metaforce/hecl/lib/Backend/Metal.cpp

686 lines
27 KiB
C++

#include "hecl/Backend/Metal.hpp"
#if BOO_HAS_METAL
#include <athena/MemoryReader.hpp>
#include <athena/MemoryWriter.hpp>
#include <boo/graphicsdev/Metal.hpp>
static logvisor::Module Log("hecl::Backend::Metal");
namespace hecl::Backend
{
std::string Metal::EmitTexGenSource2(TexGenSrc src, int uvIdx) const
{
switch (src)
{
case TexGenSrc::Position:
return "v.posIn.xy\n";
case TexGenSrc::Normal:
return "v.normIn.xy\n";
case TexGenSrc::UV:
return hecl::Format("v.uvIn%u", uvIdx);
default: break;
}
return std::string();
}
std::string Metal::EmitTexGenSource4(TexGenSrc src, int uvIdx) const
{
switch (src)
{
case TexGenSrc::Position:
return "float4(v.posIn, 1.0)\n";
case TexGenSrc::Normal:
return "float4(v.normIn, 1.0)\n";
case TexGenSrc::UV:
return hecl::Format("float4(v.uvIn%u, 0.0, 1.0)", uvIdx);
default: break;
}
return std::string();
}
std::string Metal::GenerateVertInStruct(unsigned col, unsigned uv, unsigned w) const
{
std::string retval =
"struct VertData\n"
"{\n"
" float3 posIn [[ attribute(0) ]];\n"
" float3 normIn [[ attribute(1) ]];\n";
unsigned idx = 2;
if (col)
{
for (unsigned i=0 ; i<col ; ++i, ++idx)
retval += hecl::Format(" float4 colIn%u [[ attribute(%u) ]];\n", i, idx);
}
if (uv)
{
for (unsigned i=0 ; i<uv ; ++i, ++idx)
retval += hecl::Format(" float2 uvIn%u [[ attribute(%u) ]];\n", i, idx);
}
if (w)
{
for (unsigned i=0 ; i<w ; ++i, ++idx)
retval += hecl::Format(" float4 weightIn%u [[ attribute(%u) ]];\n", i, idx);
}
return retval + "};\n";
}
std::string Metal::GenerateVertToFragStruct(size_t extTexCount, bool reflectionCoords) const
{
std::string retval =
"struct VertToFrag\n"
"{\n"
" float4 mvpPos [[ position ]];\n"
" float4 mvPos;\n"
" float4 mvNorm;\n";
if (m_tcgs.size())
for (size_t i=0 ; i<m_tcgs.size() ; ++i)
retval += hecl::Format(" float2 tcgs%" PRISize ";\n", i);
if (extTexCount)
for (size_t i=0 ; i<extTexCount ; ++i)
retval += hecl::Format(" float2 extTcgs%" PRISize ";\n", i);
if (reflectionCoords)
retval += " float2 reflectTcgs0;\n"
" float2 reflectTcgs1;\n"
" float reflectAlpha;\n";
return retval + "};\n";
}
std::string Metal::GenerateVertUniformStruct(unsigned skinSlots) const
{
if (skinSlots == 0)
skinSlots = 1;
std::string retval = hecl::Format("struct HECLVertUniform\n"
"{\n"
" float4x4 mv[%u];\n"
" float4x4 mvInv[%u];\n"
" float4x4 proj;\n"
"};\n"
"struct TexMtxs {float4x4 mtx; float4x4 postMtx;};\n"
"struct ReflectTexMtxs {float4x4 indMtx; float4x4 reflectMtx; float reflectAlpha;};\n",
skinSlots, skinSlots);
return retval;
}
std::string Metal::GenerateFragOutStruct() const
{
return "struct FragOut\n"
"{\n"
" float4 color [[ color(0) ]];\n"
" //float depth [[ depth(less) ]];\n"
"};\n";
}
std::string Metal::GenerateAlphaTest() const
{
return " if (out.color.a < 0.01)\n"
" {\n"
" discard_fragment();\n"
" }\n";
}
std::string Metal::GenerateReflectionExpr(ReflectionType type) const
{
switch (type)
{
case ReflectionType::None:
default:
return "float3(0.0, 0.0, 0.0)";
case ReflectionType::Simple:
return "reflectionTex.sample(samp, vtf.reflectTcgs1).rgb * vtf.reflectAlpha";
case ReflectionType::Indirect:
return "reflectionTex.sample(samp, (reflectionIndTex.sample(samp, vtf.reflectTcgs0).rg - "
"float2(0.5, 0.5)) * float2(0.5, 0.5) + vtf.reflectTcgs1).rgb * vtf.reflectAlpha";
}
}
void Metal::reset(const IR& ir, Diagnostics& diag)
{
/* Common programmable interpretation */
ProgrammableCommon::reset(ir, diag, "Metal");
}
std::string Metal::makeVert(unsigned col, unsigned uv, unsigned w,
unsigned s, size_t extTexCount,
const TextureInfo* extTexs, ReflectionType reflectionType) const
{
std::string tmStr = ",\nconstant TexMtxs* texMtxs [[ buffer(3) ]]";
if (reflectionType != ReflectionType::None)
tmStr += ",\nconstant ReflectTexMtxs& reflectMtxs [[ buffer(5) ]]";
std::string retval = "#include <metal_stdlib>\nusing namespace metal;\n" +
GenerateVertInStruct(col, uv, w) + "\n" +
GenerateVertToFragStruct(extTexCount, reflectionType != ReflectionType::None) + "\n" +
GenerateVertUniformStruct(s) +
"\nvertex VertToFrag vmain(VertData v [[ stage_in ]],\n"
" constant HECLVertUniform& vu [[ buffer(2) ]]" + tmStr + ")\n"
"{\n"
" VertToFrag vtf;\n";
if (s)
{
/* skinned */
retval += " float4 posAccum = float4(0.0,0.0,0.0,0.0);\n"
" float4 normAccum = float4(0.0,0.0,0.0,0.0);\n";
for (size_t i=0 ; i<s ; ++i)
retval += hecl::Format(" posAccum += (vu.mv[%" PRISize "] * float4(v.posIn, 1.0)) * v.weightIn%" PRISize "[%" PRISize "];\n"
" normAccum += (vu.mvInv[%" PRISize "] * float4(v.normIn, 1.0)) * v.weightIn%" PRISize "[%" PRISize "];\n",
i, i/4, i%4, i, i/4, i%4);
retval += " posAccum[3] = 1.0;\n"
" vtf.mvPos = posAccum;\n"
" vtf.mvNorm = float4(normalize(normAccum.xyz), 0.0);\n"
" vtf.mvpPos = vu.proj * posAccum;\n";
}
else
{
/* non-skinned */
retval += " vtf.mvPos = vu.mv[0] * float4(v.posIn, 1.0);\n"
" vtf.mvNorm = vu.mvInv[0] * float4(v.normIn, 0.0);\n"
" vtf.mvpPos = vu.proj * vtf.mvPos;\n";
}
retval += " float4 tmpProj;\n";
int tcgIdx = 0;
for (const TexCoordGen& tcg : m_tcgs)
{
if (tcg.m_mtx < 0)
retval += hecl::Format(" vtf.tcgs%u = %s;\n", tcgIdx,
EmitTexGenSource2(tcg.m_src, tcg.m_uvIdx).c_str());
else
retval += hecl::Format(" tmpProj = texMtxs[%u].postMtx * float4(%s((texMtxs[%u].mtx * %s).xyz), 1.0);\n"
" vtf.tcgs%u = (tmpProj / tmpProj.w).xy;\n", tcg.m_mtx,
tcg.m_norm ? "normalize" : "", tcg.m_mtx,
EmitTexGenSource4(tcg.m_src, tcg.m_uvIdx).c_str(), tcgIdx);
++tcgIdx;
}
for (int i=0 ; i<extTexCount ; ++i)
{
const TextureInfo& extTex = extTexs[i];
if (extTex.mtxIdx < 0)
retval += hecl::Format(" vtf.extTcgs%u = %s;\n", i,
EmitTexGenSource2(extTex.src, extTex.uvIdx).c_str());
else
retval += hecl::Format(" tmpProj = texMtxs[%u].postMtx * float4(%s((texMtxs[%u].mtx * %s).xyz), 1.0);\n"
" vtf.extTcgs%u = (tmpProj / tmpProj.w).xy;\n", extTex.mtxIdx,
extTex.normalize ? "normalize" : "", extTex.mtxIdx,
EmitTexGenSource4(extTex.src, extTex.uvIdx).c_str(), i);
}
if (reflectionType != ReflectionType::None)
retval += " vtf.reflectTcgs0 = normalize((reflectMtxs.indMtx * float4(v.posIn, 1.0)).xz) * float2(0.5, 0.5) + float2(0.5, 0.5);\n"
" vtf.reflectTcgs1 = (reflectMtxs.reflectMtx * float4(v.posIn, 1.0)).xy;\n"
" vtf.reflectAlpha = reflectMtxs.reflectAlpha;\n";
return retval + " return vtf;\n}\n";
}
std::string Metal::makeFrag(size_t blockCount, const char** blockNames, bool alphaTest,
ReflectionType reflectionType, const ShaderFunction& lighting) const
{
std::string lightingSrc;
if (lighting.m_source)
lightingSrc = lighting.m_source;
std::string texMapDecl;
if (m_texMapEnd)
for (int i=0 ; i<m_texMapEnd ; ++i)
texMapDecl += hecl::Format(",\ntexture2d<float> tex%u [[ texture(%u) ]]", i, i);
if (reflectionType == ReflectionType::Indirect)
texMapDecl += hecl::Format(",\ntexture2d<float> reflectionIndTex [[ texture(%u) ]]\n"
",\ntexture2d<float> reflectionTex [[ texture(%u) ]]\n",
m_texMapEnd, m_texMapEnd+1);
else if (reflectionType == ReflectionType::Simple)
texMapDecl += hecl::Format(",\ntexture2d<float> reflectionTex [[ texture(%u) ]]\n",
m_texMapEnd);
std::string blockCall;
for (size_t i=0 ; i<blockCount ; ++i)
{
texMapDecl += hecl::Format(",\nconstant %s& block%" PRISize " [[ buffer(%" PRISize ") ]]", blockNames[i], i, i + 4);
if (blockCall.size())
blockCall += ", ";
blockCall += hecl::Format("block%" PRISize, i);
}
std::string retval = "#include <metal_stdlib>\nusing namespace metal;\n" +
GenerateVertToFragStruct(0, reflectionType != ReflectionType::None) + "\n" +
GenerateFragOutStruct() + "\n" +
lightingSrc + "\n" +
"fragment FragOut fmain(VertToFrag vtf [[ stage_in ]],\n"
"sampler samp [[ sampler(0) ]], sampler clampSamp [[ sampler(1) ]]" + texMapDecl + ")\n"
"{\n"
" FragOut out;\n";
if (lighting.m_source)
{
retval += " float4 colorReg0 = block0.colorReg0;\n"
" float4 colorReg1 = block0.colorReg1;\n"
" float4 colorReg2 = block0.colorReg2;\n"
" float4 mulColor = block0.mulColor;\n";
}
else
{
retval += " float4 colorReg0 = float4(1.0, 1.0, 1.0, 1.0);\n"
" float4 colorReg1 = float4(1.0, 1.0, 1.0, 1.0);\n"
" float4 colorReg2 = float4(1.0, 1.0, 1.0, 1.0);\n"
" float4 mulColor = float4(1.0, 1.0, 1.0, 1.0);\n";
}
if (m_lighting)
{
if (lighting.m_entry)
retval += hecl::Format(" float4 lighting = %s(%s, vtf.mvPos, vtf.mvNorm, vtf);\n", lighting.m_entry, blockCall.c_str());
else
retval += " float4 lighting = float4(1.0,1.0,1.0,1.0);\n";
}
unsigned sampIdx = 0;
for (const TexSampling& sampling : m_texSamplings)
retval += hecl::Format(" float4 sampling%u = tex%u.sample(samp, vtf.tcgs%u);\n",
sampIdx++, sampling.mapIdx, sampling.tcgIdx);
std::string reflectionExpr = GenerateReflectionExpr(reflectionType);
if (m_alphaExpr.size())
retval += " out.color = float4(" + m_colorExpr + " + " + reflectionExpr + ", " + m_alphaExpr + ") * mulColor;\n";
else
retval += " out.color = float4(" + m_colorExpr + " + " + reflectionExpr + ", 1.0) * mulColor;\n";
return retval + (alphaTest ? GenerateAlphaTest() : "") +
" //out.depth = 1.0 - float(int((1.0 - vtf.mvpPos.z) * 16777216.0)) / 16777216.0;\n"
" return out;\n"
"}\n";
}
std::string Metal::makeFrag(size_t blockCount, const char** blockNames, bool alphaTest,
ReflectionType reflectionType, const ShaderFunction& lighting,
const ShaderFunction& post, size_t extTexCount,
const TextureInfo* extTexs) const
{
std::string lightingSrc;
if (lighting.m_source)
lightingSrc = lighting.m_source;
std::string postSrc;
if (post.m_source)
postSrc = post.m_source;
std::string lightingEntry;
if (lighting.m_entry)
lightingEntry = lighting.m_entry;
std::string postEntry;
if (post.m_entry)
postEntry = post.m_entry;
int extTexBits = 0;
for (int i=0 ; i<extTexCount ; ++i)
{
const TextureInfo& extTex = extTexs[i];
extTexBits |= 1 << extTex.mapIdx;
}
std::string texMapDecl;
if (m_texMapEnd)
for (int i=0 ; i<m_texMapEnd ; ++i)
if (!(extTexBits & (1 << i)))
texMapDecl += hecl::Format(",\ntexture2d<float> tex%u [[ texture(%u) ]]", i, i);
if (reflectionType == ReflectionType::Indirect)
texMapDecl += hecl::Format(",\ntexture2d<float> reflectionIndTex [[ texture(%u) ]]\n"
",\ntexture2d<float> reflectionTex [[ texture(%u) ]]\n",
m_texMapEnd, m_texMapEnd+1);
else if (reflectionType == ReflectionType::Simple)
texMapDecl += hecl::Format(",\ntexture2d<float> reflectionTex [[ texture(%u) ]]\n",
m_texMapEnd);
std::string extTexCall;
for (int i=0 ; i<extTexCount ; ++i)
{
const TextureInfo& extTex = extTexs[i];
if (extTexCall.size())
extTexCall += ", ";
extTexCall += hecl::Format("tex%u", extTex.mapIdx);
texMapDecl += hecl::Format(",\ntexture2d<float> tex%u [[ texture(%u) ]]", extTex.mapIdx, extTex.mapIdx);
extTexBits |= 1 << extTex.mapIdx;
}
std::string blockCall;
for (size_t i=0 ; i<blockCount ; ++i)
{
texMapDecl += hecl::Format(",\nconstant %s& block%" PRISize " [[ buffer(%" PRISize ") ]]", blockNames[i], i, i + 4);
if (blockCall.size())
blockCall += ", ";
blockCall += hecl::Format("block%" PRISize, i);
}
std::string retval = "#include <metal_stdlib>\nusing namespace metal;\n" +
GenerateVertToFragStruct(extTexCount, reflectionType != ReflectionType::None) + "\n" +
GenerateFragOutStruct() + "\n" +
lightingSrc + "\n" +
postSrc + "\n" +
"fragment FragOut fmain(VertToFrag vtf [[ stage_in ]],\n"
"sampler samp [[ sampler(0) ]], sampler clampSamp [[ sampler(1) ]]" + texMapDecl + ")\n"
"{\n"
" FragOut out;\n";
if (lighting.m_source)
{
retval += " float4 colorReg0 = block0.colorReg0;\n"
" float4 colorReg1 = block0.colorReg1;\n"
" float4 colorReg2 = block0.colorReg2;\n"
" float4 mulColor = block0.mulColor;\n";
}
else
{
retval += " float4 colorReg0 = float4(1.0, 1.0, 1.0, 1.0);\n"
" float4 colorReg1 = float4(1.0, 1.0, 1.0, 1.0);\n"
" float4 colorReg2 = float4(1.0, 1.0, 1.0, 1.0);\n"
" float4 mulColor = float4(1.0, 1.0, 1.0, 1.0);\n";
}
if (m_lighting)
{
if (lighting.m_entry)
{
retval += " float4 lighting = " + lightingEntry + "(" + blockCall + ", vtf.mvPos, vtf.mvNorm, vtf" +
(!strncmp(lighting.m_entry, "EXT", 3) ? (extTexCall.size() ? (", samp, clampSamp," + extTexCall) : "") : "") + ");\n";
}
else
retval += " float4 lighting = float4(1.0,1.0,1.0,1.0);\n";
}
unsigned sampIdx = 0;
for (const TexSampling& sampling : m_texSamplings)
retval += hecl::Format(" float4 sampling%u = tex%u.sample(samp, vtf.tcgs%u);\n",
sampIdx++, sampling.mapIdx, sampling.tcgIdx);
std::string reflectionExpr = GenerateReflectionExpr(reflectionType);
if (m_alphaExpr.size())
{
retval += " out.color = " + postEntry + "(" +
(postEntry.size() ? ("vtf, " + (blockCall.size() ? (blockCall + ", ") : "") +
(!strncmp(post.m_entry, "EXT", 3) ? (extTexCall.size() ? ("samp, clampSamp," + extTexCall + ", ") : "") : "")) : "") +
"float4(" + m_colorExpr + " + " + reflectionExpr + ", " + m_alphaExpr + ")) * mulColor;\n";
}
else
{
retval += " out.color = " + postEntry + "(" +
(postEntry.size() ? ("vtf, " + (blockCall.size() ? (blockCall + ", ") : "") +
(!strncmp(post.m_entry, "EXT", 3) ? (extTexCall.size() ? ("samp, clampSamp," + extTexCall + ", ") : "") : "")) : "") +
"float4(" + m_colorExpr + " + " + reflectionExpr + ", 1.0)) * mulColor;\n";
}
return retval + (alphaTest ? GenerateAlphaTest() : "") +
" //out.depth = 1.0 - float(int((1.0 - vtf.mvpPos.z) * 16777216.0)) / 16777216.0;\n"
" return out;\n"
"}\n";
}
}
namespace hecl::Runtime
{
struct MetalBackendFactory : IShaderBackendFactory
{
Backend::Metal m_backend;
ShaderCachedData buildShaderFromIR(const ShaderTag& tag,
const hecl::Frontend::IR& ir,
hecl::Frontend::Diagnostics& diag,
boo::IGraphicsDataFactory::Context& ctx,
boo::ObjToken<boo::IShaderPipeline>& objOut)
{
m_backend.reset(ir, diag);
size_t cachedSz = 2;
std::string vertSource =
m_backend.makeVert(tag.getColorCount(), tag.getUvCount(), tag.getWeightCount(),
tag.getSkinSlotCount(), 0, nullptr, tag.getReflectionType());
std::string fragSource = m_backend.makeFrag(0, nullptr,
tag.getDepthWrite() && m_backend.m_blendDst == hecl::Backend::BlendFactor::InvSrcAlpha,
tag.getReflectionType());
std::vector<uint8_t> vertBlob;
std::vector<uint8_t> fragBlob;
objOut =
static_cast<boo::MetalDataFactory::Context&>(ctx).
newShaderPipeline(vertSource.c_str(), fragSource.c_str(),
&vertBlob, &fragBlob,
tag.newVertexFormat(ctx),
boo::BlendFactor(m_backend.m_blendSrc),
boo::BlendFactor(m_backend.m_blendDst),
tag.getPrimType(),
tag.getDepthTest() ? boo::ZTest::LEqual : boo::ZTest::None, tag.getDepthWrite(), true, true,
tag.getBackfaceCulling() ? boo::CullMode::Backface : boo::CullMode::None);
if (!objOut)
Log.report(logvisor::Fatal, "unable to build shader");
cachedSz += vertBlob.size() + 4;
cachedSz += fragBlob.size() + 4;
ShaderCachedData dataOut(tag, cachedSz);
athena::io::MemoryWriter w(dataOut.m_data.get(), dataOut.m_sz);
w.writeUByte(atUint8(m_backend.m_blendSrc));
w.writeUByte(atUint8(m_backend.m_blendDst));
w.writeUint32Big(vertBlob.size());
w.writeUBytes(vertBlob.data(), vertBlob.size());
w.writeUint32Big(fragBlob.size());
w.writeUBytes(fragBlob.data(), fragBlob.size());
return dataOut;
}
boo::ObjToken<boo::IShaderPipeline> buildShaderFromCache(const ShaderCachedData& data,
boo::IGraphicsDataFactory::Context& ctx)
{
const ShaderTag& tag = data.m_tag;
athena::io::MemoryReader r(data.m_data.get(), data.m_sz, false, false);
boo::BlendFactor blendSrc = boo::BlendFactor(r.readUByte());
boo::BlendFactor blendDst = boo::BlendFactor(r.readUByte());
std::vector<uint8_t> vertBlob;
std::vector<uint8_t> fragBlob;
atUint32 vertLen = r.readUint32Big();
if (vertLen)
{
vertBlob.resize(vertLen);
r.readUBytesToBuf(&vertBlob[0], vertLen);
}
atUint32 fragLen = r.readUint32Big();
if (fragLen)
{
fragBlob.resize(fragLen);
r.readUBytesToBuf(&fragBlob[0], fragLen);
}
if (r.hasError())
return nullptr;
auto ret =
static_cast<boo::MetalDataFactory::Context&>(ctx).
newShaderPipeline(nullptr, nullptr,
&vertBlob, &fragBlob,
tag.newVertexFormat(ctx),
blendSrc, blendDst, tag.getPrimType(),
tag.getDepthTest() ? boo::ZTest::LEqual : boo::ZTest::None, tag.getDepthWrite(), true, true,
tag.getBackfaceCulling() ? boo::CullMode::Backface : boo::CullMode::None);
if (!ret)
Log.report(logvisor::Fatal, "unable to build shader");
return ret;
}
ShaderCachedData buildExtendedShaderFromIR(const ShaderTag& tag,
const hecl::Frontend::IR& ir,
hecl::Frontend::Diagnostics& diag,
const std::vector<ShaderCacheExtensions::ExtensionSlot>& extensionSlots,
boo::IGraphicsDataFactory::Context& ctx,
FReturnExtensionShader returnFunc)
{
m_backend.reset(ir, diag);
size_t cachedSz = 2;
std::vector<std::pair<std::vector<uint8_t>, std::vector<uint8_t>>> blobs;
blobs.reserve(extensionSlots.size());
for (const ShaderCacheExtensions::ExtensionSlot& slot : extensionSlots)
{
std::string vertSource =
m_backend.makeVert(tag.getColorCount(), tag.getUvCount(), tag.getWeightCount(),
tag.getSkinSlotCount(), slot.texCount, slot.texs,
slot.noReflection ? Backend::ReflectionType::None : tag.getReflectionType());
std::string fragSource =
m_backend.makeFrag(slot.blockCount, slot.blockNames,
tag.getDepthWrite() && m_backend.m_blendDst == hecl::Backend::BlendFactor::InvSrcAlpha,
slot.noReflection ? Backend::ReflectionType::None : tag.getReflectionType(),
slot.lighting, slot.post, slot.texCount, slot.texs);
boo::ZTest zTest;
switch (slot.depthTest)
{
case hecl::Backend::ZTest::Original:
default:
zTest = tag.getDepthTest() ? boo::ZTest::LEqual : boo::ZTest::None;
break;
case hecl::Backend::ZTest::None:
zTest = boo::ZTest::None;
break;
case hecl::Backend::ZTest::LEqual:
zTest = boo::ZTest::LEqual;
break;
case hecl::Backend::ZTest::Greater:
zTest = boo::ZTest::Greater;
break;
case hecl::Backend::ZTest::Equal:
zTest = boo::ZTest::Equal;
break;
}
blobs.emplace_back();
auto ret =
static_cast<boo::MetalDataFactory::Context&>(ctx).
newShaderPipeline(vertSource.c_str(), fragSource.c_str(),
&blobs.back().first, &blobs.back().second,
tag.newVertexFormat(ctx),
boo::BlendFactor((slot.srcFactor == hecl::Backend::BlendFactor::Original) ? m_backend.m_blendSrc : slot.srcFactor),
boo::BlendFactor((slot.dstFactor == hecl::Backend::BlendFactor::Original) ? m_backend.m_blendDst : slot.dstFactor),
tag.getPrimType(), zTest, slot.noDepthWrite ? false : tag.getDepthWrite(),
!slot.noColorWrite, !slot.noAlphaWrite,
(slot.cullMode == hecl::Backend::CullMode::Original) ?
(tag.getBackfaceCulling() ? boo::CullMode::Backface : boo::CullMode::None) :
boo::CullMode(slot.cullMode));
if (!ret)
Log.report(logvisor::Fatal, "unable to build shader");
cachedSz += blobs.back().first.size() + 4;
cachedSz += blobs.back().second.size() + 4;
returnFunc(ret);
}
ShaderCachedData dataOut(tag, cachedSz);
athena::io::MemoryWriter w(dataOut.m_data.get(), dataOut.m_sz);
w.writeUByte(atUint8(m_backend.m_blendSrc));
w.writeUByte(atUint8(m_backend.m_blendDst));
for (auto& blob : blobs)
{
w.writeUint32Big(blob.first.size());
w.writeUBytes(blob.first.data(), blob.first.size());
w.writeUint32Big(blob.second.size());
w.writeUBytes(blob.second.data(), blob.second.size());
}
return dataOut;
}
bool buildExtendedShaderFromCache(const ShaderCachedData& data,
const std::vector<ShaderCacheExtensions::ExtensionSlot>& extensionSlots,
boo::IGraphicsDataFactory::Context& ctx,
FReturnExtensionShader returnFunc)
{
const ShaderTag& tag = data.m_tag;
athena::io::MemoryReader r(data.m_data.get(), data.m_sz, false, false);
hecl::Backend::BlendFactor blendSrc = hecl::Backend::BlendFactor(r.readUByte());
hecl::Backend::BlendFactor blendDst = hecl::Backend::BlendFactor(r.readUByte());
if (r.hasError())
return false;
for (const ShaderCacheExtensions::ExtensionSlot& slot : extensionSlots)
{
std::vector<uint8_t> vertBlob;
std::vector<uint8_t> fragBlob;
atUint32 vertLen = r.readUint32Big();
if (vertLen)
{
vertBlob.resize(vertLen);
r.readUBytesToBuf(&vertBlob[0], vertLen);
}
atUint32 fragLen = r.readUint32Big();
if (fragLen)
{
fragBlob.resize(fragLen);
r.readUBytesToBuf(&fragBlob[0], fragLen);
}
if (r.hasError())
return false;
boo::ZTest zTest;
switch (slot.depthTest)
{
case hecl::Backend::ZTest::Original:
default:
zTest = tag.getDepthTest() ? boo::ZTest::LEqual : boo::ZTest::None;
break;
case hecl::Backend::ZTest::None:
zTest = boo::ZTest::None;
break;
case hecl::Backend::ZTest::LEqual:
zTest = boo::ZTest::LEqual;
break;
case hecl::Backend::ZTest::Greater:
zTest = boo::ZTest::Greater;
break;
case hecl::Backend::ZTest::Equal:
zTest = boo::ZTest::Equal;
break;
}
auto ret =
static_cast<boo::MetalDataFactory::Context&>(ctx).
newShaderPipeline(nullptr, nullptr,
&vertBlob, &fragBlob,
tag.newVertexFormat(ctx),
boo::BlendFactor((slot.srcFactor == hecl::Backend::BlendFactor::Original) ? blendSrc : slot.srcFactor),
boo::BlendFactor((slot.dstFactor == hecl::Backend::BlendFactor::Original) ? blendDst : slot.dstFactor),
tag.getPrimType(), zTest, slot.noDepthWrite ? false : tag.getDepthWrite(),
!slot.noColorWrite, !slot.noAlphaWrite,
(slot.cullMode == hecl::Backend::CullMode::Original) ?
(tag.getBackfaceCulling() ? boo::CullMode::Backface : boo::CullMode::None) :
boo::CullMode(slot.cullMode));
if (!ret)
Log.report(logvisor::Fatal, "unable to build shader");
returnFunc(ret);
}
return true;
}
};
IShaderBackendFactory* _NewMetalBackendFactory()
{
return new struct MetalBackendFactory();
}
}
#endif