metaforce/Runtime/Particle/CVectorElement.cpp

340 lines
9.0 KiB
C++

#include "CVectorElement.hpp"
#include "CParticleGlobals.hpp"
#include "CRandom16.hpp"
#include "CParticleGen.hpp"
#include <math.h>
namespace pshag
{
CVEKeyframeEmitter::CVEKeyframeEmitter(CInputStream& in)
{
x4_percent = in.readUint32Big();
x8_unk1 = in.readUint32Big();
xc_loop = in.readBool();
xd_unk2 = in.readBool();
x10_loopEnd = in.readUint32Big();
x14_loopStart = in.readUint32Big();
u32 count = in.readUint32Big();
x18_keys.reserve(count);
for (u32 i=0 ; i<count ; ++i)
x18_keys.push_back(in.readVec3fBig());
}
bool CVEKeyframeEmitter::GetValue(int frame, Zeus::CVector3f& valOut) const
{
if (!x4_percent)
{
int emitterTime = CParticleGlobals::g_EmitterTime;
int calcKey = emitterTime;
if (xc_loop)
{
if (emitterTime >= x10_loopEnd)
{
int v1 = emitterTime - x14_loopStart;
int v2 = x10_loopEnd - x14_loopStart;
calcKey = v1 % v2;
calcKey += x14_loopStart;
}
}
else
{
int v1 = x10_loopEnd - 1;
if (v1 < emitterTime)
calcKey = v1;
}
valOut = x18_keys[calcKey];
}
else
{
int ltPerc = CParticleGlobals::g_ParticleLifetimePercentage;
float ltPercRem = CParticleGlobals::g_ParticleLifetimePercentageRemainder;
if (ltPerc == 100)
valOut = x18_keys[100];
else
valOut = ltPercRem * x18_keys[ltPerc+1] + (1.0f - ltPercRem) * x18_keys[ltPerc];
}
return false;
}
CVECone::CVECone(CVectorElement* a, CRealElement* b)
: x4_direction(a), x8_magnitude(b)
{
Zeus::CVector3f av;
x4_direction->GetValue(0, av);
av.normalize();
if (av[0] > 0.8)
xc_xVec = av.cross(Zeus::CVector3f(0.f, 1.f, 0.f));
else
xc_xVec = av.cross(Zeus::CVector3f(1.f, 0.f, 0.f));
x18_yVec = av.cross(xc_xVec);
}
bool CVECone::GetValue(int frame, Zeus::CVector3f& valOut) const
{
float b;
x8_magnitude->GetValue(frame, b);
Zeus::CVector3f dir;
x4_direction->GetValue(frame, dir);
float b2 = std::min(1.f, b);
float randX, randY;
do
{
float rand1 = CRandom16::GetRandomNumber()->Float() - 0.5f;
randX = 2.f * b2 * rand1;
float rand2 = CRandom16::GetRandomNumber()->Float() - 0.5f;
randY = 2.f * b2 * rand2;
} while (randX * randX + randY * randY > 1.f);
valOut = xc_xVec * randX + x18_yVec * randY + dir;
return false;
}
bool CVETimeChain::GetValue(int frame, Zeus::CVector3f& valOut) const
{
int v;
xc_swFrame->GetValue(frame, v);
if (frame >= v)
return x8_b->GetValue(frame, valOut);
else
return x4_a->GetValue(frame, valOut);
}
bool CVEAngleCone::GetValue(int frame, Zeus::CVector3f& valOut) const
{
float xc, yc, xr, yr;
x4_angleXConstant->GetValue(frame, xc);
x8_angleYConstant->GetValue(frame, yc);
xc_angleXRange->GetValue(frame, xr);
x10_angleYRange->GetValue(frame, yr);
float xtmp = CRandom16::GetRandomNumber()->Float() * xr;
float xang = (0.5f * xr - xtmp + xc) * M_PI / 180.f;
float ytmp = CRandom16::GetRandomNumber()->Float() * yr;
float yang = (0.5f * yr - ytmp + yc) * M_PI / 180.f;
float mag;
x14_magnitude->GetValue(frame, mag);
/* This takes a +Z vector and rotates it around X and Y axis (like a rotation matrix would) */
valOut = Zeus::CVector3f(cosf(xang) * -sinf(yang), sinf(xang), cosf(xang) * cosf(yang)) * Zeus::CVector3f(mag);
return false;
}
bool CVEAdd::GetValue(int frame, Zeus::CVector3f& valOut) const
{
Zeus::CVector3f a, b;
x4_a->GetValue(frame, a);
x8_b->GetValue(frame, b);
valOut = a + b;
return false;
}
CVECircleCluster::CVECircleCluster(CVectorElement* a, CVectorElement* b, CIntElement* c, CRealElement* d)
: x4_a(a), x24_magnitude(d)
{
int cv;
c->GetValue(0, cv);
x20_deltaAngle = 360.f / float(cv) * M_PI / 180.f;
Zeus::CVector3f bv;
b->GetValue(0, bv);
bv.normalize();
if (bv[0] > 0.8)
x8_xVec = bv.cross(Zeus::CVector3f(0.f, 1.f, 0.f));
else
x8_xVec = bv.cross(Zeus::CVector3f(1.f, 0.f, 0.f));
x14_yVec = bv.cross(x8_xVec);
delete b;
delete c;
}
bool CVECircleCluster::GetValue(int frame, Zeus::CVector3f& valOut) const
{
Zeus::CVector3f av;
x4_a->GetValue(frame, av);
float curAngle = frame * x20_deltaAngle;
Zeus::CVector3f x = x8_xVec * cosf(curAngle);
Zeus::CVector3f y = x14_yVec * sinf(curAngle);
Zeus::CVector3f tv = x + y + av;
float dv;
x24_magnitude->GetValue(frame, dv);
Zeus::CVector3f magVec(dv * tv.magnitude());
Zeus::CVector3f rv = magVec * Zeus::CVector3f(CRandom16::GetRandomNumber()->Float(),
CRandom16::GetRandomNumber()->Float(),
CRandom16::GetRandomNumber()->Float());
valOut = tv + rv;
return false;
}
bool CVEConstant::GetValue(int frame, Zeus::CVector3f& valOut) const
{
float a, b, c;
x4_a->GetValue(frame, a);
x8_b->GetValue(frame, b);
xc_c->GetValue(frame, c);
valOut = Zeus::CVector3f(a, b, c);
return false;
}
bool CVEFastConstant::GetValue(int frame, Zeus::CVector3f& valOut) const
{
valOut = x4_val;
return false;
}
CVECircle::CVECircle(CVectorElement* a, CVectorElement* b, CRealElement* c, CRealElement* d, CRealElement* e)
: x4_direction(a), x20_angleConstant(c), x24_angleLinear(d), x28_magnitude(e)
{
Zeus::CVector3f bv;
b->GetValue(0, bv);
bv.normalize();
if (bv[0] > 0.8)
x8_xVec = bv.cross(Zeus::CVector3f(0.f, 1.f, 0.f));
else
x8_xVec = bv.cross(Zeus::CVector3f(1.f, 0.f, 0.f));
x14_yVec = bv.cross(x8_xVec);
delete b;
}
bool CVECircle::GetValue(int frame, Zeus::CVector3f& valOut) const
{
float c, d, e;
x20_angleConstant->GetValue(frame, c);
x24_angleLinear->GetValue(frame, d);
x28_magnitude->GetValue(frame, e);
float curAngle = (d * frame + c) * M_PI / 180.f;
Zeus::CVector3f av;
x4_direction->GetValue(frame, av);
Zeus::CVector3f x = x8_xVec * e * cosf(curAngle);
Zeus::CVector3f y = x14_yVec * e * sinf(curAngle);
valOut = x + y + av;
return false;
}
bool CVEMultiply::GetValue(int frame, Zeus::CVector3f& valOut) const
{
Zeus::CVector3f a, b;
x4_a->GetValue(frame, a);
x8_b->GetValue(frame, b);
valOut = a * b;
return false;
}
bool CVERealToVector::GetValue(int frame, Zeus::CVector3f& valOut) const
{
float a;
x4_a->GetValue(frame, a);
valOut = Zeus::CVector3f(a);
return false;
}
bool CVEPulse::GetValue(int frame, Zeus::CVector3f& valOut) const
{
int a, b;
x4_aDuration->GetValue(frame, a);
x8_bDuration->GetValue(frame, b);
int cv = std::max(1, a + b + 1);
if (b >= 1)
{
int cv2 = frame % cv;
if (cv2 >= a)
x10_bVal->GetValue(frame, valOut);
else
xc_aVal->GetValue(frame, valOut);
}
else
xc_aVal->GetValue(frame, valOut);
return false;
}
bool CVEParticleVelocity::GetValue(int /*frame*/, Zeus::CVector3f& valOut) const
{
valOut = CParticleGlobals::g_particleMetrics->x1c_pvel;
return false;
}
bool CVESPOS::GetValue(int frame, Zeus::CVector3f& valOut) const
{
/* TODO: Do */
return false;
}
bool CVEPLCO::GetValue(int /*frame*/, Zeus::CVector3f& valOut) const
{
valOut = CParticleGlobals::g_particleMetrics->x10_plco;
return false;
}
bool CVEPLOC::GetValue(int /*frame*/, Zeus::CVector3f& valOut) const
{
valOut = CParticleGlobals::g_particleMetrics->x0_ploc;
return false;
}
bool CVEPSOF::GetValue(int /*frame*/, Zeus::CVector3f& valOut) const
{
Zeus::CTransform trans= CParticleGlobals::g_currentParticleSystem->x4_system->GetOrientation();
valOut.x = trans.m_basis[0][0];
valOut.y = trans.m_basis[1][1];
valOut.z = trans.m_basis[2][2];
return false;
}
bool CVEPSOU::GetValue(int /*frame*/, Zeus::CVector3f& valOut) const
{
Zeus::CTransform trans= CParticleGlobals::g_currentParticleSystem->x4_system->GetOrientation();
valOut.x = trans.m_basis[0][0];
valOut.y = trans.m_basis[1][1];
valOut.z = trans.m_basis[2][2];
return false;
}
bool CVEPSOR::GetValue(int /*frame*/, Zeus::CVector3f& valOut) const
{
Zeus::CTransform trans= CParticleGlobals::g_currentParticleSystem->x4_system->GetOrientation();
valOut.x = trans.m_basis[0][0];
valOut.y = trans.m_basis[1][1];
valOut.z = trans.m_basis[2][2];
return false;
}
bool CVEPSTR::GetValue(int /*frame*/, Zeus::CVector3f& valOut) const
{
valOut = CParticleGlobals::g_currentParticleSystem->x4_system->GetTranslation();
return false;
}
bool CVESubtract::GetValue(int frame, Zeus::CVector3f& valOut) const
{
Zeus::CVector3f a, b;
x4_a->GetValue(frame, a);
x8_b->GetValue(frame, b);
valOut = a - b;
return false;
}
bool CVEColorToVector::GetValue(int frame, Zeus::CVector3f &valOut) const
{
Zeus::CColor val = {0.0, 0.0, 0.0, 1.0};
x4_a->GetValue(frame, val);
valOut = Zeus::CVector3f{val.r, val.g, val.b};
return false;
}
}