metaforce/DataSpec/DNAMP1/CMDL.cpp

509 lines
22 KiB
C++

#include <cstddef>
#include "CMDL.hpp"
#include "DNAMP1.hpp"
#include "CMDLMaterials.hpp"
struct DLPrimVert
{
atUint16 pos;
atUint16 norm;
atUint16 uvs[8];
};
namespace Retro
{
namespace DNAMP1
{
bool CMDL::ReadToBlender(HECL::BlenderConnection& conn,
Athena::io::IStreamReader& reader,
PAKRouter<PAKBridge>& pakRouter,
const PAK::Entry& entry,
const HECL::ProjectPath& masterShader)
{
reader.setEndian(Athena::BigEndian);
CMDL::Header head;
head.read(reader);
if (head.magic != 0xDEADBABE)
{
Log.report(LogVisor::Error, "invalid CMDL magic");
return false;
}
if (head.version != 2)
{
Log.report(LogVisor::Error, "invalid CMDL version for MP1");
return false;
}
/* Open Py Stream */
HECL::BlenderConnection::PyOutStream os = conn.beginPythonOut(true);
os.format("import bpy\n"
"import bmesh\n"
"\n"
"bpy.context.scene.name = '%s'\n"
"bpy.context.scene.hecl_type = 'MESH'\n"
"bpy.context.scene.hecl_mesh_obj = bpy.context.scene.name\n"
"\n"
"# Using 'Blender Game'\n"
"bpy.context.scene.render.engine = 'BLENDER_GAME'\n"
"\n"
"# Clear Scene\n"
"for ob in bpy.data.objects:\n"
" if ob.type != 'LAMP':\n"
" bpy.context.scene.objects.unlink(ob)\n"
" bpy.data.objects.remove(ob)\n"
"\n"
"# Property to convey original vert indices in overdraw meshes\n"
"class CMDLOriginalIndex(bpy.types.PropertyGroup):\n"
" index = bpy.props.IntProperty(name='Original Vertex Index')\n"
"bpy.utils.register_class(CMDLOriginalIndex)\n"
"bpy.types.Mesh.cmdl_orig_verts = bpy.props.CollectionProperty(type=CMDLOriginalIndex)\n"
"\n"
"def loop_from_facevert(face, vert_idx):\n"
" for loop in face.loops:\n"
" if loop.vert.index == vert_idx:\n"
" return loop\n"
"\n"
"def add_triangle(bm, vert_seq, vert_indices, norm_seq, norm_indices, mat_nr, od_list):\n"
" if len(set(vert_indices)) != 3:\n"
" return None, None\n"
"\n"
" ret_mesh = bm\n"
" vert_seq.ensure_lookup_table()\n"
" verts = [vert_seq[i] for i in vert_indices]\n"
" norms = [norm_seq[i] for i in norm_indices]\n"
"\n"
" # Make the face\n"
" face = bm.faces.get(verts)\n"
"\n"
" if face is not None and face.material_index != mat_nr: # Same poly, new material\n"
" # Overdraw detected; track copy\n"
" od_entry = None\n"
" for entry in od_list:\n"
" if entry['material'] == mat_nr:\n"
" od_entry = entry\n"
" if od_entry is None:\n"
" bm_cpy = bm.copy()\n"
" od_entry = {'material':mat_nr, 'bm':bm_cpy}\n"
" bmesh.ops.delete(od_entry['bm'], geom=od_entry['bm'].faces, context=3)\n"
" od_list.append(od_entry)\n"
" od_entry['bm'].verts.ensure_lookup_table()\n"
" verts = [od_entry['bm'].verts[i] for i in vert_indices]\n"
" face = od_entry['bm'].faces.get(verts)\n"
" if face is None:\n"
" face = od_entry['bm'].faces.new(verts)\n"
" else: # Probably a double-sided surface\n"
" face = face.copy()\n"
" face.normal_flip()\n"
" ret_mesh = od_entry['bm']\n"
"\n"
" elif face is not None: # Same material, probably double-sided\n"
" face = face.copy()\n"
" face.normal_flip()\n"
"\n"
" else: \n"
" face = bm.faces.new(verts)\n"
"\n"
" # Apply normals\n"
" for i in range(3):\n"
" verts[i].normal = norms[i]\n"
"\n"
" for i in range(3):\n"
" face.verts[i].index = vert_indices[i]\n"
" face.material_index = mat_nr\n"
" face.smooth = True\n"
"\n"
" return face, ret_mesh\n"
"\n"
"# Begin bmesh\n"
"bm = bmesh.new()\n"
"\n", pakRouter.getBestEntryName(entry).c_str());
/* Link master shader library */
os.format("# Master shader library\n"
"with bpy.data.libraries.load('%s', link=True, relative=True) as (data_from, data_to):\n"
" data_to.node_groups = data_from.node_groups\n"
"\n", masterShader.getAbsolutePathUTF8().c_str());
MaterialSet::RegisterMaterialProps(os);
os << "# Materials\n"
"materials = []\n"
"\n"
"# Overdraw-tracking\n"
"od_list = []\n"
"\n";
for (size_t s=0 ; s<head.secCount ; ++s)
{
atUint64 secStart = reader.position();
std::vector<std::vector<unsigned>> matUVCounts;
matUVCounts.reserve(head.matSetCount);
bool visitedDLOffsets = false;
if (s < head.matSetCount)
{
MaterialSet matSet;
matSet.read(reader);
/* Texmaps */
os << "texmap_list = []\n";
for (const UniqueID32& tex : matSet.head.textureIDs)
{
std::string texName = pakRouter.getBestEntryName(tex);
HECL::SystemString resPath = pakRouter.getResourceRelativePath(entry, tex);
HECL::SystemUTF8View resPathView(resPath);
os.format("if '%s' in bpy.data.textures:\n"
" image = bpy.data.images['%s']\n"
" texture = bpy.data.textures[image.name]\n"
"else:\n"
" image = bpy.data.images.load('//%s')\n"
" image.name = '%s'\n"
" texture = bpy.data.textures.new(image.name, 'IMAGE')\n"
" texture.image = image\n"
"texmap_list.append(texture)\n"
"\n", texName.c_str(), texName.c_str(),
resPathView.str().c_str(), texName.c_str());
}
matUVCounts.emplace_back();
std::vector<unsigned>& uvCounts = matUVCounts.back();
uvCounts.reserve(matSet.head.materialCount);
unsigned m=0;
for (const MaterialSet::Material& mat : matSet.materials)
{
uvCounts.emplace_back();
unsigned& uvCount = uvCounts.back();
MaterialSet::ConstructMaterial(os, mat, s, m++, uvCount);
os << "materials.append(new_material)\n";
}
}
else
{
switch (s-head.matSetCount)
{
case 0:
{
/* Positions */
size_t vertCount = head.secSizes[s] / 12;
for (size_t i=0 ; i<vertCount ; ++i)
{
atVec3f pos = reader.readVec3f();
os.format("bm.verts.new((%f,%f,%f))\n",
pos.vec[0], pos.vec[1], pos.vec[2]);
}
break;
}
case 1:
{
/* Normals */
os << "normals = []\n";
if (head.flags.shortNormals())
{
size_t normCount = head.secSizes[s] / 6;
for (size_t i=0 ; i<normCount ; ++i)
{
os.format("normals.append((%f,%f,%f))\n",
reader.readInt16(), reader.readInt16(), reader.readInt16());
}
}
else
{
size_t normCount = head.secSizes[s] / 12;
for (size_t i=0 ; i<normCount ; ++i)
{
atVec3f norm = reader.readVec3f();
os.format("normals.append((%f,%f,%f))\n",
norm.vec[0], norm.vec[1], norm.vec[2]);
}
}
break;
}
case 2:
{
/* Colors */
break;
}
case 3:
{
/* Float UVs */
os << "uv_list = []\n";
size_t uvCount = head.secSizes[s] / 8;
for (size_t i=0 ; i<uvCount ; ++i)
{
atVec2f uv = reader.readVec2f();
os.format("uv_list.append((%f,%f))\n",
uv.vec[0], uv.vec[1]);
}
break;
}
case 4:
{
/* Short UVs */
os << "suv_list = []\n";
if (head.flags.shortUVs())
{
size_t uvCount = head.secSizes[s] / 4;
for (size_t i=0 ; i<uvCount ; ++i)
{
os.format("suv_list.append((%f,%f))\n",
reader.readInt16(), reader.readInt16());
}
break;
}
/* DL Offsets (here or next section) */
visitedDLOffsets = true;
break;
}
default:
{
if (!visitedDLOffsets)
{
visitedDLOffsets = true;
break;
}
/* GX Display List (surface) */
SurfaceHeader sHead;
sHead.read(reader);
unsigned matUVCount = matUVCounts[0][sHead.matIdx];
std::unique_ptr<atUint8[]> dlBuf = reader.readUBytes(sHead.dlSize);
atUint8* origDl = dlBuf.get();
atUint8* dl = origDl;
while (*dl && (dl-origDl) < sHead.dlSize)
{
GX::Primitive ptype = GX::Primitive(*dl);
atUint16 vert_count = HECL::SBig(*(atUint16*)(dl + 1));
os.format("# VAT Type: %u\n", (*(atUint8*)dl)&7);
atUint16* dli = (atUint16*)(dl + 3);
/* First vert */
DLPrimVert first_prim_vert;
first_prim_vert.pos = HECL::SBig(dli[0]);
first_prim_vert.norm = HECL::SBig(dli[1]);
for (int uv=0 ; uv<matUVCount ; ++uv)
first_prim_vert.uvs[uv] = HECL::SBig(dli[2+uv]);
/* 3 Prim Verts to start */
int c = 0;
DLPrimVert prim_verts[3];
for (int pv=0 ; pv<3 ; ++pv)
{
prim_verts[pv].pos = HECL::SBig(*dli++);
prim_verts[pv].norm = HECL::SBig(*dli++);
for (int uv=0 ; uv<matUVCount ; ++uv)
prim_verts[pv].uvs[uv] = HECL::SBig(*dli++);
}
if (ptype == GX::TRIANGLESTRIP)
{
atUint8 flip = 0;
for (int v=0 ; v<vert_count-2 ; ++v)
{
if (flip)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
prim_verts[c%3].pos,
prim_verts[(c+2)%3].pos,
prim_verts[(c+1)%3].pos,
prim_verts[c%3].norm,
prim_verts[(c+2)%3].norm,
prim_verts[(c+1)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (int j=0 ; j<matUVCount ; ++j)
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
prim_verts[c%3].pos, j, prim_verts[c%3].uvs[j],
prim_verts[(c+2)%3].pos, j, prim_verts[(c+2)%3].uvs[j],
prim_verts[(c+1)%3].pos, j, prim_verts[(c+1)%3].uvs[j]);
}
}
else
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
prim_verts[c%3].pos,
prim_verts[(c+1)%3].pos,
prim_verts[(c+2)%3].pos,
prim_verts[c%3].norm,
prim_verts[(c+1)%3].norm,
prim_verts[(c+2)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (int j=0 ; j<matUVCount ; ++j)
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
prim_verts[c%3].pos, j, prim_verts[c%3].uvs[j],
prim_verts[(c+1)%3].pos, j, prim_verts[(c+1)%3].uvs[j],
prim_verts[(c+2)%3].pos, j, prim_verts[(c+2)%3].uvs[j]);
}
}
flip ^= 1;
dl = (atUint8*)dli;
/* Advance one prim vert */
prim_verts[c%3].pos = HECL::SBig(*dli++);
prim_verts[c%3].norm = HECL::SBig(*dli++);
for (int uv=0 ; uv<matUVCount ; ++uv)
prim_verts[c%3].uvs[uv] = HECL::SBig(*dli++);
++c;
}
}
else if (ptype == GX::TRIANGLES)
{
for (int v=0 ; v<vert_count ; v+=3)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
prim_verts[0].pos,
prim_verts[1].pos,
prim_verts[2].pos,
prim_verts[0].norm,
prim_verts[1].norm,
prim_verts[2].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (int j=0 ; j<matUVCount ; ++j)
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
prim_verts[0].pos, j, prim_verts[0].uvs[j],
prim_verts[1].pos, j, prim_verts[1].uvs[j],
prim_verts[2].pos, j, prim_verts[2].uvs[j]);
}
dl = (atUint8*)dli;
/* Break if done */
if (v+3 >= vert_count)
break;
/* Advance 3 Prim Verts */
for (int pv=0 ; pv<3 ; ++pv)
{
prim_verts[pv].pos = HECL::SBig(*dli++);
prim_verts[pv].norm = HECL::SBig(*dli++);
for (int uv=0 ; uv<matUVCount ; ++uv)
prim_verts[pv].uvs[uv] = HECL::SBig(*dli++);
}
}
}
else if (ptype == GX::TRIANGLEFAN)
{
++c;
for (int v=0 ; v<vert_count-2 ; ++v)
{
os.format("last_face, last_mesh = add_triangle(bm, bm.verts, (%u,%u,%u), norm_list, (%u,%u,%u), %u, od_list)\n",
first_prim_vert.pos,
prim_verts[c%3].pos,
prim_verts[(c+1)%3].pos,
first_prim_vert.norm,
prim_verts[c%3].norm,
prim_verts[(c+1)%3].norm,
sHead.matIdx);
if (matUVCount)
{
os << "if last_face is not None:\n";
for (int j=0 ; j<matUVCount ; ++j)
os.format(" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n"
" loop_from_facevert(last_face, %u)[last_mesh.loops.layers.uv[%u]].uv = uv_list[%u]\n",
first_prim_vert.pos, j, first_prim_vert.uvs[j],
prim_verts[c%3].pos, j, prim_verts[c%3].uvs[j],
prim_verts[(c+1)%3].pos, j, prim_verts[(c+1)%3].uvs[j]);
}
dl = (atUint8*)dli;
/* Advance one prim vert */
prim_verts[(c+2)%3].pos = HECL::SBig(*dli++);
prim_verts[(c+2)%3].norm = HECL::SBig(*dli++);
for (int uv=0 ; uv<matUVCount ; ++uv)
prim_verts[(c+2)%3].uvs[uv] = HECL::SBig(*dli++);
++c;
}
}
os << "\n";
}
}
}
}
if (s < head.secCount - 1)
reader.seek(secStart + head.secSizes[s], Athena::Begin);
}
/* Finish Mesh */
os.format("mesh = bpy.data.meshes.new(bpy.context.scene.name)\n"
"obj = bpy.data.objects.new(mesh.name, mesh)\n"
"obj.show_transparent = True\n"
"bpy.context.scene.objects.link(obj)\n"
"mesh.cmdl_material_count = %u\n"
"for material in materials:\n"
" mesh.materials.append(material)\n"
"\n"
"# Preserve original indices\n"
"for vert in bm.verts:\n"
" ov = mesh.cmdl_orig_verts.add()\n"
" ov.index = vert.index\n"
"\n"
"# Merge OD meshes\n"
"for od_entry in od_list:\n"
" vert_dict = {}\n"
"\n"
" for vert in od_entry['bm'].verts:\n"
" if len(vert.link_faces):\n"
" vert_dict[vert.index] = bm.verts.new(vert.co, vert)\n"
" ov = mesh.cmdl_orig_verts.add()\n"
" ov.index = vert.index\n"
"\n"
" for face in od_entry['bm'].faces:\n"
" merge_verts = [vert_dict[fv.index] for fv in face.verts]\n"
" if bm.faces.get(merge_verts) is not None:\n"
" continue\n"
" merge_face = bm.faces.new(merge_verts)\n"
" for i in range(len(face.loops)):\n"
" old = face.loops[i]\n"
" new = merge_face.loops[i]\n"
" for j in range(len(od_entry['bm'].loops.layers.uv)):\n"
" new[bm.loops.layers.uv[j]] = old[od_entry['bm'].loops.layers.uv[j]]\n"
" merge_face.smooth = True\n"
" merge_face.material_index = face.material_index\n"
"\n"
" od_entry['bm'].free()\n"
"\n"
"# Remove loose vertices\n"
"#to_remove = []\n"
"#for vert in bm.verts:\n"
"# if not len(vert.link_faces):\n"
"# to_remove.append(vert)\n"
"#bmesh.ops.delete(bm, geom=to_remove, context=1)\n"
"\n"
"bm.to_mesh(mesh)\n"
"bm.free()\n"
"\n", head.matSetCount);
return true;
}
}
}