io::YAMLDocWriter& writer)
{
writer.writeUint32("parmType", parmType);
writer.writeUint32("weightFunction", weightFunction);
writer.writeFloat("weight", weight);
if (auto v = writer.enterSubVector("range"))
{
switch (DataType(parmType))
{
case DataType::Int32:
writer.writeInt32(nullptr, range[0].int32);
writer.writeInt32(nullptr, range[1].int32);
break;
case DataType::UInt32:
case DataType::Enum:
writer.writeUint32(nullptr, range[0].uint32);
writer.writeUint32(nullptr, range[0].uint32);
break;
case DataType::Float:
writer.writeFloat(nullptr, range[0].float32);
writer.writeFloat(nullptr, range[0].float32);
break;
case DataType::Bool:
writer.writeBool(nullptr, range[0].bool1);
writer.writeBool(nullptr, range[0].bool1);
break;
}
}
}
const char* ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo::DNAType()
{
return "urde::DNAMP1::ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::ParmInfo";
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::Enumerate<BigDNA::Read>
(athena::io::IStreamReader& reader)
{
id = reader.readUint32Big();
atUint32 parmInfoCount = reader.readUint32Big();
atUint32 animInfoCount = reader.readUint32Big();
reader.enumerate(parmInfos, parmInfoCount);
animInfos.clear();
animInfos.reserve(animInfoCount);
reader.enumerate<AnimInfo>(animInfos, animInfoCount,
[this, parmInfoCount](athena::io::IStreamReader& reader, AnimInfo& ai)
{
ai.id = reader.readUint32Big();
ai.parmVals.reserve(parmInfoCount);
for (const ParmInfo& pi : parmInfos)
{
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DataType::Int32:
ai.parmVals.emplace_back(reader.readInt32Big());
break;
case ParmInfo::DataType::UInt32:
case ParmInfo::DataType::Enum:
ai.parmVals.emplace_back(reader.readUint32Big());
break;
case ParmInfo::DataType::Float:
ai.parmVals.emplace_back(reader.readFloatBig());
break;
case ParmInfo::DataType::Bool:
ai.parmVals.emplace_back(reader.readBool());
break;
default: break;
}
}
});
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::Enumerate<BigDNA::Write>
(athena::io::IStreamWriter& writer)
{
writer.writeUint32Big(id);
writer.writeUint32Big(parmInfos.size());
writer.writeUint32Big(animInfos.size());
for (const ParmInfo& pi : parmInfos)
pi.write(writer);
for (const AnimInfo& ai : animInfos)
{
writer.writeUint32Big(ai.id);
auto it = ai.parmVals.begin();
for (const ParmInfo& pi : parmInfos)
{
ParmInfo::Parm pVal;
if (it != ai.parmVals.end())
pVal = *it++;
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DataType::Int32:
writer.writeInt32Big(pVal.int32);
break;
case ParmInfo::DataType::UInt32:
case ParmInfo::DataType::Enum:
writer.writeUint32Big(pVal.uint32);
break;
case ParmInfo::DataType::Float:
writer.writeFloatBig(pVal.float32);
break;
case ParmInfo::DataType::Bool:
writer.writeBool(pVal.bool1);
break;
default: break;
}
}
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::Enumerate<BigDNA::BinarySize>(size_t& __isz)
{
__isz += 12;
for (const ParmInfo& pi : parmInfos)
pi.binarySize(__isz);
__isz += animInfos.size() * 4;
for (const ParmInfo& pi : parmInfos)
{
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DataType::Int32:
case ParmInfo::DataType::UInt32:
case ParmInfo::DataType::Enum:
case ParmInfo::DataType::Float:
__isz += animInfos.size() * 4;
break;
case ParmInfo::DataType::Bool:
__isz += animInfos.size();
break;
default: break;
}
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::Enumerate<BigDNA::ReadYaml>
(athena::io::YAMLDocReader& reader)
{
id = reader.readUint32("id");
size_t parmInfoCount = reader.enumerate("parmInfos", parmInfos);
reader.enumerate<AnimInfo>("animInfos", animInfos,
[this, parmInfoCount](athena::io::YAMLDocReader& reader, AnimInfo& ai)
{
ai.id = reader.readUint32("id");
ai.parmVals.reserve(parmInfoCount);
size_t parmValCount;
if (auto v = reader.enterSubVector("parms", parmValCount))
{
for (const ParmInfo& pi : parmInfos)
{
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DataType::Int32:
ai.parmVals.emplace_back(reader.readInt32(nullptr));
break;
case ParmInfo::DataType::UInt32:
case ParmInfo::DataType::Enum:
ai.parmVals.emplace_back(reader.readUint32(nullptr));
break;
case ParmInfo::DataType::Float:
ai.parmVals.emplace_back(reader.readFloat(nullptr));
break;
case ParmInfo::DataType::Bool:
ai.parmVals.emplace_back(reader.readBool(nullptr));
break;
default: break;
}
}
}
});
}
template <>
void ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::Enumerate<BigDNA::WriteYaml>
(athena::io::YAMLDocWriter& writer)
{
writer.writeUint32("id", id);
writer.enumerate("parmInfos", parmInfos);
writer.enumerate<AnimInfo>("animInfos", animInfos,
[this](athena::io::YAMLDocWriter& writer, const AnimInfo& ai)
{
writer.writeUint32("id", ai.id);
auto it = ai.parmVals.begin();
if (auto v = writer.enterSubVector("parms"))
{
for (const ParmInfo& pi : parmInfos)
{
ParmInfo::Parm pVal;
if (it != ai.parmVals.end())
pVal = *it++;
switch (ParmInfo::DataType(pi.parmType))
{
case ParmInfo::DataType::Int32:
writer.writeInt32(nullptr, pVal.int32);
break;
case ParmInfo::DataType::UInt32:
case ParmInfo::DataType::Enum:
writer.writeUint32(nullptr, pVal.uint32);
break;
case ParmInfo::DataType::Float:
writer.writeFloat(nullptr, pVal.float32);
break;
case ParmInfo::DataType::Bool:
writer.writeBool(nullptr, pVal.bool1);
break;
default: break;
}
}
}
});
}
const char* ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState::DNAType()
{
return "urde::DNAMP1::ANCS::CharacterSet::CharacterInfo::PASDatabase::AnimState";
}
template <>
void ANCS::CharacterSet::CharacterInfo::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader)
{
idx = reader.readUint32Big();
atUint16 sectionCount = reader.readUint16Big();
name = reader.readString();
cmdl.read(reader);
cskr.read(reader);
cinf.read(reader);
atUint32 animationCount = reader.readUint32Big();
reader.enumerate(animations, animationCount);
pasDatabase.read(reader);
atUint32 partCount = reader.readUint32Big();
reader.enumerate(partResData.part, partCount);
atUint32 swhcCount = reader.readUint32Big();
reader.enumerate(partResData.swhc, swhcCount);
atUint32 unkCount = reader.readUint32Big();
reader.enumerate(partResData.unk, unkCount);
partResData.elsc.clear();
if (sectionCount > 5)
{
atUint32 elscCount = reader.readUint32Big();
reader.enumerate(partResData.elsc, elscCount);
}
unk1 = reader.readUint32Big();
animAABBs.clear();
if (sectionCount > 1)
{
atUint32 aabbCount = reader.readUint32Big();
reader.enumerate(animAABBs, aabbCount);
}
effects.clear();
if (sectionCount > 2)
{
atUint32 effectCount = reader.readUint32Big();
reader.enumerate(effects, effectCount);
}
if (sectionCount > 3)
{
cmdlIce.read(reader);
cskrIce.read(reader);
}
animIdxs.clear();
if (sectionCount > 4)
{
atUint32 aidxCount = reader.readUint32Big();
reader.enumerateBig(animIdxs, aidxCount);
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer)
{
writer.writeUint32Big(idx);
atUint16 sectionCount;
if (partResData.elsc.size())
sectionCount = 6;
else if (animIdxs.size())
sectionCount = 5;
else if (cmdlIce)
sectionCount = 4;
else if (effects.size())
sectionCount = 3;
else if (animAABBs.size())
sectionCount = 2;
else
sectionCount = 1;
writer.writeUint16Big(sectionCount);
writer.writeString(name);
cmdl.write(writer);
cskr.write(writer);
cinf.write(writer);
writer.writeUint32Big(animations.size());
writer.enumerate(animations);
pasDatabase.write(writer);
writer.writeUint32Big(partResData.part.size());
writer.enumerate(partResData.part);
writer.writeUint32Big(partResData.swhc.size());
writer.enumerate(partResData.swhc);
writer.writeUint32Big(partResData.unk.size());
writer.enumerate(partResData.unk);
if (sectionCount > 5)
{
writer.writeUint32Big(partResData.elsc.size());
writer.enumerate(partResData.elsc);
}
writer.writeUint32Big(unk1);
if (sectionCount > 1)
{
writer.writeUint32Big(animAABBs.size());
writer.enumerate(animAABBs);
}
if (sectionCount > 2)
{
writer.writeUint32Big(effects.size());
writer.enumerate(effects);
}
if (sectionCount > 3)
{
cmdlIce.write(writer);
cskrIce.write(writer);
}
if (sectionCount > 4)
{
writer.writeUint32Big(animIdxs.size());
for (atUint32 idx : animIdxs)
writer.writeUint32Big(idx);
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::Enumerate<BigDNA::BinarySize>(size_t& __isz)
{
__isz += 6;
atUint16 sectionCount;
if (partResData.elsc.size())
sectionCount = 6;
else if (animIdxs.size())
sectionCount = 5;
else if (cmdlIce)
sectionCount = 4;
else if (effects.size())
sectionCount = 3;
else if (animAABBs.size())
sectionCount = 2;
else
sectionCount = 1;
__isz += name.size() + 1;
__isz += 12;
__isz += 4;
for (const Animation& a : animations)
a.binarySize(__isz);
pasDatabase.binarySize(__isz);
__isz += 4;
for (const UniqueID32& id : partResData.part)
id.binarySize(__isz);
__isz += 4;
for (const UniqueID32& id : partResData.swhc)
id.binarySize(__isz);
__isz += 4;
for (const UniqueID32& id : partResData.unk)
id.binarySize(__isz);
if (sectionCount > 5)
{
__isz += 4;
for (const UniqueID32& id : partResData.elsc)
id.binarySize(__isz);
}
__isz += 4;
if (sectionCount > 1)
{
__isz += 4;
for (const ActionAABB& aabb : animAABBs)
aabb.binarySize(__isz);
}
if (sectionCount > 2)
{
__isz += 4;
for (const Effect& e : effects)
e.binarySize(__isz);
}
if (sectionCount > 3)
__isz += 8;
if (sectionCount > 4)
__isz += 4 + animIdxs.size() * 4;
}
template <>
void ANCS::CharacterSet::CharacterInfo::Enumerate<BigDNA::ReadYaml>(athena::io::YAMLDocReader& reader)
{
idx = reader.readUint32("idx");
atUint16 sectionCount = reader.readUint16("sectionCount");
name = reader.readString("name");
reader.enumerate("cmdl", cmdl);
reader.enumerate("animations", animations);
reader.enumerate("pasDatabase", pasDatabase);
reader.enumerate("part", partResData.part);
reader.enumerate("swhc", partResData.swhc);
reader.enumerate("unk", partResData.unk);
partResData.elsc.clear();
if (sectionCount > 5)
{
reader.enumerate("elsc", partResData.elsc);
}
unk1 = reader.readUint32("unk1");
animAABBs.clear();
if (sectionCount > 1)
{
reader.enumerate("part", animAABBs);
}
effects.clear();
if (sectionCount > 2)
{
reader.enumerate("effects", effects);
}
if (sectionCount > 3)
{
reader.enumerate("cmdlIce", cmdlIce);
}
animIdxs.clear();
if (sectionCount > 4)
{
reader.enumerate("animIdxs", animIdxs);
}
}
template <>
void ANCS::CharacterSet::CharacterInfo::Enumerate<BigDNA::WriteYaml>(athena::io::YAMLDocWriter& writer)
{
writer.writeUint32("idx", idx);
atUint16 sectionCount;
if (partResData.elsc.size())
sectionCount = 6;
else if (animIdxs.size())
sectionCount = 5;
else if (cmdlIce)
sectionCount = 4;
else if (effects.size())
sectionCount = 3;
else if (animAABBs.size())
sectionCount = 2;
else
sectionCount = 1;
writer.writeUint16("sectionCount", sectionCount);
writer.writeString("name", name);
writer.enumerate("cmdl", cmdl);
writer.enumerate("animations", animations);
writer.enumerate("pasDatabase", pasDatabase);
writer.enumerate("part", partResData.part);
writer.enumerate("swhc", partResData.swhc);
writer.enumerate("unk", partResData.unk);
if (sectionCount > 5)
{
writer.enumerate("elsc", partResData.elsc);
}
writer.writeUint32("unk1", unk1);
if (sectionCount > 1)
{
writer.enumerate("animAABBs", animAABBs);
}
if (sectionCount > 2)
{
writer.enumerate("effects", effects);
}
if (sectionCount > 3)
{
writer.enumerate("cmdlIce", cmdlIce);
}
if (sectionCount > 4)
{
writer.enumerate("animIdxs", animIdxs);
}
}
const char* ANCS::CharacterSet::CharacterInfo::DNAType()
{
return "urde::DNAMP1::ANCS::CharacterSet::CharacterInfo";
}
template <>
void ANCS::AnimationSet::MetaAnimFactory::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader)
{
IMetaAnim::Type type(IMetaAnim::Type(reader.readUint32Big()));
switch (type)
{
case IMetaAnim::Type::Primitive:
m_anim.reset(new struct MetaAnimPrimitive);
m_anim->read(reader);
break;
case IMetaAnim::Type::Blend:
m_anim.reset(new struct MetaAnimBlend);
m_anim->read(reader);
break;
case IMetaAnim::Type::PhaseBlend:
m_anim.reset(new struct MetaAnimPhaseBlend);
m_anim->read(reader);
break;
case IMetaAnim::Type::Random:
m_anim.reset(new struct MetaAnimRandom);
m_anim->read(reader);
break;
case IMetaAnim::Type::Sequence:
m_anim.reset(new struct MetaAnimSequence);
m_anim->read(reader);
break;
default:
m_anim.reset(nullptr);
break;
}
}
template <>
void ANCS::AnimationSet::MetaAnimFactory::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer)
{
if (!m_anim)
return;
writer.writeInt32Big(atUint32(m_anim->m_type));
m_anim->write(writer);
}
template <>
void ANCS::AnimationSet::MetaAnimFactory::Enumerate<BigDNA::BinarySize>(size_t& __isz)
{
if (!m_anim)
return;
__isz += 4;
m_anim->binarySize(__isz);
}
template <>
void ANCS::AnimationSet::MetaAnimFactory::Enumerate<BigDNA::ReadYaml>(athena::io::YAMLDocReader& reader)
{
std::string type = reader.readString("type");
std::transform(type.begin(), type.end(), type.begin(), tolower);
if (!type.compare("primitive"))
{
m_anim.reset(new struct MetaAnimPrimitive);
m_anim->read(reader);
}
else if (!type.compare("blend"))
{
m_anim.reset(new struct MetaAnimBlend);
m_anim->read(reader);
}
else if (!type.compare("phaseblend"))
{
m_anim.reset(new struct MetaAnimPhaseBlend);
m_anim->read(reader);
}
else if (!type.compare("random"))
{
m_anim.reset(new struct MetaAnimRandom);
m_anim->read(reader);
}
else if (!type.compare("sequence"))
{
m_anim.reset(new struct MetaAnimSequence);
m_anim->read(reader);
}
else
{
m_anim.reset(nullptr);
}
}
template <>
void ANCS::AnimationSet::MetaAnimFactory::Enumerate<BigDNA::WriteYaml>(athena::io::YAMLDocWriter& writer)
{
if (!m_anim)
return;
writer.writeString("type", m_anim->m_typeStr);
m_anim->write(writer);
}
const char* ANCS::AnimationSet::MetaAnimFactory::DNAType()
{
return "urde::DNAMP1::ANCS::AnimationSet::MetaAnimFactory";
}
template <>
void ANCS::AnimationSet::MetaTransFactory::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader)
{
IMetaTrans::Type type(IMetaTrans::Type(reader.readUint32Big()));
switch (type)
{
case IMetaTrans::Type::MetaAnim:
m_trans.reset(new struct MetaTransMetaAnim);
m_trans->read(reader);
break;
case IMetaTrans::Type::Trans:
m_trans.reset(new struct MetaTransTrans);
m_trans->read(reader);
break;
case IMetaTrans::Type::PhaseTrans:
m_trans.reset(new struct MetaTransPhaseTrans);
m_trans->read(reader);
break;
case IMetaTrans::Type::NoTrans:
default:
m_trans.reset(nullptr);
break;
}
}
template <>
void ANCS::AnimationSet::MetaTransFactory::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer)
{
if (!m_trans)
{
writer.writeInt32Big(atUint32(IMetaTrans::Type::NoTrans));
return;
}
writer.writeInt32Big(atUint32(m_trans->m_type));
m_trans->write(writer);
}
template <>
void ANCS::AnimationSet::MetaTransFactory::Enumerate<BigDNA::BinarySize>(size_t& __isz)
{
__isz += 4;
if (!m_trans)
return;
m_trans->binarySize(__isz);
}
template <>
void ANCS::AnimationSet::MetaTransFactory::Enumerate<BigDNA::ReadYaml>(athena::io::YAMLDocReader& reader)
{
std::string type = reader.readString("type");
std::transform(type.begin(), type.end(), type.begin(), tolower);
if (!type.compare("metaanim"))
{
m_trans.reset(new struct MetaTransMetaAnim);
m_trans->read(reader);
}
else if (!type.compare("trans"))
{
m_trans.reset(new struct MetaTransTrans);
m_trans->read(reader);
}
else if (!type.compare("phasetrans"))
{
m_trans.reset(new struct MetaTransPhaseTrans);
m_trans->read(reader);
}
else
{
m_trans.reset(nullptr);
}
}
template <>
void ANCS::AnimationSet::MetaTransFactory::Enumerate<BigDNA::WriteYaml>(athena::io::YAMLDocWriter& writer)
{
if (!m_trans)
{
writer.writeString("type", "NoTrans");
return;
}
writer.writeString("type", m_trans->m_typeStr?m_trans->m_typeStr:"NoTrans");
m_trans->write(writer);
}
const char* ANCS::AnimationSet::MetaTransFactory::DNAType()
{
return "urde::DNAMP1::ANCS::AnimationSet::MetaTransFactory";
}
template <>
void ANCS::AnimationSet::Enumerate<BigDNA::Read>(athena::io::IStreamReader& reader)
{
atUint16 sectionCount = reader.readUint16Big();
atUint32 animationCount = reader.readUint32Big();
reader.enumerate(animations, animationCount);
atUint32 transitionCount = reader.readUint32Big();
reader.enumerate(transitions, transitionCount);
defaultTransition.read(reader);
additiveAnims.clear();
if (sectionCount > 1)
{
atUint32 additiveAnimCount = reader.readUint32Big();
reader.enumerate(additiveAnims, additiveAnimCount);
floatA = reader.readFloatBig();
floatB = reader.readFloatBig();
}
halfTransitions.clear();
if (sectionCount > 2)
{
atUint32 halfTransitionCount = reader.readUint32Big();
reader.enumerate(halfTransitions, halfTransitionCount);
}
animResources.clear();
if (sectionCount > 3)
{
atUint32 animResourcesCount = reader.readUint32Big();
reader.enumerate(animResources, animResourcesCount);
}
}
template <>
void ANCS::AnimationSet::Enumerate<BigDNA::Write>(athena::io::IStreamWriter& writer)
{
atUint16 sectionCount;
if (animResources.size())
sectionCount = 4;
else if (halfTransitions.size())
sectionCount = 3;
else if (additiveAnims.size())
sectionCount = 2;
else
sectionCount = 1;
writer.writeUint16Big(sectionCount);
writer.writeUint32Big(animations.size());
writer.enumerate(animations);
writer.writeUint32Big(transitions.size());
writer.enumerate(transitions);
defaultTransition.write(writer);
if (sectionCount > 1)
{
writer.writeUint32Big(additiveAnims.size());
writer.enumerate(additiveAnims);
writer.writeFloatBig(floatA);
writer.writeFloatBig(floatB);
}
if (sectionCount > 2)
{
writer.writeUint32Big(halfTransitions.size());
writer.enumerate(halfTransitions);
}
if (sectionCount > 3)
{
writer.writeUint32Big(animResources.size());
writer.enumerate(animResources);
}
}
template <>
void ANCS::AnimationSet::Enumerate<BigDNA::BinarySize>(size_t& __isz)
{
atUint16 sectionCount;
if (animResources.size())
sectionCount = 4;
else if (halfTransitions.size())
sectionCount = 3;
else if (additiveAnims.size())
sectionCount = 2;
else
sectionCount = 1;
__isz += 6;
for (const Animation& a : animations)
a.binarySize(__isz);
__isz += 4;
for (const Transition& t : transitions)
t.binarySize(__isz);
defaultTransition.binarySize(__isz);
if (sectionCount > 1)
{
__isz += 4;
for (const AdditiveAnimationInfo& aa : additiveAnims)
aa.binarySize(__isz);
__isz += 8;
}
if (sectionCount > 2)
{
__isz += 4;
for (const HalfTransition& ht : halfTransitions)
ht.binarySize(__isz);
}
if (sectionCount > 3)
{
__isz += 4;
for (const AnimationResources& ar : animResources)
ar.binarySize(__isz);
}
}
template <>
void ANCS::AnimationSet::Enumerate<BigDNA::ReadYaml>(athena::io::YAMLDocReader& reader)
{
atUint16 sectionCount = reader.readUint16("sectionCount");
reader.enumerate("animations", animations);
reader.enumerate("transitions", transitions);
reader.enumerate("defaultTransition", defaultTransition);
additiveAnims.clear();
if (sectionCount > 1)
{
reader.enumerate("additiveAnims", additiveAnims);
floatA = reader.readFloat("floatA");
floatB = reader.readFloat("floatB");
}
halfTransitions.clear();
if (sectionCount > 2)
{
reader.enumerate("halfTransitions", halfTransitions);
}
animResources.clear();
if (sectionCount > 3)
{
reader.enumerate("animResources", animResources);
}
}
template <>
void ANCS::AnimationSet::Enumerate<BigDNA::WriteYaml>(athena::io::YAMLDocWriter& writer)
{
atUint16 sectionCount;
if (animResources.size())
sectionCount = 4;
else if (halfTransitions.size())
sectionCount = 3;
else if (additiveAnims.size())
sectionCount = 2;
else
sectionCount = 1;
writer.writeUint16("sectionCount", sectionCount);
writer.enumerate("animations", animations);
writer.enumerate("transitions", transitions);
writer.enumerate("defaultTransition", defaultTransition);
if (sectionCount > 1)
{
writer.enumerate("additiveAnims", additiveAnims);
writer.writeFloat("floatA", floatA);
writer.writeFloat("floatB", floatB);
}
if (sectionCount > 2)
{
writer.enumerate("halfTransitions", halfTransitions);
}
if (sectionCount > 3)
{
writer.enumerate("animResources", animResources);
}
}
void ANCS::AnimationSet::MetaAnimPrimitive::
gatherPrimitives(PAKRouter<PAKBridge>* pakRouter,
std::map<atUint32, DNAANCS::AnimationResInfo<UniqueID32>>& out)
{
if (!pakRouter)
{
out[animIdx] = {animName, animId, UniqueID32(), false};
return;
}
const nod::Node* node;
const PAK::Entry* entry = pakRouter->lookupEntry(animId, &node, true);
if (!entry)
{
out[animIdx] = {animName, animId, UniqueID32(), false};
return;
}
PAKEntryReadStream rs = entry->beginReadStream(*node);
out[animIdx] = {animName, animId, ANIM::GetEVNTId(rs), false};
}
const char* ANCS::AnimationSet::DNAType()
{
return "urde::DNAMP1::ANCS::AnimationSet";
}
bool ANCS::Extract(const SpecBase& dataSpec,
PAKEntryReadStream& rs,
const hecl::ProjectPath& outPath,
PAKRouter<PAKBridge>& pakRouter,
const PAK::Entry& entry,
bool force,
hecl::blender::Token& btok,
std::function<void(const hecl::SystemChar*)> fileChanged)
{
hecl::ProjectPath yamlPath = outPath.getWithExtension(_SYS_STR(".yaml"), true);
hecl::ProjectPath::Type yamlType = yamlPath.getPathType();
hecl::ProjectPath blendPath = outPath.getWithExtension(_SYS_STR(".blend"), true);
hecl::ProjectPath::Type blendType = blendPath.getPathType();
ANCS ancs;
ancs.read(rs);
if (force ||
yamlType == hecl::ProjectPath::Type::None ||
blendType == hecl::ProjectPath::Type::None)
{
if (force || yamlType == hecl::ProjectPath::Type::None)
{
athena::io::FileWriter writer(yamlPath.getAbsolutePath());
athena::io::ToYAMLStream(ancs, writer);
}
if (force || blendType == hecl::ProjectPath::Type::None)
{
hecl::blender::Connection& conn = btok.getBlenderConnection();
DNAANCS::ReadANCSToBlender<PAKRouter<PAKBridge>, ANCS, MaterialSet, DNACMDL::SurfaceHeader_1, 2>
(conn, ancs, blendPath, pakRouter, entry, dataSpec, fileChanged, force);
}
}
/* Extract EVNTs */
std::map<atUint32, DNAANCS::AnimationResInfo<UniqueID32>> animRes;
ancs.getAnimationResInfo(&pakRouter, animRes);
for (const auto& res : animRes)
{
if (res.second.evntId)
{
hecl::SystemStringConv sysStr(res.second.name);
hecl::ProjectPath evntYamlPath = outPath.getWithExtension((hecl::SystemString(_SYS_STR(".")) +
sysStr.c_str() +
_SYS_STR(".evnt.yaml")).c_str(), true);
hecl::ProjectPath::Type evntYamlType = evntYamlPath.getPathType();
if (force || evntYamlType == hecl::ProjectPath::Type::None)
{
EVNT evnt;
if (pakRouter.lookupAndReadDNA(res.second.evntId, evnt, true))
{
athena::io::FileWriter writer(evntYamlPath.getAbsolutePath());
athena::io::ToYAMLStream(evnt, writer);
}
}
}
}
return true;
}
bool ANCS::Cook(const hecl::ProjectPath& outPath,
const hecl::ProjectPath& inPath,
const DNAANCS::Actor& actor)
{
/* Search for yaml */
hecl::ProjectPath yamlPath = inPath.getWithExtension(_SYS_STR(".yaml"), true);
if (!yamlPath.isFile())
Log.report(logvisor::Fatal, _SYS_STR("'%s' not found as file"),
yamlPath.getRelativePath().data());
athena::io::FileReader reader(yamlPath.getAbsolutePath());
if (!reader.isOpen())
Log.report(logvisor::Fatal, _SYS_STR("can't open '%s' for reading"),
yamlPath.getRelativePath().data());
if (!athena::io::ValidateFromYAMLStream<ANCS>(reader))
{
Log.report(logvisor::Fatal, _SYS_STR("'%s' is not urde::DNAMP1::ANCS type"),
yamlPath.getRelativePath().data());
}
athena::io::YAMLDocReader yamlReader;
if (!yamlReader.parse(&reader))
{
Log.report(logvisor::Fatal, _SYS_STR("unable to parse '%s'"),
yamlPath.getRelativePath().data());
}
ANCS ancs;
ancs.read(yamlReader);
/* Set Character Resource IDs */
for (ANCS::CharacterSet::CharacterInfo& ch : ancs.characterSet.characters)
{
ch.cmdl = UniqueID32{};
ch.cskr = UniqueID32{};
ch.cinf = UniqueID32{};
ch.cmdlIce = UniqueID32Zero{};
ch.cskrIce = UniqueID32Zero{};
hecl::SystemStringConv chSysName(ch.name);
ch.cskr = inPath.ensureAuxInfo(hecl::SystemString(chSysName.sys_str()) + _SYS_STR(".CSKR"));
int subtypeIdx = 0;
ch.animAABBs.clear();
for (const DNAANCS::Actor::Subtype& sub : actor.subtypes)
{
if (!sub.name.compare(ch.name))
{
/* Add subtype AABBs */
ch.animAABBs.reserve(actor.actions.size());
for (const DNAANCS::Action& act : actor.actions)
{
const auto& sourceAABB = act.subtypeAABBs[subtypeIdx];
ch.animAABBs.emplace_back();
auto& destAABB = ch.animAABBs.back();
destAABB.name = act.name;
destAABB.aabb[0] = sourceAABB.first.val;
destAABB.aabb[1] = sourceAABB.second.val;
}
if (sub.armature >= 0)
{
const DNAANCS::Armature& arm = actor.armatures[sub.armature];
hecl::SystemStringConv armSysName(arm.name);
ch.cinf = inPath.ensureAuxInfo(hecl::SystemString(armSysName.sys_str()) + _SYS_STR(".CINF"));
ch.cmdl = sub.mesh;
auto search = std::find_if(sub.overlayMeshes.cbegin(), sub.overlayMeshes.cend(),
[](const auto& p) { return p.first == "ICE"; });
if (search != sub.overlayMeshes.cend())
{
hecl::SystemStringConv overlaySys(search->first);
ch.cmdlIce = search->second;
ch.cskrIce = inPath.ensureAuxInfo(hecl::SystemString(chSysName.sys_str()) + _SYS_STR('.') +
overlaySys.c_str() + _SYS_STR(".CSKR"));
}
}
break;
}
++subtypeIdx;
}
std::sort(ch.animAABBs.begin(), ch.animAABBs.end(),
[](const ANCS::CharacterSet::CharacterInfo::ActionAABB& a,
const ANCS::CharacterSet::CharacterInfo::ActionAABB& b)
{ return a.name < b.name; });
}
/* Set Animation Resource IDs */
ancs.enumeratePrimitives([&](AnimationSet::MetaAnimPrimitive& prim) -> bool
{
hecl::SystemStringConv sysStr(prim.animName);
hecl::ProjectPath pathOut = inPath.ensureAuxInfo(hecl::SystemString(sysStr.sys_str()) + _SYS_STR(".ANIM"));
prim.animId = pathOut;
return true;
});
/* Gather ANIM resources */
ancs.animationSet.animResources.reserve(actor.actions.size());
for (const DNAANCS::Action& act : actor.actions)
{
hecl::SystemStringConv sysStr(act.name);
hecl::ProjectPath pathOut = inPath.ensureAuxInfo(hecl::SystemString(sysStr.sys_str()) + _SYS_STR(".ANIM"));
ancs.animationSet.animResources.emplace_back();
ancs.animationSet.animResources.back().animId = pathOut;
/* Check for associated EVNT YAML */
hecl::ProjectPath evntYamlPath = inPath.getWithExtension((hecl::SystemString(_SYS_STR(".")) +
sysStr.c_str() +
_SYS_STR(".evnt.yaml")).c_str(), true);
evntYamlPath = evntYamlPath.ensureAuxInfo(_SYS_STR(""));
if (evntYamlPath.isFile())
ancs.animationSet.animResources.back().evntId = evntYamlPath;
}
/* Write out ANCS */
athena::io::TransactionalFileWriter w(outPath.getAbsolutePath());
ancs.write(w);
return true;
}
bool ANCS::CookCINF(const hecl::ProjectPath& outPath,
const hecl::ProjectPath& inPath,
const DNAANCS::Actor& actor)
{
hecl::SystemString armName(inPath.getAuxInfo().begin(),
inPath.getAuxInfo().end() - 5);
for (const DNAANCS::Armature& arm : actor.armatures)
{
hecl::SystemStringConv sysStr(arm.name);
if (sysStr.sys_str() == armName)
{
std::unordered_map<std::string, atInt32> boneIdMap;
CINF cinf(arm, boneIdMap);
/* Write out CINF resource */
athena::io::TransactionalFileWriter w(outPath.getAbsolutePath());
cinf.write(w);
return true;
}
}
return false;
}
bool ANCS::CookCSKR(const hecl::ProjectPath& outPath,
const hecl::ProjectPath& inPath,
const DNAANCS::Actor& actor,
const std::function<bool(const hecl::ProjectPath& modelPath)>& modelCookFunc)
{
hecl::SystemString subName(inPath.getAuxInfo().begin(),
inPath.getAuxInfo().end() - 5);
hecl::SystemString overName;
auto dotPos = subName.rfind(_SYS_STR('.'));
if (dotPos != hecl::SystemString::npos)
{
overName = hecl::SystemString(subName.begin() + dotPos + 1, subName.end());
subName = hecl::SystemString(subName.begin(), subName.begin() + dotPos);
}
hecl::SystemUTF8Conv subNameView(subName);
hecl::SystemUTF8Conv overNameView(overName);
/* Build bone ID map */
std::unordered_map<std::string, atInt32> boneIdMap;
for (const DNAANCS::Armature& arm : actor.armatures)
{
CINF cinf(arm, boneIdMap);
}
const DNAANCS::Actor::Subtype* subtype = nullptr;
if (subName != _SYS_STR("ATTACH"))
{
for (const DNAANCS::Actor::Subtype& sub : actor.subtypes)
{
if (!sub.name.compare(subNameView.str()))
{
subtype = &sub;
break;
}
}
if (!subtype)
Log.report(logvisor::Fatal, _SYS_STR("unable to find subtype '%s'"), subName.c_str());
}
const hecl::ProjectPath* modelPath = nullptr;
if (subName == _SYS_STR("ATTACH"))
{
const DNAANCS::Actor::Attachment* attachment = nullptr;
for (const DNAANCS::Actor::Attachment& att : actor.attachments)
{
if (!att.name.compare(overNameView.str()))
{
attachment = &att;
break;
}
}
if (!attachment)
Log.report(logvisor::Fatal, _SYS_STR("unable to find attachment '%s'"), overName.c_str());
modelPath = &attachment->mesh;
}
else if (overName.empty())
{
modelPath = &subtype->mesh;
}
else
{
for (const auto& overlay : subtype->overlayMeshes)
if (!overlay.first.compare(overNameView.str()))
{
modelPath = &overlay.second;
break;
}
}
if (!modelPath)
Log.report(logvisor::Fatal, _SYS_STR("unable to resolve model path of %s:%s"), subName.c_str(), overName.c_str());
if (!modelPath->isFile())
Log.report(logvisor::Fatal, _SYS_STR("unable to resolve '%s'"), modelPath->getRelativePath().data());
hecl::ProjectPath skinIntPath = modelPath->getCookedPath(SpecEntMP1).getWithExtension(_SYS_STR(".skinint"));
if (!skinIntPath.isFileOrGlob() || skinIntPath.getModtime() < modelPath->getModtime())
if (!modelCookFunc(*modelPath))
Log.report(logvisor::Fatal, _SYS_STR("unable to cook '%s'"), modelPath->getRelativePath().data());
athena::io::FileReader skinIO(skinIntPath.getAbsolutePath(), 1024*32, false);
if (skinIO.hasError())
Log.report(logvisor::Fatal, _SYS_STR("unable to open '%s'"), skinIntPath.getRelativePath().data());
std::vector<std::string> boneNames;
uint32_t boneNameCount = skinIO.readUint32Big();
boneNames.reserve(boneNameCount);
for (uint32_t i=0 ; i<boneNameCount ; ++i)
boneNames.push_back(skinIO.readString());
std::vector<std::pair<std::vector<std::pair<uint32_t, float>>, uint32_t>> skins;
uint32_t skinCount = skinIO.readUint32Big();
skins.resize(skinCount);
for (uint32_t i=0 ; i<skinCount ; ++i)
{
std::pair<std::vector<std::pair<uint32_t, float>>, uint32_t>& virtualBone = skins[i];
uint32_t bindCount = skinIO.readUint32Big();
virtualBone.first.reserve(bindCount);
for (uint32_t j=0 ; j<bindCount ; ++j)
{
uint32_t bIdx = skinIO.readUint32Big();
float weight = skinIO.readFloatBig();
const std::string& name = boneNames[bIdx];
auto search = boneIdMap.find(name);
if (search == boneIdMap.cend())
Log.report(logvisor::Fatal, "unable to find bone '%s' in %s",
name.c_str(), inPath.getRelativePathUTF8().data());
virtualBone.first.emplace_back(search->second, weight);
}
virtualBone.second = skinIO.readUint32Big();
}
uint32_t posCount = skinIO.readUint32Big();
uint32_t normCount = skinIO.readUint32Big();
skinIO.close();
athena::io::TransactionalFileWriter skinOut(outPath.getAbsolutePath());
skinOut.writeUint32Big(skins.size());
for (auto& virtuaBone : skins)
{
skinOut.writeUint32Big(virtuaBone.first.size());
for (auto& bind : virtuaBone.first)
{
skinOut.writeUint32Big(bind.first);
skinOut.writeFloatBig(bind.second);
}
skinOut.writeUint32Big(virtuaBone.second);
}
skinOut.writeUint32Big(0xffffffff);
skinOut.writeUint32Big(posCount);
skinOut.writeUint32Big(0xffffffff);
skinOut.writeUint32Big(normCount);
return true;
}
bool ANCS::CookCSKRPC(const hecl::ProjectPath& outPath,
const hecl::ProjectPath& inPath,
const DNAANCS::Actor& actor,
const std::function<bool(const hecl::ProjectPath& modelPath)>& modelCookFunc)
{
hecl::SystemString subName(inPath.getAuxInfo().begin(),
inPath.getAuxInfo().end() - 5);
hecl::SystemString overName;
auto dotPos = subName.rfind(_SYS_STR('.'));
if (dotPos != hecl::SystemString::npos)
{
overName = hecl::SystemString(subName.begin() + dotPos + 1, subName.end());
subName = hecl::SystemString(subName.begin(), subName.begin() + dotPos);
}
hecl::SystemUTF8Conv subNameView(subName);
hecl::SystemUTF8Conv overNameView(overName);
/* Build bone ID map */
std::unordered_map<std::string, atInt32> boneIdMap;
for (const DNAANCS::Armature& arm : actor.armatures)
{
CINF cinf(arm, boneIdMap);
}
const DNAANCS::Actor::Subtype* subtype = nullptr;
if (subName != _SYS_STR("ATTACH"))
{
for (const DNAANCS::Actor::Subtype& sub : actor.subtypes)
{
if (!sub.name.compare(subNameView.str()))
{
subtype = &sub;
break;
}
}
if (!subtype)
Log.report(logvisor::Fatal, _SYS_STR("unable to find subtype '%s'"), subName.c_str());
}
const hecl::ProjectPath* modelPath = nullptr;
if (subName == _SYS_STR("ATTACH"))
{
const DNAANCS::Actor::Attachment* attachment = nullptr;
for (const DNAANCS::Actor::Attachment& att : actor.attachments)
{
if (!att.name.compare(overNameView.str()))
{
attachment = &att;
break;
}
}
if (!attachment)
Log.report(logvisor::Fatal, _SYS_STR("unable to find attachment '%s'"), overName.c_str());
modelPath = &attachment->mesh;
}
else if (overName.empty())
{
modelPath = &subtype->mesh;
}
else
{
for (const auto& overlay : subtype->overlayMeshes)
if (!overlay.first.compare(overNameView.str()))
{
modelPath = &overlay.second;
break;
}
}
if (!modelPath)
Log.report(logvisor::Fatal, _SYS_STR("unable to resolve model path of %s:%s"), subName.c_str(), overName.c_str());
if (!modelPath->isFile())
Log.report(logvisor::Fatal, _SYS_STR("unable to resolve '%s'"), modelPath->getRelativePath().data());
hecl::ProjectPath skinIntPath = modelPath->getCookedPath(SpecEntMP1PC).getWithExtension(_SYS_STR(".skinint"));
if (!skinIntPath.isFileOrGlob() || skinIntPath.getModtime() < modelPath->getModtime())
if (!modelCookFunc(*modelPath))
Log.report(logvisor::Fatal, _SYS_STR("unable to cook '%s'"), modelPath->getRelativePath().data());
athena::io::FileReader skinIO(skinIntPath.getAbsolutePath(), 1024*32, false);
if (skinIO.hasError())
Log.report(logvisor::Fatal, _SYS_STR("unable to open '%s'"), skinIntPath.getRelativePath().data());
std::vector<std::vector<uint32_t>> skinBanks;
uint32_t bankCount = skinIO.readUint32Big();
skinBanks.reserve(bankCount);
for (uint32_t i=0 ; i<bankCount ; ++i)
{
skinBanks.emplace_back();
std::vector<uint32_t>& bonesOut = skinBanks.back();
uint32_t boneCount = skinIO.readUint32Big();
bonesOut.reserve(boneCount);
for (uint32_t j=0 ; j<boneCount ; ++j)
{
uint32_t idx = skinIO.readUint32Big();
bonesOut.push_back(idx);
}
}
std::vector<std::string> boneNames;
uint32_t boneNameCount = skinIO.readUint32Big();
boneNames.reserve(boneNameCount);
for (uint32_t i=0 ; i<boneNameCount ; ++i)
boneNames.push_back(skinIO.readString());
std::vector<std::vector<std::pair<uint32_t, float>>> skins;
uint32_t skinCount = skinIO.readUint32Big();
skins.resize(skinCount);
for (uint32_t i=0 ; i<skinCount ; ++i)
{
std::vector<std::pair<uint32_t, float>>& virtualBone = skins[i];
uint32_t bindCount = skinIO.readUint32Big();
virtualBone.reserve(bindCount);
for (uint32_t j=0 ; j<bindCount ; ++j)
{
uint32_t bIdx = skinIO.readUint32Big();
float weight = skinIO.readFloatBig();
const std::string& name = boneNames[bIdx];
auto search = boneIdMap.find(name);
if (search == boneIdMap.cend())
Log.report(logvisor::Fatal, "unable to find bone '%s' in %s",
name.c_str(), inPath.getRelativePathUTF8().data());
virtualBone.emplace_back(search->second, weight);
}
}
atUint64 uniquePoolIndexLen = skinIO.length() - skinIO.position();
auto uniquePoolIndexData = skinIO.readUBytes(uniquePoolIndexLen);
skinIO.close();
athena::io::TransactionalFileWriter skinOut(outPath.getAbsolutePath());
skinOut.writeUint32Big(bankCount);
for (const std::vector<uint32_t>& bank : skinBanks)
{
skinOut.writeUint32Big(bank.size());
for (uint32_t bIdx : bank)
{
const std::string& name = boneNames[bIdx];
auto search = boneIdMap.find(name);
if (search == boneIdMap.cend())
Log.report(logvisor::Fatal, "unable to find bone '%s' in %s",
name.c_str(), inPath.getRelativePathUTF8().data());
skinOut.writeUint32Big(search->second);
}
}
skinOut.writeUint32Big(skins.size());
for (auto& virtuaBone : skins)
{
skinOut.writeUint32Big(virtuaBone.size());
for (auto& bind : virtuaBone)
{
skinOut.writeUint32Big(bind.first);
skinOut.writeFloatBig(bind.second);
}
}
skinOut.writeUBytes(uniquePoolIndexData.get(), uniquePoolIndexLen);
return true;
}
bool ANCS::CookANIM(const hecl::ProjectPath& outPath,
const hecl::ProjectPath& inPath,
const DNAANCS::Actor& actor,
hecl::blender::DataStream& ds,
bool pc)
{
hecl::SystemString actName(inPath.getAuxInfo().begin(),
inPath.getAuxInfo().end() - 5);
hecl::SystemUTF8Conv actNameView(actName);
DNAANCS::Action action = ds.compileActionChannelsOnly(actNameView.str());
if (!actor.armatures.size())
Log.report(logvisor::Fatal, _SYS_STR("0 armatures in %s"),
inPath.getRelativePath().data());
/* Build bone ID map */
std::unordered_map<std::string, atInt32> boneIdMap;
std::experimental::optional<CINF> rigCinf;
std::experimental::optional<DNAANIM::RigInverter<CINF>> rigInv;
for (const DNAANCS::Armature& arm : actor.armatures)
{
if (!rigInv)
{
rigCinf.emplace(arm, boneIdMap);
auto matrices = ds.getBoneMatrices(arm.name);
rigInv.emplace(*rigCinf, matrices);
}
else
{
CINF cinf(arm, boneIdMap);
}
}
ANIM anim(action, boneIdMap, *rigInv, pc);
/* Check for associated EVNT YAML */
hecl::ProjectPath evntYamlPath = inPath.getWithExtension((hecl::SystemString(_SYS_STR(".")) + actName +
_SYS_STR(".evnt.yaml")).c_str(), true);
evntYamlPath = evntYamlPath.ensureAuxInfo(_SYS_STR(""));
if (evntYamlPath.isFile())
anim.m_anim->evnt = evntYamlPath;
/* Write out ANIM resource */
athena::io::TransactionalFileWriter w(outPath.getAbsolutePath());
anim.write(w);
return true;
}
}
}