mirror of https://github.com/AxioDL/metaforce.git
450 lines
14 KiB
C++
450 lines
14 KiB
C++
#include "zeus/Math.hpp"
|
|
#include "ANIM.hpp"
|
|
|
|
#define DUMP_KEYS 0
|
|
|
|
namespace DataSpec::DNAANIM {
|
|
|
|
size_t ComputeBitstreamSize(size_t keyFrameCount, const std::vector<Channel>& channels) {
|
|
size_t bitsPerKeyFrame = 0;
|
|
for (const Channel& chan : channels) {
|
|
switch (chan.type) {
|
|
case Channel::Type::Rotation:
|
|
bitsPerKeyFrame += 1;
|
|
[[fallthrough]];
|
|
case Channel::Type::Translation:
|
|
case Channel::Type::Scale:
|
|
bitsPerKeyFrame += chan.q[0];
|
|
bitsPerKeyFrame += chan.q[1];
|
|
bitsPerKeyFrame += chan.q[2];
|
|
break;
|
|
case Channel::Type::KfHead:
|
|
bitsPerKeyFrame += 1;
|
|
break;
|
|
case Channel::Type::RotationMP3:
|
|
bitsPerKeyFrame += chan.q[0];
|
|
bitsPerKeyFrame += chan.q[1];
|
|
bitsPerKeyFrame += chan.q[2];
|
|
bitsPerKeyFrame += chan.q[3];
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
return (bitsPerKeyFrame * keyFrameCount + 31) / 32 * 4;
|
|
}
|
|
|
|
static inline QuantizedRot QuantizeRotation(const Value& quat, atUint32 div) {
|
|
float q = M_PIF / 2.0f / float(div);
|
|
zeus::simd_floats f(quat.simd);
|
|
assert(std::abs(f[1]) <= 1.f && "Out of range quat X component");
|
|
assert(std::abs(f[2]) <= 1.f && "Out of range quat Y component");
|
|
assert(std::abs(f[3]) <= 1.f && "Out of range quat Z component");
|
|
return {{
|
|
atInt32(std::asin(f[1]) / q),
|
|
atInt32(std::asin(f[2]) / q),
|
|
atInt32(std::asin(f[3]) / q),
|
|
},
|
|
(f[0] < 0.f)};
|
|
}
|
|
|
|
static inline Value DequantizeRotation(const QuantizedRot& v, atUint32 div) {
|
|
float q = M_PIF / 2.0f / float(div);
|
|
athena::simd_floats f = {
|
|
0.0f,
|
|
std::sin(v.v[0] * q),
|
|
std::sin(v.v[1] * q),
|
|
std::sin(v.v[2] * q),
|
|
};
|
|
f[0] = std::sqrt(std::max((1.0f - (f[1] * f[1] + f[2] * f[2] + f[3] * f[3])), 0.0f));
|
|
f[0] = v.w ? -f[0] : f[0];
|
|
Value retval;
|
|
retval.simd.copy_from(f);
|
|
return retval;
|
|
}
|
|
|
|
static inline Value DequantizeRotation_3(const QuantizedRot& v, atUint32 div) {
|
|
float q = 1.0f / float(div);
|
|
athena::simd_floats f = {
|
|
0.0f,
|
|
v.v[0] * q,
|
|
v.v[1] * q,
|
|
v.v[2] * q,
|
|
};
|
|
f[0] = std::sqrt(std::max((1.0f - (f[1] * f[1] + f[2] * f[2] + f[3] * f[3])), 0.0f));
|
|
f[0] = v.w ? -f[0] : f[0];
|
|
Value retval;
|
|
retval.simd.copy_from(f);
|
|
return retval;
|
|
}
|
|
|
|
bool BitstreamReader::dequantizeBit(const atUint8* data) {
|
|
atUint32 byteCur = (m_bitCur / 32) * 4;
|
|
atUint32 bitRem = m_bitCur % 32;
|
|
|
|
/* Fill 32 bit buffer with region containing bits */
|
|
/* Make them least significant */
|
|
atUint32 tempBuf = hecl::SBig(*reinterpret_cast<const atUint32*>(data + byteCur)) >> bitRem;
|
|
|
|
/* That's it */
|
|
m_bitCur += 1;
|
|
return tempBuf & 0x1;
|
|
}
|
|
|
|
atInt32 BitstreamReader::dequantize(const atUint8* data, atUint8 q) {
|
|
atUint32 byteCur = (m_bitCur / 32) * 4;
|
|
atUint32 bitRem = m_bitCur % 32;
|
|
|
|
/* Fill 32 bit buffer with region containing bits */
|
|
/* Make them least significant */
|
|
atUint32 tempBuf = hecl::SBig(*reinterpret_cast<const atUint32*>(data + byteCur)) >> bitRem;
|
|
|
|
/* If this shift underflows the value, buffer the next 32 bits */
|
|
/* And tack onto shifted buffer */
|
|
if ((bitRem + q) > 32) {
|
|
atUint32 tempBuf2 = hecl::SBig(*reinterpret_cast<const atUint32*>(data + byteCur + 4));
|
|
tempBuf |= (tempBuf2 << (32 - bitRem));
|
|
}
|
|
|
|
/* Mask it */
|
|
atUint32 mask = (1 << q) - 1;
|
|
tempBuf &= mask;
|
|
|
|
/* Sign extend */
|
|
atUint32 sign = (tempBuf >> (q - 1)) & 0x1;
|
|
if (sign)
|
|
tempBuf |= ~0u << q;
|
|
|
|
/* Return delta value */
|
|
m_bitCur += q;
|
|
return atInt32(tempBuf);
|
|
}
|
|
|
|
std::vector<std::vector<Value>> BitstreamReader::read(const atUint8* data, size_t keyFrameCount,
|
|
const std::vector<Channel>& channels, atUint32 rotDiv,
|
|
float transMult, float scaleMult) {
|
|
m_bitCur = 0;
|
|
std::vector<std::vector<Value>> chanKeys;
|
|
std::vector<QuantizedValue> chanAccum;
|
|
chanKeys.reserve(channels.size());
|
|
chanAccum.reserve(channels.size());
|
|
for (const Channel& chan : channels) {
|
|
chanAccum.push_back(chan.i);
|
|
|
|
chanKeys.emplace_back();
|
|
std::vector<Value>& keys = chanKeys.back();
|
|
keys.reserve(keyFrameCount);
|
|
switch (chan.type) {
|
|
case Channel::Type::Rotation: {
|
|
QuantizedRot qr = {{chan.i[0], chan.i[1], chan.i[2]}, false};
|
|
keys.emplace_back(DequantizeRotation(qr, rotDiv));
|
|
break;
|
|
}
|
|
case Channel::Type::Translation: {
|
|
keys.push_back({chan.i[0] * transMult, chan.i[1] * transMult, chan.i[2] * transMult});
|
|
break;
|
|
}
|
|
case Channel::Type::Scale: {
|
|
keys.push_back({chan.i[0] * scaleMult, chan.i[1] * scaleMult, chan.i[2] * scaleMult});
|
|
break;
|
|
}
|
|
case Channel::Type::KfHead: {
|
|
break;
|
|
}
|
|
case Channel::Type::RotationMP3: {
|
|
QuantizedRot qr = {{chan.i[1], chan.i[2], chan.i[3]}, bool(chan.i[0] & 0x1)};
|
|
keys.emplace_back(DequantizeRotation_3(qr, rotDiv));
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
for (size_t f = 0; f < keyFrameCount; ++f) {
|
|
#if DUMP_KEYS
|
|
fprintf(stderr, "\nFRAME %" PRISize " %u %u\n", f, (m_bitCur / 32) * 4, m_bitCur % 32);
|
|
int lastId = -1;
|
|
#endif
|
|
auto kit = chanKeys.begin();
|
|
auto ait = chanAccum.begin();
|
|
for (const Channel& chan : channels) {
|
|
#if DUMP_KEYS
|
|
if (chan.id != lastId) {
|
|
lastId = chan.id;
|
|
fprintf(stderr, "\n");
|
|
}
|
|
#endif
|
|
QuantizedValue& p = *ait;
|
|
switch (chan.type) {
|
|
case Channel::Type::Rotation: {
|
|
bool wBit = dequantizeBit(data);
|
|
p[0] += dequantize(data, chan.q[0]);
|
|
p[1] += dequantize(data, chan.q[1]);
|
|
p[2] += dequantize(data, chan.q[2]);
|
|
QuantizedRot qr = {{p[0], p[1], p[2]}, wBit};
|
|
kit->emplace_back(DequantizeRotation(qr, rotDiv));
|
|
#if DUMP_KEYS
|
|
fprintf(stderr, "%d R: %d %d %d %d\t", chan.id, wBit, p[0], p[1], p[2]);
|
|
#endif
|
|
break;
|
|
}
|
|
case Channel::Type::Translation: {
|
|
atInt32 val1 = dequantize(data, chan.q[0]);
|
|
p[0] += val1;
|
|
atInt32 val2 = dequantize(data, chan.q[1]);
|
|
p[1] += val2;
|
|
atInt32 val3 = dequantize(data, chan.q[2]);
|
|
p[2] += val3;
|
|
kit->push_back({p[0] * transMult, p[1] * transMult, p[2] * transMult});
|
|
#if DUMP_KEYS
|
|
fprintf(stderr, "%d T: %d %d %d\t", chan.id, p[0], p[1], p[2]);
|
|
#endif
|
|
break;
|
|
}
|
|
case Channel::Type::Scale: {
|
|
p[0] += dequantize(data, chan.q[0]);
|
|
p[1] += dequantize(data, chan.q[1]);
|
|
p[2] += dequantize(data, chan.q[2]);
|
|
kit->push_back({p[0] * scaleMult, p[1] * scaleMult, p[2] * scaleMult});
|
|
#if DUMP_KEYS
|
|
fprintf(stderr, "%d S: %d %d %d\t", chan.id, p[0], p[1], p[2]);
|
|
#endif
|
|
break;
|
|
}
|
|
case Channel::Type::KfHead: {
|
|
dequantizeBit(data);
|
|
break;
|
|
}
|
|
case Channel::Type::RotationMP3: {
|
|
atInt32 val1 = dequantize(data, chan.q[0]);
|
|
p[0] += val1;
|
|
atInt32 val2 = dequantize(data, chan.q[1]);
|
|
p[1] += val2;
|
|
atInt32 val3 = dequantize(data, chan.q[2]);
|
|
p[2] += val3;
|
|
atInt32 val4 = dequantize(data, chan.q[3]);
|
|
p[3] += val4;
|
|
QuantizedRot qr = {{p[1], p[2], p[3]}, bool(p[0] & 0x1)};
|
|
kit->emplace_back(DequantizeRotation_3(qr, rotDiv));
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
++kit;
|
|
++ait;
|
|
}
|
|
#if DUMP_KEYS
|
|
fprintf(stderr, "\n");
|
|
#endif
|
|
}
|
|
|
|
return chanKeys;
|
|
}
|
|
|
|
void BitstreamWriter::quantizeBit(atUint8* data, bool val) {
|
|
atUint32 byteCur = (m_bitCur / 32) * 4;
|
|
atUint32 bitRem = m_bitCur % 32;
|
|
|
|
/* Fill 32 bit buffer with region containing bits */
|
|
/* Make them least significant */
|
|
*(atUint32*)(data + byteCur) = hecl::SBig(hecl::SBig(*(atUint32*)(data + byteCur)) | (val << bitRem));
|
|
|
|
m_bitCur += 1;
|
|
}
|
|
|
|
void BitstreamWriter::quantize(atUint8* data, atUint8 q, atInt32 val) {
|
|
atUint32 byteCur = (m_bitCur / 32) * 4;
|
|
atUint32 bitRem = m_bitCur % 32;
|
|
|
|
atUint32 masked = val & ((1 << q) - 1);
|
|
|
|
/* Fill 32 bit buffer with region containing bits */
|
|
/* Make them least significant */
|
|
*(atUint32*)(data + byteCur) = hecl::SBig(hecl::SBig(*(atUint32*)(data + byteCur)) | (masked << bitRem));
|
|
|
|
/* If this shift underflows the value, buffer the next 32 bits */
|
|
/* And tack onto shifted buffer */
|
|
if ((bitRem + q) > 32) {
|
|
*(atUint32*)(data + byteCur + 4) =
|
|
hecl::SBig(hecl::SBig(*(atUint32*)(data + byteCur + 4)) | (masked >> (32 - bitRem)));
|
|
}
|
|
|
|
m_bitCur += q;
|
|
}
|
|
|
|
std::unique_ptr<atUint8[]> BitstreamWriter::write(const std::vector<std::vector<Value>>& chanKeys, size_t keyFrameCount,
|
|
std::vector<Channel>& channels, atUint32 quantRange,
|
|
atUint32& rotDivOut, float& transMultOut, float& scaleMultOut,
|
|
size_t& sizeOut) {
|
|
m_bitCur = 0;
|
|
rotDivOut = quantRange; /* Normalized range of values */
|
|
float quantRangeF = float(quantRange);
|
|
|
|
/* Pre-pass to calculate translation multiplier */
|
|
float maxTransDelta = 0.0f;
|
|
float maxScaleDelta = 0.0f;
|
|
auto kit = chanKeys.begin();
|
|
for (Channel& chan : channels) {
|
|
switch (chan.type) {
|
|
case Channel::Type::Translation: {
|
|
zeus::simd<float> lastVal = {};
|
|
for (auto it = kit->begin(); it != kit->end(); ++it) {
|
|
const Value* key = &*it;
|
|
zeus::simd_floats f(key->simd - lastVal);
|
|
lastVal = key->simd;
|
|
maxTransDelta = std::max(maxTransDelta, std::fabs(f[0]));
|
|
maxTransDelta = std::max(maxTransDelta, std::fabs(f[1]));
|
|
maxTransDelta = std::max(maxTransDelta, std::fabs(f[2]));
|
|
}
|
|
break;
|
|
}
|
|
case Channel::Type::Scale: {
|
|
zeus::simd<float> lastVal = {};
|
|
for (auto it = kit->begin(); it != kit->end(); ++it) {
|
|
const Value* key = &*it;
|
|
zeus::simd_floats f(key->simd - lastVal);
|
|
lastVal = key->simd;
|
|
maxScaleDelta = std::max(maxScaleDelta, std::fabs(f[0]));
|
|
maxScaleDelta = std::max(maxScaleDelta, std::fabs(f[1]));
|
|
maxScaleDelta = std::max(maxScaleDelta, std::fabs(f[2]));
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
++kit;
|
|
}
|
|
transMultOut = std::max(maxTransDelta / quantRangeF, FLT_EPSILON);
|
|
scaleMultOut = std::max(maxScaleDelta / quantRangeF, FLT_EPSILON);
|
|
|
|
/* Output channel inits */
|
|
std::vector<QuantizedValue> initVals;
|
|
initVals.reserve(channels.size());
|
|
kit = chanKeys.begin();
|
|
for (Channel& chan : channels) {
|
|
chan.q[0] = 1;
|
|
chan.q[1] = 1;
|
|
chan.q[2] = 1;
|
|
switch (chan.type) {
|
|
case Channel::Type::Rotation: {
|
|
QuantizedRot qr = QuantizeRotation((*kit)[0], rotDivOut);
|
|
chan.i = qr.v;
|
|
initVals.push_back(chan.i);
|
|
break;
|
|
}
|
|
case Channel::Type::Translation: {
|
|
zeus::simd_floats f((*kit)[0].simd);
|
|
chan.i = {atInt32(f[0] / transMultOut), atInt32(f[1] / transMultOut), atInt32(f[2] / transMultOut)};
|
|
initVals.push_back(chan.i);
|
|
break;
|
|
}
|
|
case Channel::Type::Scale: {
|
|
zeus::simd_floats f((*kit)[0].simd);
|
|
chan.i = {atInt32(f[0] / scaleMultOut), atInt32(f[1] / scaleMultOut), atInt32(f[2] / scaleMultOut)};
|
|
initVals.push_back(chan.i);
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
++kit;
|
|
}
|
|
|
|
/* Pre-pass to analyze quantization factors for channels */
|
|
std::vector<QuantizedValue> lastVals = initVals;
|
|
kit = chanKeys.begin();
|
|
auto vit = lastVals.begin();
|
|
for (Channel& chan : channels) {
|
|
QuantizedValue& last = *vit++;
|
|
switch (chan.type) {
|
|
case Channel::Type::Rotation: {
|
|
for (auto it = kit->begin() + 1; it != kit->end(); ++it) {
|
|
QuantizedRot qrCur = QuantizeRotation(*it, rotDivOut);
|
|
chan.q[0] = std::max(chan.q[0], atUint8(qrCur.v.qFrom(last, 0)));
|
|
chan.q[1] = std::max(chan.q[1], atUint8(qrCur.v.qFrom(last, 1)));
|
|
chan.q[2] = std::max(chan.q[2], atUint8(qrCur.v.qFrom(last, 2)));
|
|
last = qrCur.v;
|
|
}
|
|
break;
|
|
}
|
|
case Channel::Type::Translation: {
|
|
for (auto it = kit->begin() + 1; it != kit->end(); ++it) {
|
|
zeus::simd_floats f(it->simd);
|
|
QuantizedValue cur = {atInt32(f[0] / transMultOut), atInt32(f[1] / transMultOut), atInt32(f[2] / transMultOut)};
|
|
chan.q[0] = std::max(chan.q[0], atUint8(cur.qFrom(last, 0)));
|
|
chan.q[1] = std::max(chan.q[1], atUint8(cur.qFrom(last, 1)));
|
|
chan.q[2] = std::max(chan.q[2], atUint8(cur.qFrom(last, 2)));
|
|
last = cur;
|
|
}
|
|
break;
|
|
}
|
|
case Channel::Type::Scale: {
|
|
for (auto it = kit->begin() + 1; it != kit->end(); ++it) {
|
|
zeus::simd_floats f(it->simd);
|
|
QuantizedValue cur = {atInt32(f[0] / scaleMultOut), atInt32(f[1] / scaleMultOut), atInt32(f[2] / scaleMultOut)};
|
|
chan.q[0] = std::max(chan.q[0], atUint8(cur.qFrom(last, 0)));
|
|
chan.q[1] = std::max(chan.q[1], atUint8(cur.qFrom(last, 1)));
|
|
chan.q[2] = std::max(chan.q[2], atUint8(cur.qFrom(last, 2)));
|
|
last = cur;
|
|
}
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
++kit;
|
|
}
|
|
|
|
/* Generate Bitstream */
|
|
sizeOut = ComputeBitstreamSize(keyFrameCount, channels);
|
|
std::unique_ptr<atUint8[]> newData(new atUint8[sizeOut]);
|
|
memset(newData.get(), 0, sizeOut);
|
|
|
|
lastVals = initVals;
|
|
for (size_t f = 0; f < keyFrameCount; ++f) {
|
|
kit = chanKeys.begin();
|
|
vit = lastVals.begin();
|
|
for (const Channel& chan : channels) {
|
|
const Value& val = (*kit++)[f + 1];
|
|
QuantizedValue& last = *vit++;
|
|
switch (chan.type) {
|
|
case Channel::Type::Rotation: {
|
|
QuantizedRot qrCur = QuantizeRotation(val, rotDivOut);
|
|
quantizeBit(newData.get(), qrCur.w);
|
|
quantize(newData.get(), chan.q[0], qrCur.v[0] - last.v[0]);
|
|
quantize(newData.get(), chan.q[1], qrCur.v[1] - last.v[1]);
|
|
quantize(newData.get(), chan.q[2], qrCur.v[2] - last.v[2]);
|
|
last = qrCur.v;
|
|
break;
|
|
}
|
|
case Channel::Type::Translation: {
|
|
zeus::simd_floats f(val.simd);
|
|
QuantizedValue cur = {atInt32(f[0] / transMultOut), atInt32(f[1] / transMultOut), atInt32(f[2] / transMultOut)};
|
|
quantize(newData.get(), chan.q[0], cur[0] - last[0]);
|
|
quantize(newData.get(), chan.q[1], cur[1] - last[1]);
|
|
quantize(newData.get(), chan.q[2], cur[2] - last[2]);
|
|
last = cur;
|
|
break;
|
|
}
|
|
case Channel::Type::Scale: {
|
|
zeus::simd_floats f(val.simd);
|
|
QuantizedValue cur = {atInt32(f[0] / scaleMultOut), atInt32(f[1] / scaleMultOut), atInt32(f[2] / scaleMultOut)};
|
|
quantize(newData.get(), chan.q[0], cur[0] - last[0]);
|
|
quantize(newData.get(), chan.q[1], cur[1] - last[1]);
|
|
quantize(newData.get(), chan.q[2], cur[2] - last[2]);
|
|
last = cur;
|
|
break;
|
|
}
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return newData;
|
|
}
|
|
|
|
} // namespace DataSpec::DNAANIM
|