mirror of https://github.com/AxioDL/metaforce.git
303 lines
11 KiB
C++
303 lines
11 KiB
C++
/* -*- c++ -*- (enables emacs c++ mode) */
|
|
/*===========================================================================
|
|
|
|
Copyright (C) 2014-2017 Konstantinos Poulios
|
|
|
|
This file is a part of GetFEM++
|
|
|
|
GetFEM++ is free software; you can redistribute it and/or modify it
|
|
under the terms of the GNU Lesser General Public License as published
|
|
by the Free Software Foundation; either version 3 of the License, or
|
|
(at your option) any later version along with the GCC Runtime Library
|
|
Exception either version 3.1 or (at your option) any later version.
|
|
This program is distributed in the hope that it will be useful, but
|
|
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
|
|
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
|
|
License and GCC Runtime Library Exception for more details.
|
|
You should have received a copy of the GNU Lesser General Public License
|
|
along with this program; if not, write to the Free Software Foundation,
|
|
Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
|
|
As a special exception, you may use this file as it is a part of a free
|
|
software library without restriction. Specifically, if other files
|
|
instantiate templates or use macros or inline functions from this file,
|
|
or you compile this file and link it with other files to produce an
|
|
executable, this file does not by itself cause the resulting executable
|
|
to be covered by the GNU Lesser General Public License. This exception
|
|
does not however invalidate any other reasons why the executable file
|
|
might be covered by the GNU Lesser General Public License.
|
|
|
|
===========================================================================*/
|
|
|
|
/**@file gmm_dense_matrix_functions.h
|
|
@author Konstantinos Poulios <poulios.konstantinos@gmail.com>
|
|
@date December 10, 2014.
|
|
@brief Common matrix functions for dense matrices.
|
|
*/
|
|
#ifndef GMM_DENSE_MATRIX_FUNCTIONS_H
|
|
#define GMM_DENSE_MATRIX_FUNCTIONS_H
|
|
|
|
|
|
namespace gmm {
|
|
|
|
|
|
/**
|
|
Matrix square root for upper triangular matrices (from GNU Octave).
|
|
*/
|
|
template <typename T>
|
|
void sqrtm_utri_inplace(dense_matrix<T>& A)
|
|
{
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
bool singular = false;
|
|
|
|
// The following code is equivalent to this triple loop:
|
|
//
|
|
// n = rows (A);
|
|
// for j = 1:n
|
|
// A(j,j) = sqrt (A(j,j));
|
|
// for i = j-1:-1:1
|
|
// A(i,j) /= (A(i,i) + A(j,j));
|
|
// k = 1:i-1;
|
|
// t storing a A(k,j) -= A(k,i) * A(i,j);
|
|
// endfor
|
|
// endfor
|
|
|
|
R tol = R(0); // default_tol(R()) * gmm::mat_maxnorm(A);
|
|
|
|
const size_type n = mat_nrows(A);
|
|
for (int j=0; j < int(n); j++) {
|
|
typename dense_matrix<T>::iterator colj = A.begin() + j*n;
|
|
if (gmm::abs(colj[j]) > tol)
|
|
colj[j] = gmm::sqrt(colj[j]);
|
|
else
|
|
singular = true;
|
|
|
|
for (int i=j-1; i >= 0; i--) {
|
|
typename dense_matrix<T>::const_iterator coli = A.begin() + i*n;
|
|
T colji = colj[i] = safe_divide(colj[i], (coli[i] + colj[j]));
|
|
for (int k = 0; k < i; k++)
|
|
colj[k] -= coli[k] * colji;
|
|
}
|
|
}
|
|
|
|
if (singular)
|
|
GMM_WARNING1("Matrix is singular, may not have a square root");
|
|
}
|
|
|
|
|
|
template <typename T>
|
|
void sqrtm(const dense_matrix<std::complex<T> >& A,
|
|
dense_matrix<std::complex<T> >& SQRTMA)
|
|
{
|
|
GMM_ASSERT1(gmm::mat_nrows(A) == gmm::mat_ncols(A),
|
|
"Matrix square root requires a square matrix");
|
|
gmm::resize(SQRTMA, gmm::mat_nrows(A), gmm::mat_ncols(A));
|
|
dense_matrix<std::complex<T> > S(A), Q(A), TMP(A);
|
|
#if defined(GMM_USES_LAPACK)
|
|
schur(TMP, S, Q);
|
|
#else
|
|
GMM_ASSERT1(false, "Please recompile with lapack and blas librairies "
|
|
"to use sqrtm matrix function.");
|
|
#endif
|
|
sqrtm_utri_inplace(S);
|
|
gmm::mult(Q, S, TMP);
|
|
gmm::mult(TMP, gmm::transposed(Q), SQRTMA);
|
|
}
|
|
|
|
template <typename T>
|
|
void sqrtm(const dense_matrix<T>& A,
|
|
dense_matrix<std::complex<T> >& SQRTMA)
|
|
{
|
|
dense_matrix<std::complex<T> > cA(mat_nrows(A), mat_ncols(A));
|
|
gmm::copy(A, gmm::real_part(cA));
|
|
sqrtm(cA, SQRTMA);
|
|
}
|
|
|
|
template <typename T>
|
|
void sqrtm(const dense_matrix<T>& A, dense_matrix<T>& SQRTMA)
|
|
{
|
|
dense_matrix<std::complex<T> > cA(mat_nrows(A), mat_ncols(A));
|
|
gmm::copy(A, gmm::real_part(cA));
|
|
dense_matrix<std::complex<T> > cSQRTMA(cA);
|
|
sqrtm(cA, cSQRTMA);
|
|
gmm::resize(SQRTMA, gmm::mat_nrows(A), gmm::mat_ncols(A));
|
|
gmm::copy(gmm::real_part(cSQRTMA), SQRTMA);
|
|
// dense_matrix<std::complex<T1> >::const_reference
|
|
// it = cSQRTMA.begin(), ite = cSQRTMA.end();
|
|
// dense_matrix<std::complex<T1> >::reference
|
|
// rit = SQRTMA.begin();
|
|
// for (; it != ite; ++it, ++rit) *rit = it->real();
|
|
}
|
|
|
|
|
|
/**
|
|
Matrix logarithm for upper triangular matrices (from GNU/Octave)
|
|
*/
|
|
template <typename T>
|
|
void logm_utri_inplace(dense_matrix<T>& S)
|
|
{
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
|
|
size_type n = gmm::mat_nrows(S);
|
|
GMM_ASSERT1(n == gmm::mat_ncols(S),
|
|
"Matrix logarithm is not defined for non-square matrices");
|
|
for (size_type i=0; i < n-1; ++i)
|
|
if (gmm::abs(S(i+1,i)) > default_tol(T())) {
|
|
GMM_ASSERT1(false, "An upper triangular matrix is expected");
|
|
break;
|
|
}
|
|
for (size_type i=0; i < n-1; ++i)
|
|
if (gmm::real(S(i,i)) <= -default_tol(R()) &&
|
|
gmm::abs(gmm::imag(S(i,i))) <= default_tol(R())) {
|
|
GMM_ASSERT1(false, "Principal matrix logarithm is not defined "
|
|
"for matrices with negative eigenvalues");
|
|
break;
|
|
}
|
|
|
|
// Algorithm 11.9 in "Function of matrices", by N. Higham
|
|
R theta[] = { R(0),R(0),R(1.61e-2),R(5.38e-2),R(1.13e-1),R(1.86e-1),R(2.6429608311114350e-1) };
|
|
|
|
R scaling(1);
|
|
size_type p(0), m(6), opt_iters(100);
|
|
for (size_type k=0; k < opt_iters; ++k, scaling *= R(2)) {
|
|
dense_matrix<T> auxS(S);
|
|
for (size_type i = 0; i < n; ++i) auxS(i,i) -= R(1);
|
|
R tau = gmm::mat_norm1(auxS);
|
|
if (tau <= theta[6]) {
|
|
++p;
|
|
size_type j1(6), j2(6);
|
|
for (size_type j=0; j < 6; ++j)
|
|
if (tau <= theta[j]) { j1 = j; break; }
|
|
for (size_type j=0; j < j1; ++j)
|
|
if (tau <= 2*theta[j]) { j2 = j; break; }
|
|
if (j1 - j2 <= 1 || p == 2) { m = j1; break; }
|
|
}
|
|
sqrtm_utri_inplace(S);
|
|
if (k == opt_iters-1)
|
|
GMM_WARNING1 ("Maximum number of square roots exceeded; "
|
|
"the calculated matrix logarithm may still be accurate");
|
|
}
|
|
|
|
for (size_type i = 0; i < n; ++i) S(i,i) -= R(1);
|
|
|
|
if (m > 0) {
|
|
|
|
std::vector<R> nodes, wts;
|
|
switch(m) {
|
|
case 0: {
|
|
R nodes_[] = { R(0.5) };
|
|
R wts_[] = { R(1) };
|
|
nodes.assign(nodes_, nodes_+m+1);
|
|
wts.assign(wts_, wts_+m+1);
|
|
} break;
|
|
case 1: {
|
|
R nodes_[] = { R(0.211324865405187),R(0.788675134594813) };
|
|
R wts_[] = { R(0.5),R(0.5) };
|
|
nodes.assign(nodes_, nodes_+m+1);
|
|
wts.assign(wts_, wts_+m+1);
|
|
} break;
|
|
case 2: {
|
|
R nodes_[] = { R(0.112701665379258),R(0.500000000000000),R(0.887298334620742) };
|
|
R wts_[] = { R(0.277777777777778),R(0.444444444444444),R(0.277777777777778) };
|
|
nodes.assign(nodes_, nodes_+m+1);
|
|
wts.assign(wts_, wts_+m+1);
|
|
} break;
|
|
case 3: {
|
|
R nodes_[] = { R(0.0694318442029737),R(0.3300094782075718),R(0.6699905217924281),R(0.9305681557970263) };
|
|
R wts_[] = { R(0.173927422568727),R(0.326072577431273),R(0.326072577431273),R(0.173927422568727) };
|
|
nodes.assign(nodes_, nodes_+m+1);
|
|
wts.assign(wts_, wts_+m+1);
|
|
} break;
|
|
case 4: {
|
|
R nodes_[] = { R(0.0469100770306681),R(0.2307653449471584),R(0.5000000000000000),R(0.7692346550528415),R(0.9530899229693319) };
|
|
R wts_[] = { R(0.118463442528095),R(0.239314335249683),R(0.284444444444444),R(0.239314335249683),R(0.118463442528094) };
|
|
nodes.assign(nodes_, nodes_+m+1);
|
|
wts.assign(wts_, wts_+m+1);
|
|
} break;
|
|
case 5: {
|
|
R nodes_[] = { R(0.0337652428984240),R(0.1693953067668678),R(0.3806904069584015),R(0.6193095930415985),R(0.8306046932331322),R(0.9662347571015761) };
|
|
R wts_[] = { R(0.0856622461895853),R(0.1803807865240693),R(0.2339569672863452),R(0.2339569672863459),R(0.1803807865240693),R(0.0856622461895852) };
|
|
nodes.assign(nodes_, nodes_+m+1);
|
|
wts.assign(wts_, wts_+m+1);
|
|
} break;
|
|
case 6: {
|
|
R nodes_[] = { R(0.0254460438286208),R(0.1292344072003028),R(0.2970774243113015),R(0.4999999999999999),R(0.7029225756886985),R(0.8707655927996973),R(0.9745539561713792) };
|
|
R wts_[] = { R(0.0647424830844348),R(0.1398526957446384),R(0.1909150252525594),R(0.2089795918367343),R(0.1909150252525595),R(0.1398526957446383),R(0.0647424830844349) };
|
|
nodes.assign(nodes_, nodes_+m+1);
|
|
wts.assign(wts_, wts_+m+1);
|
|
} break;
|
|
}
|
|
|
|
dense_matrix<T> auxS1(S), auxS2(S);
|
|
std::vector<T> auxvec(n);
|
|
gmm::clear(S);
|
|
for (size_type j=0; j <= m; ++j) {
|
|
gmm::copy(gmm::scaled(auxS1, nodes[j]), auxS2);
|
|
gmm::add(gmm::identity_matrix(), auxS2);
|
|
// S += wts[i] * auxS1 * inv(auxS2)
|
|
for (size_type i=0; i < n; ++i) {
|
|
gmm::copy(gmm::mat_row(auxS1, i), auxvec);
|
|
gmm::lower_tri_solve(gmm::transposed(auxS2), auxvec, false);
|
|
gmm::add(gmm::scaled(auxvec, wts[j]), gmm::mat_row(S, i));
|
|
}
|
|
}
|
|
}
|
|
gmm::scale(S, scaling);
|
|
}
|
|
|
|
/**
|
|
Matrix logarithm (from GNU/Octave)
|
|
*/
|
|
template <typename T>
|
|
void logm(const dense_matrix<T>& A, dense_matrix<T>& LOGMA)
|
|
{
|
|
typedef typename number_traits<T>::magnitude_type R;
|
|
size_type n = gmm::mat_nrows(A);
|
|
GMM_ASSERT1(n == gmm::mat_ncols(A),
|
|
"Matrix logarithm is not defined for non-square matrices");
|
|
dense_matrix<T> S(A), Q(A);
|
|
#if defined(GMM_USES_LAPACK)
|
|
schur(A, S, Q); // A = Q * S * Q^T
|
|
#else
|
|
GMM_ASSERT1(false, "Please recompile with lapack and blas librairies "
|
|
"to use logm matrix function.");
|
|
#endif
|
|
|
|
bool convert_to_complex(false);
|
|
if (!is_complex(T()))
|
|
for (size_type i=0; i < n-1; ++i)
|
|
if (gmm::abs(S(i+1,i)) > default_tol(T())) {
|
|
convert_to_complex = true;
|
|
break;
|
|
}
|
|
|
|
gmm::resize(LOGMA, n, n);
|
|
if (convert_to_complex) {
|
|
dense_matrix<std::complex<R> > cS(n,n), cQ(n,n), auxmat(n,n);
|
|
gmm::copy(gmm::real_part(S), gmm::real_part(cS));
|
|
gmm::copy(gmm::real_part(Q), gmm::real_part(cQ));
|
|
block2x2_reduction(cS, cQ, default_tol(R())*R(3));
|
|
for (size_type j=0; j < n-1; ++j)
|
|
for (size_type i=j+1; i < n; ++i)
|
|
cS(i,j) = T(0);
|
|
logm_utri_inplace(cS);
|
|
gmm::mult(cQ, cS, auxmat);
|
|
gmm::mult(auxmat, gmm::transposed(cQ), cS);
|
|
// Remove small complex values which may have entered calculation
|
|
gmm::copy(gmm::real_part(cS), LOGMA);
|
|
// GMM_ASSERT1(gmm::mat_norm1(gmm::imag_part(cS)) < n*default_tol(T()),
|
|
// "Internal error, imag part should be zero");
|
|
} else {
|
|
dense_matrix<T> auxmat(n,n);
|
|
logm_utri_inplace(S);
|
|
gmm::mult(Q, S, auxmat);
|
|
gmm::mult(auxmat, gmm::transposed(Q), LOGMA);
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|