metaforce/DataSpec/DNACommon/CMDL.cpp

2262 lines
82 KiB
C++

#include "DataSpec/DNACommon/CMDL.hpp"
#include <utility>
#include "DataSpec/DNAMP1/CMDLMaterials.hpp"
#include "DataSpec/DNAMP1/CSKR.hpp"
#include "DataSpec/DNAMP1/MREA.hpp"
#include "DataSpec/DNAMP2/CMDLMaterials.hpp"
#include "DataSpec/DNAMP2/CSKR.hpp"
#include "DataSpec/DNAMP3/CMDLMaterials.hpp"
#include "DataSpec/DNAMP3/CSKR.hpp"
#include <fmt/format.h>
#include <hecl/Blender/Connection.hpp>
#include <zeus/CAABox.hpp>
namespace DataSpec::DNACMDL {
template <class MaterialSet>
void GetVertexAttributes(const MaterialSet& matSet, std::vector<VertexAttributes>& attributesOut) {
attributesOut.clear();
attributesOut.reserve(matSet.materials.size());
for (const typename MaterialSet::Material& mat : matSet.materials) {
const typename MaterialSet::Material::VAFlags& vaFlags = mat.getVAFlags();
attributesOut.emplace_back();
VertexAttributes& va = attributesOut.back();
va.pos = vaFlags.position();
va.norm = vaFlags.normal();
va.color0 = vaFlags.color0();
va.color1 = vaFlags.color1();
if ((va.uvs[0] = vaFlags.tex0()))
++va.uvCount;
if ((va.uvs[1] = vaFlags.tex1()))
++va.uvCount;
if ((va.uvs[2] = vaFlags.tex2()))
++va.uvCount;
if ((va.uvs[3] = vaFlags.tex3()))
++va.uvCount;
if ((va.uvs[4] = vaFlags.tex4()))
++va.uvCount;
if ((va.uvs[5] = vaFlags.tex5()))
++va.uvCount;
if ((va.uvs[6] = vaFlags.tex6()))
++va.uvCount;
va.pnMtxIdx = vaFlags.pnMatIdx();
if ((va.texMtxIdx[0] = vaFlags.tex0MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[1] = vaFlags.tex1MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[2] = vaFlags.tex2MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[3] = vaFlags.tex3MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[4] = vaFlags.tex4MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[5] = vaFlags.tex5MatIdx()))
++va.texMtxIdxCount;
if ((va.texMtxIdx[6] = vaFlags.tex6MatIdx()))
++va.texMtxIdxCount;
va.shortUVs = mat.getFlags().lightmapUVArray();
}
}
template <class PAKRouter, class MaterialSet>
void ReadMaterialSetToBlender_1_2(hecl::blender::PyOutStream& os, const MaterialSet& matSet, const PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry, unsigned setIdx) {
/* Texmaps */
os << "texmap_list = []\n";
for (const UniqueID32& tex : matSet.head.textureIDs) {
std::string texName = pakRouter.getBestEntryName(tex);
const nod::Node* node;
const typename PAKRouter::EntryType* texEntry = pakRouter.lookupEntry(tex, &node);
hecl::ProjectPath txtrPath = pakRouter.getWorking(texEntry);
if (!txtrPath.isNone()) {
txtrPath.makeDirChain(false);
PAKEntryReadStream rs = texEntry->beginReadStream(*node);
TXTR::Extract(rs, txtrPath);
}
hecl::SystemString resPath = pakRouter.getResourceRelativePath(entry, tex);
hecl::SystemUTF8Conv resPathView(resPath);
os.format(FMT_STRING(
"if '{}' in bpy.data.images:\n"
" image = bpy.data.images['{}']\n"
"else:\n"
" image = bpy.data.images.load('''//{}''')\n"
" image.name = '{}'\n"
"texmap_list.append(image)\n"
"\n"),
texName, texName, resPathView, texName);
}
unsigned m = 0;
for (const typename MaterialSet::Material& mat : matSet.materials) {
MaterialSet::ConstructMaterial(os, mat, setIdx, m++);
os << "materials.append(new_material)\n";
}
}
template <class PAKRouter, class MaterialSet>
void ReadMaterialSetToBlender_3(hecl::blender::PyOutStream& os, const MaterialSet& matSet, const PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry, unsigned setIdx) {
unsigned m = 0;
for (const typename MaterialSet::Material& mat : matSet.materials) {
MaterialSet::ConstructMaterial(os, pakRouter, entry, mat, setIdx, m++);
os << "materials.append(new_material)\n";
}
}
template void ReadMaterialSetToBlender_3<PAKRouter<DNAMP3::PAKBridge>, DNAMP3::MaterialSet>(
hecl::blender::PyOutStream& os, const DNAMP3::MaterialSet& matSet, const PAKRouter<DNAMP3::PAKBridge>& pakRouter,
const PAKRouter<DNAMP3::PAKBridge>::EntryType& entry, unsigned setIdx);
class DLReader {
public:
/* Class used for splitting verts with shared positions but different skinning matrices */
class ExtraVertTracker {
std::map<atUint16, std::vector<std::pair<atInt16, atUint16>>> m_extraVerts;
atUint16 m_maxBasePos = 0;
atUint16 m_nextOverPos = 1;
public:
atInt16 addPosSkinPair(atUint16 pos, atInt16 skin) {
m_maxBasePos = std::max(m_maxBasePos, pos);
auto search = m_extraVerts.find(pos);
if (search == m_extraVerts.end()) {
m_extraVerts[pos] = {std::make_pair(skin, 0)};
return skin;
}
auto& vertTrack = search->second;
for (const auto& s : vertTrack)
if (s.first == skin)
return vertTrack.front().first;
vertTrack.push_back(std::make_pair(skin, m_nextOverPos++));
return vertTrack.front().first;
}
template <class RigPair>
atUint32 sendAdditionalVertsToBlender(hecl::blender::PyOutStream& os, const RigPair& rp, atUint32 baseVert) const {
atUint32 addedVerts = 0;
atUint32 nextVert = 1;
while (nextVert < m_nextOverPos) {
for (const auto& [ev, evVec] : m_extraVerts) {
for (const auto& se : evVec) {
if (se.second == nextVert) {
os.format(FMT_STRING(
"bm.verts.ensure_lookup_table()\n"
"orig_vert = bm.verts[{}]\n"
"vert = bm.verts.new(orig_vert.co)\n"),
ev + baseVert);
rp.first.second->weightVertex(os, *rp.second.second, se.first);
++nextVert;
++addedVerts;
}
}
}
}
return addedVerts;
}
atUint16 lookupVertIdx(atUint16 pos, atInt16 skin) const {
auto search = m_extraVerts.find(pos);
if (search == m_extraVerts.end())
return -1;
const auto& vertTrack = search->second;
if (vertTrack.front().first == skin)
return pos;
for (auto it = vertTrack.begin() + 1; it != vertTrack.end(); ++it)
if (it->first == skin)
return m_maxBasePos + it->second;
return -1;
}
};
private:
const VertexAttributes& m_va;
std::unique_ptr<atUint8[]> m_dl;
size_t m_dlSize;
ExtraVertTracker& m_evt;
const atInt16* m_bankIn;
atUint8* m_cur;
atUint16 readVal(GX::AttrType type) {
atUint16 retval = 0;
switch (type) {
case GX::DIRECT:
case GX::INDEX8:
if ((m_cur - m_dl.get()) >= intptr_t(m_dlSize))
return 0;
retval = *m_cur;
++m_cur;
break;
case GX::INDEX16:
if ((m_cur - m_dl.get() + 1) >= intptr_t(m_dlSize))
return 0;
retval = hecl::SBig(*(atUint16*)m_cur);
m_cur += 2;
break;
default:
break;
}
return retval;
}
public:
DLReader(const VertexAttributes& va, std::unique_ptr<atUint8[]>&& dl, size_t dlSize, ExtraVertTracker& evt,
const atInt16* bankIn = nullptr)
: m_va(va), m_dl(std::move(dl)), m_dlSize(dlSize), m_evt(evt), m_bankIn(bankIn) {
m_cur = m_dl.get();
}
explicit operator bool() const { return ((m_cur - m_dl.get()) < intptr_t(m_dlSize)) && *m_cur; }
GX::Primitive readPrimitive() { return GX::Primitive(*m_cur++ & 0xf8); }
GX::Primitive readPrimitiveAndVat(unsigned& vatOut) {
atUint8 val = *m_cur++;
vatOut = val & 0x7;
return GX::Primitive(val & 0xf8);
}
atUint16 readVertCount() {
atUint16 retval = hecl::SBig(*(atUint16*)m_cur);
m_cur += 2;
return retval;
}
struct DLPrimVert {
atUint16 pos = 0;
atUint16 norm = 0;
atUint16 color[2] = {0};
atUint16 uvs[7] = {0};
atUint8 pnMtxIdx = 0;
atUint8 texMtxIdx[7] = {0};
};
DLPrimVert readVert(bool peek = false) {
atUint8* bakCur = m_cur;
DLPrimVert retval;
retval.pnMtxIdx = readVal(m_va.pnMtxIdx);
retval.texMtxIdx[0] = readVal(m_va.texMtxIdx[0]);
retval.texMtxIdx[1] = readVal(m_va.texMtxIdx[1]);
retval.texMtxIdx[2] = readVal(m_va.texMtxIdx[2]);
retval.texMtxIdx[3] = readVal(m_va.texMtxIdx[3]);
retval.texMtxIdx[4] = readVal(m_va.texMtxIdx[4]);
retval.texMtxIdx[5] = readVal(m_va.texMtxIdx[5]);
retval.texMtxIdx[6] = readVal(m_va.texMtxIdx[6]);
if (m_bankIn) {
atUint16 posIdx = readVal(m_va.pos);
atUint8 mtxIdx = retval.pnMtxIdx / 3;
atInt16 skinIdx = -1;
if (mtxIdx < 10)
skinIdx = m_bankIn[mtxIdx];
retval.pos = m_evt.lookupVertIdx(posIdx, skinIdx);
} else
retval.pos = readVal(m_va.pos);
retval.norm = readVal(m_va.norm);
retval.color[0] = readVal(m_va.color0);
retval.color[1] = readVal(m_va.color1);
retval.uvs[0] = readVal(m_va.uvs[0]);
retval.uvs[1] = readVal(m_va.uvs[1]);
retval.uvs[2] = readVal(m_va.uvs[2]);
retval.uvs[3] = readVal(m_va.uvs[3]);
retval.uvs[4] = readVal(m_va.uvs[4]);
retval.uvs[5] = readVal(m_va.uvs[5]);
retval.uvs[6] = readVal(m_va.uvs[6]);
if (peek)
m_cur = bakCur;
return retval;
}
void preReadMaxIdxs(DLPrimVert& out) {
atUint8* bakCur = m_cur;
while (*this) {
readPrimitive();
atUint16 vc = readVertCount();
for (atUint16 v = 0; v < vc; ++v) {
atUint16 val;
val = readVal(m_va.pnMtxIdx);
out.pnMtxIdx = std::max(out.pnMtxIdx, atUint8(val));
val = readVal(m_va.texMtxIdx[0]);
out.texMtxIdx[0] = std::max(out.texMtxIdx[0], atUint8(val));
val = readVal(m_va.texMtxIdx[1]);
out.texMtxIdx[1] = std::max(out.texMtxIdx[1], atUint8(val));
val = readVal(m_va.texMtxIdx[2]);
out.texMtxIdx[2] = std::max(out.texMtxIdx[2], atUint8(val));
val = readVal(m_va.texMtxIdx[3]);
out.texMtxIdx[3] = std::max(out.texMtxIdx[3], atUint8(val));
val = readVal(m_va.texMtxIdx[4]);
out.texMtxIdx[4] = std::max(out.texMtxIdx[4], atUint8(val));
val = readVal(m_va.texMtxIdx[5]);
out.texMtxIdx[5] = std::max(out.texMtxIdx[5], atUint8(val));
val = readVal(m_va.texMtxIdx[6]);
out.texMtxIdx[6] = std::max(out.texMtxIdx[6], atUint8(val));
val = readVal(m_va.pos);
out.pos = std::max(out.pos, val);
val = readVal(m_va.norm);
out.norm = std::max(out.norm, val);
val = readVal(m_va.color0);
out.color[0] = std::max(out.color[0], val);
val = readVal(m_va.color1);
out.color[1] = std::max(out.color[1], val);
val = readVal(m_va.uvs[0]);
out.uvs[0] = std::max(out.uvs[0], val);
val = readVal(m_va.uvs[1]);
out.uvs[1] = std::max(out.uvs[1], val);
val = readVal(m_va.uvs[2]);
out.uvs[2] = std::max(out.uvs[2], val);
val = readVal(m_va.uvs[3]);
out.uvs[3] = std::max(out.uvs[3], val);
val = readVal(m_va.uvs[4]);
out.uvs[4] = std::max(out.uvs[4], val);
val = readVal(m_va.uvs[5]);
out.uvs[5] = std::max(out.uvs[5], val);
val = readVal(m_va.uvs[6]);
out.uvs[6] = std::max(out.uvs[6], val);
}
}
m_cur = bakCur;
}
void preReadMaxIdxs(DLPrimVert& out, std::vector<atInt16>& skinOut) {
atUint8* bakCur = m_cur;
while (*this) {
readPrimitive();
atUint16 vc = readVertCount();
for (atUint16 v = 0; v < vc; ++v) {
atUint16 val;
atUint8 pnMtxVal = readVal(m_va.pnMtxIdx);
out.pnMtxIdx = std::max(out.pnMtxIdx, pnMtxVal);
val = readVal(m_va.texMtxIdx[0]);
out.texMtxIdx[0] = std::max(out.texMtxIdx[0], atUint8(val));
val = readVal(m_va.texMtxIdx[1]);
out.texMtxIdx[1] = std::max(out.texMtxIdx[1], atUint8(val));
val = readVal(m_va.texMtxIdx[2]);
out.texMtxIdx[2] = std::max(out.texMtxIdx[2], atUint8(val));
val = readVal(m_va.texMtxIdx[3]);
out.texMtxIdx[3] = std::max(out.texMtxIdx[3], atUint8(val));
val = readVal(m_va.texMtxIdx[4]);
out.texMtxIdx[4] = std::max(out.texMtxIdx[4], atUint8(val));
val = readVal(m_va.texMtxIdx[5]);
out.texMtxIdx[5] = std::max(out.texMtxIdx[5], atUint8(val));
val = readVal(m_va.texMtxIdx[6]);
out.texMtxIdx[6] = std::max(out.texMtxIdx[6], atUint8(val));
atUint16 posVal = readVal(m_va.pos);
out.pos = std::max(out.pos, posVal);
val = readVal(m_va.norm);
out.norm = std::max(out.norm, val);
val = readVal(m_va.color0);
out.color[0] = std::max(out.color[0], val);
val = readVal(m_va.color1);
out.color[1] = std::max(out.color[1], val);
val = readVal(m_va.uvs[0]);
out.uvs[0] = std::max(out.uvs[0], val);
val = readVal(m_va.uvs[1]);
out.uvs[1] = std::max(out.uvs[1], val);
val = readVal(m_va.uvs[2]);
out.uvs[2] = std::max(out.uvs[2], val);
val = readVal(m_va.uvs[3]);
out.uvs[3] = std::max(out.uvs[3], val);
val = readVal(m_va.uvs[4]);
out.uvs[4] = std::max(out.uvs[4], val);
val = readVal(m_va.uvs[5]);
out.uvs[5] = std::max(out.uvs[5], val);
val = readVal(m_va.uvs[6]);
out.uvs[6] = std::max(out.uvs[6], val);
atInt16 skinIdx = m_bankIn[pnMtxVal / 3];
skinOut[posVal] = m_evt.addPosSkinPair(posVal, skinIdx);
}
}
m_cur = bakCur;
}
};
void InitGeomBlenderContext(hecl::blender::PyOutStream& os, const hecl::ProjectPath& masterShaderPath) {
os << "import math\n"
"from mathutils import Vector\n"
"\n"
"# Clear Scene\n"
"if len(bpy.data.collections):\n"
" bpy.data.collections.remove(bpy.data.collections[0])\n"
"\n"
"def loop_from_facevert(bm, face, vert_idx):\n"
" for loop in face.loops:\n"
" if loop.vert[bm.verts.layers.int['CMDLOriginalPosIdxs']] == vert_idx:\n"
" return loop\n"
"\n"
"def loops_from_edgevert(bm, edge, vert):\n"
" ret = []\n"
" for face in edge.link_faces:\n"
" for loop in face.loops:\n"
" if loop.vert == vert:\n"
" ret.append(loop)\n"
" return ret\n"
"\n"
"def add_triangle(bm, vert_seq, vert_indices, norm_seq, norm_indices, mat_nr, od_list, two_face_vert):\n"
" if len(set(vert_indices)) != 3:\n"
" return None, None\n"
"\n"
" ret_mesh = bm\n"
" vert_seq.ensure_lookup_table()\n"
" verts = [vert_seq[i] for i in vert_indices]\n"
"\n"
" # Try getting existing face\n"
" face = bm.faces.get(verts)\n"
"\n"
" if face is not None and face.material_index != mat_nr: # Same poly, new material\n"
" # Overdraw detected; track copy\n"
" od_entry = None\n"
" for entry in od_list:\n"
" if entry['material'] == mat_nr:\n"
" od_entry = entry\n"
" if od_entry is None:\n"
" bm_cpy = bm.copy()\n"
" od_entry = {'material':mat_nr, 'bm':bm_cpy}\n"
" bmesh.ops.delete(od_entry['bm'], geom=od_entry['bm'].faces, context='FACES_ONLY')\n"
" od_list.append(od_entry)\n"
" od_entry['bm'].verts.ensure_lookup_table()\n"
" verts = [od_entry['bm'].verts[i] for i in vert_indices]\n"
" face = od_entry['bm'].faces.get(verts)\n"
" if face is None:\n"
" face = od_entry['bm'].faces.new(verts)\n"
" else: # Probably a double-sided surface\n"
" verts = [od_entry['bm'].verts[i + two_face_vert] for i in vert_indices]\n"
" face = od_entry['bm'].faces.get(verts)\n"
" if face is None:\n"
" face = od_entry['bm'].faces.new(verts)\n"
" ret_mesh = od_entry['bm']\n"
"\n"
" elif face is not None: # Same material, probably double-sided\n"
" verts = [vert_seq[i + two_face_vert] for i in vert_indices]\n"
" face = bm.faces.get(verts)\n"
" if face is None:\n"
" face = bm.faces.new(verts)\n"
"\n"
" else: # Make totally new face\n"
" face = bm.faces.new(verts)\n"
"\n"
" for i in range(3):\n"
" face.verts[i][ret_mesh.verts.layers.int['CMDLOriginalPosIdxs']] = vert_indices[i]\n"
" face.loops[i][ret_mesh.loops.layers.int['CMDLOriginalNormIdxs']] = norm_indices[i]\n"
" face.material_index = mat_nr\n"
" face.smooth = True\n"
"\n"
" return face, ret_mesh\n"
"\n"
"def expand_lightmap_triangle(lightmap_tri_tracker, uva, uvb, uvc):\n"
" result = ([uva[0],uva[1]], [uvb[0],uvb[1]], [uvc[0],uvc[1]])\n"
" inst = 0\n"
" if uva in lightmap_tri_tracker:\n"
" inst = lightmap_tri_tracker[uva]\n"
" lightmap_tri_tracker[uva] = inst + 1\n"
" if uva == uvb:\n"
" result[1][0] += 0.005\n"
" if uva == uvc:\n"
" result[2][1] -= 0.005\n"
" if inst & 0x1 and uva == uvb and uva == uvc:\n"
" result[0][0] += 0.005\n"
" result[0][1] -= 0.005\n"
" return result\n"
"\n";
/* Link master shader library */
os.format(FMT_STRING(
"# Master shader library\n"
"with bpy.data.libraries.load('{}', link=True, relative=True) as (data_from, data_to):\n"
" data_to.node_groups = data_from.node_groups\n"
"\n"),
masterShaderPath.getAbsolutePathUTF8());
}
void FinishBlenderMesh(hecl::blender::PyOutStream& os, unsigned matSetCount, int meshIdx) {
os << "if 'Render' not in bpy.data.collections:\n"
" coll = bpy.data.collections.new('Render')\n"
" bpy.context.scene.collection.children.link(coll)\n"
"else:\n"
" coll = bpy.data.collections['Render']\n";
if (meshIdx < 0) {
os << "mesh = bpy.data.meshes.new(bpy.context.scene.name)\n"
"obj = bpy.data.objects.new(mesh.name, mesh)\n"
"obj.show_transparent = True\n"
"coll.objects.link(obj)\n";
os.format(FMT_STRING("mesh.hecl_material_count = {}\n"), matSetCount);
} else {
os.format(FMT_STRING("mesh = bpy.data.meshes.new(bpy.context.scene.name + '_{:03d}')\n"), meshIdx);
os << "obj = bpy.data.objects.new(mesh.name, mesh)\n"
"obj.show_transparent = True\n"
"coll.objects.link(obj)\n";
os.format(FMT_STRING("mesh.hecl_material_count = {}\n"), matSetCount);
}
os << "mesh.use_auto_smooth = True\n"
"mesh.auto_smooth_angle = math.pi\n"
"\n"
"for material in materials:\n"
" mesh.materials.append(material)\n"
"\n"
"# Merge OD meshes\n"
"for od_entry in od_list:\n"
" vert_dict = [{},{}]\n"
"\n"
" for vert in od_entry['bm'].verts:\n"
" if len(vert.link_faces):\n"
" if vert.index >= two_face_vert:\n"
" use_vert_dict = vert_dict[1]\n"
" else:\n"
" use_vert_dict = vert_dict[0]\n"
" copy_vert = bm.verts.new(vert.co, vert)\n"
" use_vert_dict[vert[od_entry['bm'].verts.layers.int['CMDLOriginalPosIdxs']]] = copy_vert\n"
" copy_vert[orig_pidx_lay] = vert[od_entry['bm'].verts.layers.int['CMDLOriginalPosIdxs']]\n"
"\n"
" for face in od_entry['bm'].faces:\n"
" if face.verts[0].index >= two_face_vert:\n"
" use_vert_dict = vert_dict[1]\n"
" else:\n"
" use_vert_dict = vert_dict[0]\n"
" merge_verts = [use_vert_dict[fv[od_entry['bm'].verts.layers.int['CMDLOriginalPosIdxs']]] for fv in "
"face.verts]\n"
" try:\n"
" if bm.faces.get(merge_verts) is not None:\n"
" continue\n"
" except:\n"
" continue\n"
" merge_face = bm.faces.new(merge_verts)\n"
" for i in range(len(face.loops)):\n"
" old = face.loops[i]\n"
" new = merge_face.loops[i]\n"
" for j in range(len(od_entry['bm'].loops.layers.uv)):\n"
" new[bm.loops.layers.uv[j]] = old[od_entry['bm'].loops.layers.uv[j]]\n"
" new[orig_nidx_lay] = old[od_entry['bm'].loops.layers.int['CMDLOriginalNormIdxs']]\n"
" merge_face.smooth = True\n"
" merge_face.material_index = face.material_index\n"
"\n"
" od_entry['bm'].free()\n"
"\n"
"verts_to_del = []\n"
"for v in bm.verts:\n"
" if len(v.link_faces) == 0:\n"
" verts_to_del.append(v)\n"
"bmesh.ops.delete(bm, geom=verts_to_del, context='VERTS')\n"
"\n"
"for edge in bm.edges:\n"
" if edge.is_manifold:\n"
" pass_count = 0\n"
" for vert in edge.verts:\n"
" loops = loops_from_edgevert(bm, edge, vert)\n"
" norm0 = Vector(norm_list[loops[0][orig_nidx_lay]])\n"
" norm1 = Vector(norm_list[loops[1][orig_nidx_lay]])\n"
" if norm0.dot(norm1) < 0.9:\n"
" pass_count += 1\n"
" if pass_count > 0:\n"
" edge.smooth = False\n"
"\n"
"bm.to_mesh(mesh)\n"
"bm.free()\n"
"\n"
"# Remove redundant materials\n"
"present_mats = set()\n"
"for poly in mesh.polygons:\n"
" present_mats.add(poly.material_index)\n"
"for mat_idx in reversed(range(len(mesh.materials))):\n"
" if mat_idx not in present_mats:\n"
" mesh.materials.pop(index=mat_idx)\n"
"\n"
"mesh.update()\n"
"\n";
}
template <class PAKRouter, class MaterialSet, class RigPair, class SurfaceHeader>
atUint32 ReadGeomSectionsToBlender(hecl::blender::PyOutStream& os, athena::io::IStreamReader& reader,
PAKRouter& pakRouter, const typename PAKRouter::EntryType& entry, const RigPair& rp,
bool shortNormals, bool shortUVs, std::vector<VertexAttributes>& vertAttribs,
int meshIdx, atUint32 secCount, atUint32 matSetCount, const atUint32* secSizes,
atUint32 surfaceCount) {
os << "# Begin bmesh\n"
"bm = bmesh.new()\n"
"\n"
"# Overdraw-tracking\n"
"od_list = []\n"
"\n"
"orig_pidx_lay = bm.verts.layers.int.new('CMDLOriginalPosIdxs')\n"
"orig_nidx_lay = bm.loops.layers.int.new('CMDLOriginalNormIdxs')\n"
"\n"
"lightmap_tri_tracker = {}\n";
if (rp.first.second)
os << "dvert_lay = bm.verts.layers.deform.verify()\n";
/* Pre-read pass to determine maximum used vert indices */
atUint32 matSecCount = 0;
if (matSetCount)
matSecCount = MaterialSet::OneSection() ? 1 : matSetCount;
bool visitedDLOffsets = false;
atUint32 lastDlSec = secCount;
atUint64 afterHeaderPos = reader.position();
DLReader::DLPrimVert maxIdxs;
std::vector<atInt16> skinIndices;
DLReader::ExtraVertTracker extraTracker;
for (atUint32 s = 0; s < lastDlSec; ++s) {
atUint64 secStart = reader.position();
if (s < matSecCount) {
if (!s) {
MaterialSet matSet;
matSet.read(reader);
matSet.ensureTexturesExtracted(pakRouter);
GetVertexAttributes(matSet, vertAttribs);
}
} else {
switch (s - matSecCount) {
case 0: {
/* Positions */
if (SurfaceHeader::UseMatrixSkinning() && rp.first.second)
skinIndices.assign(secSizes[s] / 12, -1);
break;
}
case 1: {
/* Normals */
break;
}
case 2: {
/* Colors */
break;
}
case 3: {
/* Float UVs */
break;
}
case 4: {
if (surfaceCount) {
/* MP3 MREA case */
visitedDLOffsets = true;
lastDlSec = 4 + surfaceCount;
} else {
/* Short UVs */
if (shortUVs)
break;
/* DL Offsets (here or next section) */
visitedDLOffsets = true;
lastDlSec = s + reader.readUint32Big() + 1;
break;
}
[[fallthrough]];
}
default: {
if (!visitedDLOffsets) {
visitedDLOffsets = true;
lastDlSec = s + reader.readUint32Big() + 1;
break;
}
/* GX Display List (surface) */
SurfaceHeader sHead;
sHead.read(reader);
const atInt16* bankIn = nullptr;
if (SurfaceHeader::UseMatrixSkinning() && rp.first.second)
bankIn = rp.first.second->getMatrixBank(sHead.skinMatrixBankIdx());
/* Do max index pre-read */
atUint32 realDlSize = secSizes[s] - (reader.position() - secStart);
DLReader dl(vertAttribs[sHead.matIdx], reader.readUBytes(realDlSize), realDlSize, extraTracker, bankIn);
if (SurfaceHeader::UseMatrixSkinning() && rp.first.second)
dl.preReadMaxIdxs(maxIdxs, skinIndices);
else
dl.preReadMaxIdxs(maxIdxs);
}
}
}
if (s < secCount - 1) {
reader.seek(secStart + secSizes[s], athena::SeekOrigin::Begin);
}
}
reader.seek(afterHeaderPos, athena::SeekOrigin::Begin);
visitedDLOffsets = false;
unsigned createdUVLayers = 0;
unsigned surfIdx = 0;
for (atUint32 s = 0; s < lastDlSec; ++s) {
atUint64 secStart = reader.position();
if (s < matSecCount) {
MaterialSet matSet;
matSet.read(reader);
matSet.readToBlender(os, pakRouter, entry, s);
if (!s)
GetVertexAttributes(matSet, vertAttribs);
} else {
switch (s - matSecCount) {
case 0: {
/* Positions */
atUint32 vertCount = maxIdxs.pos + 1;
std::vector<atVec3f> positions;
positions.reserve(vertCount);
for (atUint16 i = 0; i <= maxIdxs.pos; ++i) {
positions.push_back(reader.readVec3fBig());
const atVec3f& pos = positions.back();
os.format(FMT_STRING("vert = bm.verts.new(({},{},{}))\n"), pos.simd[0], pos.simd[1], pos.simd[2]);
if (rp.first.second) {
if (SurfaceHeader::UseMatrixSkinning() && !skinIndices.empty())
rp.first.second->weightVertex(os, *rp.second.second, skinIndices[i]);
else if (!SurfaceHeader::UseMatrixSkinning())
rp.first.second->weightVertex(os, *rp.second.second, i);
}
}
if (rp.first.second && SurfaceHeader::UseMatrixSkinning() && !skinIndices.empty())
vertCount += extraTracker.sendAdditionalVertsToBlender(os, rp, 0);
os.format(FMT_STRING("two_face_vert = {}\n"), vertCount);
for (atUint16 i = 0; i <= maxIdxs.pos; ++i) {
const atVec3f& pos = positions[i];
os.format(FMT_STRING("vert = bm.verts.new(({},{},{}))\n"), pos.simd[0], pos.simd[1], pos.simd[2]);
if (rp.first.second) {
if (SurfaceHeader::UseMatrixSkinning() && !skinIndices.empty())
rp.first.second->weightVertex(os, *rp.second.second, skinIndices[i]);
else if (!SurfaceHeader::UseMatrixSkinning())
rp.first.second->weightVertex(os, *rp.second.second, i);
}
}
if (rp.first.second && SurfaceHeader::UseMatrixSkinning() && !skinIndices.empty())
extraTracker.sendAdditionalVertsToBlender(os, rp, vertCount);
break;
}
case 1: {
/* Normals */
os << "norm_list = []\n";
if (shortNormals) {
atUint32 normCount = secSizes[s] / 6;
for (atUint32 i = 0; i < normCount; ++i) {
float x = reader.readInt16Big() / 16384.0f;
float y = reader.readInt16Big() / 16384.0f;
float z = reader.readInt16Big() / 16384.0f;
os.format(FMT_STRING("norm_list.append(({},{},{}))\n"), x, y, z);
}
} else {
atUint32 normCount = secSizes[s] / 12;
for (atUint32 i = 0; i < normCount; ++i) {
const atVec3f norm = reader.readVec3fBig();
os.format(FMT_STRING("norm_list.append(({},{},{}))\n"), norm.simd[0], norm.simd[1], norm.simd[2]);
}
}
break;
}
case 2: {
/* Colors */
break;
}
case 3: {
/* Float UVs */
os << "uv_list = []\n";
atUint32 uvCount = secSizes[s] / 8;
for (atUint32 i = 0; i < uvCount; ++i) {
const atVec2f uv = reader.readVec2fBig();
os.format(FMT_STRING("uv_list.append(({},{}))\n"), uv.simd[0], uv.simd[1]);
}
break;
}
case 4: {
if (surfaceCount) {
/* MP3 MREA case */
visitedDLOffsets = true;
} else {
/* Short UVs */
os << "suv_list = []\n";
if (shortUVs) {
atUint32 uvCount = secSizes[s] / 4;
for (atUint32 i = 0; i < uvCount; ++i) {
float x = reader.readInt16Big() / 32768.0f;
float y = reader.readInt16Big() / 32768.0f;
os.format(FMT_STRING("suv_list.append(({},{}))\n"), x, y);
}
break;
}
/* DL Offsets (here or next section) */
visitedDLOffsets = true;
break;
}
[[fallthrough]];
}
default: {
if (!visitedDLOffsets) {
visitedDLOffsets = true;
break;
}
/* GX Display List (surface) */
SurfaceHeader sHead;
sHead.read(reader);
VertexAttributes& curVA = vertAttribs[sHead.matIdx];
unsigned matUVCount = curVA.uvCount;
bool matShortUVs = curVA.shortUVs;
const atInt16* bankIn = nullptr;
if (SurfaceHeader::UseMatrixSkinning() && rp.first.second)
bankIn = rp.first.second->getMatrixBank(sHead.skinMatrixBankIdx());
os.format(FMT_STRING("materials[{}].pass_index = {}\n"), sHead.matIdx, surfIdx++);
if (matUVCount > createdUVLayers) {
for (unsigned l = createdUVLayers; l < matUVCount; ++l)
os.format(FMT_STRING("bm.loops.layers.uv.new('UV_{}')\n"), l);
createdUVLayers = matUVCount;
}
atUint32 realDlSize = secSizes[s] - (reader.position() - secStart);
DLReader dl(vertAttribs[sHead.matIdx], reader.readUBytes(realDlSize), realDlSize, extraTracker, bankIn);
while (dl) {
GX::Primitive ptype = dl.readPrimitive();
atUint16 vertCount = dl.readVertCount();
/* First vert */
DLReader::DLPrimVert firstPrimVert = dl.readVert(true);
/* 3 Prim Verts to start */
int c = 0;
DLReader::DLPrimVert primVerts[3] = {dl.readVert(), dl.readVert(), dl.readVert()};
if (ptype == GX::TRIANGLESTRIP) {
atUint8 flip = 0;
for (int v = 0; v < vertCount - 2; ++v) {
if (flip) {
os.format(FMT_STRING(
"last_face, last_mesh = add_triangle(bm, bm.verts, ({},{},{}), norm_list, ({},{},{}), {}, od_list, "
"two_face_vert)\n"),
primVerts[c % 3].pos, primVerts[(c + 2) % 3].pos, primVerts[(c + 1) % 3].pos, primVerts[c % 3].norm,
primVerts[(c + 2) % 3].norm, primVerts[(c + 1) % 3].norm, sHead.matIdx);
if (matUVCount) {
os << "if last_face is not None:\n";
for (unsigned j = 0; j < matUVCount; ++j) {
if (j == 0 && matShortUVs)
os.format(FMT_STRING(
" uv_tri = expand_lightmap_triangle(lightmap_tri_tracker, suv_list[{}], suv_list[{}], "
"suv_list[{}])\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[0]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[1]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[2]\n"),
primVerts[c % 3].uvs[j], primVerts[(c + 2) % 3].uvs[j], primVerts[(c + 1) % 3].uvs[j],
primVerts[c % 3].pos, j, primVerts[(c + 2) % 3].pos, j, primVerts[(c + 1) % 3].pos, j);
else
os.format(FMT_STRING(
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"),
primVerts[c % 3].pos, j, primVerts[c % 3].uvs[j], primVerts[(c + 2) % 3].pos, j,
primVerts[(c + 2) % 3].uvs[j], primVerts[(c + 1) % 3].pos, j, primVerts[(c + 1) % 3].uvs[j]);
}
}
} else {
os.format(FMT_STRING(
"last_face, last_mesh = add_triangle(bm, bm.verts, ({},{},{}), norm_list, ({},{},{}), {}, od_list, "
"two_face_vert)\n"),
primVerts[c % 3].pos, primVerts[(c + 1) % 3].pos, primVerts[(c + 2) % 3].pos, primVerts[c % 3].norm,
primVerts[(c + 1) % 3].norm, primVerts[(c + 2) % 3].norm, sHead.matIdx);
if (matUVCount) {
os << "if last_face is not None:\n";
for (unsigned j = 0; j < matUVCount; ++j) {
if (j == 0 && matShortUVs)
os.format(FMT_STRING(
" uv_tri = expand_lightmap_triangle(lightmap_tri_tracker, suv_list[{}], suv_list[{}], "
"suv_list[{}])\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[0]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[1]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[2]\n"),
primVerts[c % 3].uvs[j], primVerts[(c + 1) % 3].uvs[j], primVerts[(c + 2) % 3].uvs[j],
primVerts[c % 3].pos, j, primVerts[(c + 1) % 3].pos, j, primVerts[(c + 2) % 3].pos, j);
else
os.format(FMT_STRING(
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"),
primVerts[c % 3].pos, j, primVerts[c % 3].uvs[j], primVerts[(c + 1) % 3].pos, j,
primVerts[(c + 1) % 3].uvs[j], primVerts[(c + 2) % 3].pos, j, primVerts[(c + 2) % 3].uvs[j]);
}
}
}
flip ^= 1;
bool peek = (v >= vertCount - 3);
/* Advance one prim vert */
primVerts[c % 3] = dl.readVert(peek);
++c;
}
} else if (ptype == GX::TRIANGLES) {
for (int v = 0; v < vertCount; v += 3) {
os.format(FMT_STRING(
"last_face, last_mesh = add_triangle(bm, bm.verts, ({},{},{}), norm_list, ({},{},{}), {}, od_list, "
"two_face_vert)\n"),
primVerts[0].pos, primVerts[1].pos, primVerts[2].pos, primVerts[0].norm, primVerts[1].norm,
primVerts[2].norm, sHead.matIdx);
if (matUVCount) {
os << "if last_face is not None:\n";
for (unsigned j = 0; j < matUVCount; ++j) {
if (j == 0 && matShortUVs)
os.format(FMT_STRING(
" uv_tri = expand_lightmap_triangle(lightmap_tri_tracker, suv_list[{}], suv_list[{}], "
"suv_list[{}])\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[0]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[1]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[2]\n"),
primVerts[0].uvs[j], primVerts[1].uvs[j], primVerts[2].uvs[j], primVerts[0].pos, j,
primVerts[1].pos, j, primVerts[2].pos, j);
else
os.format(FMT_STRING(
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"),
primVerts[0].pos, j, primVerts[0].uvs[j], primVerts[1].pos, j, primVerts[1].uvs[j],
primVerts[2].pos, j, primVerts[2].uvs[j]);
}
}
/* Break if done */
if (v + 3 >= vertCount)
break;
/* Advance 3 Prim Verts */
for (int pv = 0; pv < 3; ++pv)
primVerts[pv] = dl.readVert();
}
} else if (ptype == GX::TRIANGLEFAN) {
++c;
for (int v = 0; v < vertCount - 2; ++v) {
os.format(FMT_STRING(
"last_face, last_mesh = add_triangle(bm, bm.verts, ({},{},{}), norm_list, ({},{},{}), {}, od_list, "
"two_face_vert)\n"),
firstPrimVert.pos, primVerts[c % 3].pos, primVerts[(c + 1) % 3].pos, firstPrimVert.norm,
primVerts[c % 3].norm, primVerts[(c + 1) % 3].norm, sHead.matIdx);
if (matUVCount) {
os << "if last_face is not None:\n";
for (unsigned j = 0; j < matUVCount; ++j) {
if (j == 0 && matShortUVs)
os.format(FMT_STRING(
" uv_tri = expand_lightmap_triangle(lightmap_tri_tracker, suv_list[{}], suv_list[{}], "
"suv_list[{}])\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[0]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[1]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_tri[2]\n"),
firstPrimVert.uvs[j], primVerts[c % 3].uvs[j], primVerts[(c + 1) % 3].uvs[j], firstPrimVert.pos,
j, primVerts[c % 3].pos, j, primVerts[(c + 1) % 3].pos, j);
else
os.format(FMT_STRING(
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"
" loop_from_facevert(last_mesh, last_face, {})[last_mesh.loops.layers.uv[{}]].uv = "
"uv_list[{}]\n"),
firstPrimVert.pos, j, firstPrimVert.uvs[j], primVerts[c % 3].pos, j, primVerts[c % 3].uvs[j],
primVerts[(c + 1) % 3].pos, j, primVerts[(c + 1) % 3].uvs[j]);
}
}
/* Break if done */
if (v + 3 >= vertCount)
break;
/* Advance one prim vert */
primVerts[(c + 2) % 3] = dl.readVert();
++c;
}
}
os << "\n";
}
}
}
}
if (s < secCount - 1) {
reader.seek(secStart + secSizes[s], athena::SeekOrigin::Begin);
}
}
/* Finish Mesh */
FinishBlenderMesh(os, matSetCount, meshIdx);
if (rp.first.second) {
if (entry.id != 0xB333E1D7) {
// This is the beta phazon suit, we want the (incorrect) weight information, but we don't want to keep the CSKR id
os.format(FMT_STRING("mesh.cskr_id = '{}'\n"), rp.first.first);
}
rp.second.second->sendVertexGroupsToBlender(os);
}
return lastDlSec;
}
template atUint32
ReadGeomSectionsToBlender<PAKRouter<DNAMP1::PAKBridge>, DNAMP1::MaterialSet,
std::pair<std::pair<UniqueID32, DNAMP1::CSKR*>, std::pair<UniqueID32, DNAMP1::CINF*>>,
DNACMDL::SurfaceHeader_1>(
hecl::blender::PyOutStream& os, athena::io::IStreamReader& reader, PAKRouter<DNAMP1::PAKBridge>& pakRouter,
const PAKRouter<DNAMP1::PAKBridge>::EntryType& entry,
const std::pair<std::pair<UniqueID32, DNAMP1::CSKR*>, std::pair<UniqueID32, DNAMP1::CINF*>>& rp, bool shortNormals,
bool shortUVs, std::vector<VertexAttributes>& vertAttribs, int meshIdx, atUint32 secCount, atUint32 matSetCount,
const atUint32* secSizes, atUint32 surfaceCount);
template atUint32
ReadGeomSectionsToBlender<PAKRouter<DNAMP2::PAKBridge>, DNAMP2::MaterialSet,
std::pair<std::pair<UniqueID32, DNAMP2::CSKR*>, std::pair<UniqueID32, DNAMP2::CINF*>>,
DNACMDL::SurfaceHeader_2>(
hecl::blender::PyOutStream& os, athena::io::IStreamReader& reader, PAKRouter<DNAMP2::PAKBridge>& pakRouter,
const PAKRouter<DNAMP2::PAKBridge>::EntryType& entry,
const std::pair<std::pair<UniqueID32, DNAMP2::CSKR*>, std::pair<UniqueID32, DNAMP2::CINF*>>& rp, bool shortNormals,
bool shortUVs, std::vector<VertexAttributes>& vertAttribs, int meshIdx, atUint32 secCount, atUint32 matSetCount,
const atUint32* secSizes, atUint32 surfaceCount);
template atUint32
ReadGeomSectionsToBlender<PAKRouter<DNAMP3::PAKBridge>, DNAMP3::MaterialSet,
std::pair<std::pair<UniqueID64, DNAMP3::CSKR*>, std::pair<UniqueID64, DNAMP3::CINF*>>,
DNACMDL::SurfaceHeader_3>(
hecl::blender::PyOutStream& os, athena::io::IStreamReader& reader, PAKRouter<DNAMP3::PAKBridge>& pakRouter,
const PAKRouter<DNAMP3::PAKBridge>::EntryType& entry,
const std::pair<std::pair<UniqueID64, DNAMP3::CSKR*>, std::pair<UniqueID64, DNAMP3::CINF*>>& rp, bool shortNormals,
bool shortUVs, std::vector<VertexAttributes>& vertAttribs, int meshIdx, atUint32 secCount, atUint32 matSetCount,
const atUint32* secSizes, atUint32 surfaceCount);
template <class PAKRouter, class MaterialSet, class RigPair, class SurfaceHeader, atUint32 Version>
bool ReadCMDLToBlender(hecl::blender::Connection& conn, athena::io::IStreamReader& reader, PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry, const SpecBase& dataspec, const RigPair& rp) {
Header head;
head.read(reader);
if (head.magic != 0xDEADBABE) {
LogDNACommon.report(logvisor::Error, FMT_STRING("invalid CMDL magic"));
return false;
}
if (head.version != Version) {
LogDNACommon.report(logvisor::Error, FMT_STRING("invalid CMDL version"));
return false;
}
/* Open Py Stream and read sections */
hecl::blender::PyOutStream os = conn.beginPythonOut(true);
os.format(FMT_STRING(
"import bpy\n"
"import bmesh\n"
"\n"
"bpy.context.scene.name = '{}'\n"
"bpy.context.scene.hecl_mesh_obj = bpy.context.scene.name\n"),
pakRouter.getBestEntryName(entry));
InitGeomBlenderContext(os, dataspec.getMasterShaderPath());
MaterialSet::RegisterMaterialProps(os);
os << "# Materials\n"
"materials = []\n"
"\n";
std::vector<VertexAttributes> vertAttribs;
ReadGeomSectionsToBlender<PAKRouter, MaterialSet, RigPair, SurfaceHeader>(
os, reader, pakRouter, entry, rp, head.flags.shortNormals(), head.flags.shortUVs(), vertAttribs, -1,
head.secCount, head.matSetCount, head.secSizes.data());
return true;
}
template bool ReadCMDLToBlender<PAKRouter<DNAMP1::PAKBridge>, DNAMP1::MaterialSet,
std::pair<std::pair<UniqueID32, DNAMP1::CSKR*>, std::pair<UniqueID32, DNAMP1::CINF*>>, DNACMDL::SurfaceHeader_1, 2>(
hecl::blender::Connection& conn, athena::io::IStreamReader& reader, PAKRouter<DNAMP1::PAKBridge>& pakRouter,
const PAKRouter<DNAMP1::PAKBridge>::EntryType& entry, const SpecBase& dataspec,
const std::pair<std::pair<UniqueID32, DNAMP1::CSKR*>, std::pair<UniqueID32, DNAMP1::CINF*>>& rp);
template bool ReadCMDLToBlender<PAKRouter<DNAMP2::PAKBridge>, DNAMP2::MaterialSet,
std::pair<std::pair<UniqueID32, DNAMP2::CSKR*>, std::pair<UniqueID32, DNAMP2::CINF*>>, DNACMDL::SurfaceHeader_2, 4>(
hecl::blender::Connection& conn, athena::io::IStreamReader& reader, PAKRouter<DNAMP2::PAKBridge>& pakRouter,
const PAKRouter<DNAMP2::PAKBridge>::EntryType& entry, const SpecBase& dataspec,
const std::pair<std::pair<UniqueID32, DNAMP2::CSKR*>, std::pair<UniqueID32, DNAMP2::CINF*>>& rp);
template bool ReadCMDLToBlender<PAKRouter<DNAMP3::PAKBridge>, DNAMP3::MaterialSet,
std::pair<std::pair<UniqueID64, DNAMP3::CSKR*>, std::pair<UniqueID64, DNAMP3::CINF*>>, DNACMDL::SurfaceHeader_3, 4>(
hecl::blender::Connection& conn, athena::io::IStreamReader& reader, PAKRouter<DNAMP3::PAKBridge>& pakRouter,
const PAKRouter<DNAMP3::PAKBridge>::EntryType& entry, const SpecBase& dataspec,
const std::pair<std::pair<UniqueID64, DNAMP3::CSKR*>, std::pair<UniqueID64, DNAMP3::CINF*>>& rp);
template bool ReadCMDLToBlender<PAKRouter<DNAMP3::PAKBridge>, DNAMP3::MaterialSet,
std::pair<std::pair<UniqueID64, DNAMP3::CSKR*>, std::pair<UniqueID64, DNAMP3::CINF*>>, DNACMDL::SurfaceHeader_3, 5>(
hecl::blender::Connection& conn, athena::io::IStreamReader& reader, PAKRouter<DNAMP3::PAKBridge>& pakRouter,
const PAKRouter<DNAMP3::PAKBridge>::EntryType& entry, const SpecBase& dataspec,
const std::pair<std::pair<UniqueID64, DNAMP3::CSKR*>, std::pair<UniqueID64, DNAMP3::CINF*>>& rp);
template <class PAKRouter, class MaterialSet>
void NameCMDL(athena::io::IStreamReader& reader, PAKRouter& pakRouter, typename PAKRouter::EntryType& entry,
const SpecBase& dataspec) {
Header head;
head.read(reader);
std::string bestName = fmt::format(FMT_STRING("CMDL_{}"), entry.id);
/* Pre-read pass to determine maximum used vert indices */
atUint32 matSecCount = 0;
if (head.matSetCount)
matSecCount = MaterialSet::OneSection() ? 1 : head.matSetCount;
atUint32 lastDlSec = head.secCount;
for (atUint32 s = 0; s < lastDlSec; ++s) {
atUint64 secStart = reader.position();
if (s < matSecCount) {
MaterialSet matSet;
matSet.read(reader);
matSet.nameTextures(pakRouter, bestName.c_str(), s);
}
if (s < head.secCount - 1) {
reader.seek(secStart + head.secSizes[s], athena::SeekOrigin::Begin);
}
}
}
template void NameCMDL<PAKRouter<DNAMP1::PAKBridge>, DNAMP1::MaterialSet>(
athena::io::IStreamReader& reader, PAKRouter<DNAMP1::PAKBridge>& pakRouter,
PAKRouter<DNAMP1::PAKBridge>::EntryType& entry, const SpecBase& dataspec);
template <typename W>
static void WriteDLVal(W& writer, GX::AttrType type, atUint32 val) {
switch (type) {
case GX::DIRECT:
case GX::INDEX8:
writer.writeUByte(atUint8(val));
break;
case GX::INDEX16:
writer.writeUint16Big(atUint16(val));
break;
default:
break;
}
}
template <class MaterialSet, class SurfaceHeader, atUint32 Version>
bool WriteCMDL(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const Mesh& mesh) {
bool skinned = !mesh.skins.empty();
Header head;
head.magic = 0xDEADBABE;
head.version = Version;
head.flags.setSkinned(skinned);
head.flags.setShortNormals(!skinned);
head.flags.setShortUVs(true); /* This just means there's an (empty) short UV section */
head.aabbMin = mesh.aabbMin.val;
head.aabbMax = mesh.aabbMax.val;
head.matSetCount = mesh.materialSets.size();
head.secCount = head.matSetCount + 6 + mesh.surfaces.size();
head.secSizes.reserve(head.secCount);
/* Lengths of padding to insert while writing */
std::vector<size_t> paddingSizes;
paddingSizes.reserve(head.secCount);
/* Build material sets */
std::vector<MaterialSet> matSets;
#if 0
matSets.reserve(mesh.materialSets.size());
{
for (const std::vector<Material>& mset : mesh.materialSets) {
matSets.emplace_back();
MaterialSet& targetMSet = matSets.back();
std::vector<hecl::ProjectPath> texPaths;
std::vector<hecl::Backend::GX> setBackends;
setBackends.reserve(mset.size());
size_t endOff = 0;
for (const Material& mat : mset) {
std::string diagName = fmt::format(FMT_STRING("{}:{}"), inPath.getLastComponentUTF8(), mat.name);
hecl::Frontend::IR matIR = FE.compileSource(mat.source, diagName);
setBackends.emplace_back();
hecl::Backend::GX& matGX = setBackends.back();
matGX.reset(matIR, FE.getDiagnostics());
targetMSet.materials.emplace_back(matGX, mat.iprops, mat.texs, texPaths, mesh.colorLayerCount, false, false);
targetMSet.materials.back().binarySize(endOff);
targetMSet.head.addMaterialEndOff(endOff);
}
texPaths.reserve(mset.size() * 4);
for (const Material& mat : mset) {
for (const hecl::ProjectPath& path : mat.texs) {
bool found = false;
for (const hecl::ProjectPath& ePath : texPaths) {
if (path == ePath) {
found = true;
break;
}
}
if (!found)
texPaths.push_back(path);
}
}
for (const hecl::ProjectPath& path : texPaths)
targetMSet.head.addTexture(path);
size_t secSz = 0;
targetMSet.binarySize(secSz);
size_t secSz32 = ROUND_UP_32(secSz);
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
}
}
#endif
/* Vertex Positions */
size_t secSz = mesh.pos.size() * 12;
size_t secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Vertex Normals */
secSz = mesh.norm.size() * (skinned ? 12 : 6);
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Vertex Colors */
secSz = mesh.color.size() * 4;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* UV coords */
secSz = mesh.uv.size() * 8;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* LUV coords */
secSz = 0;
secSz32 = ROUND_UP_32(secSz);
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Surface index */
std::vector<size_t> surfEndOffs;
surfEndOffs.reserve(mesh.surfaces.size());
secSz = mesh.surfaces.size() * 4 + 4;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Surfaces */
size_t endOff = 0;
size_t firstSurfSec = head.secSizes.size();
for (const Mesh::Surface& surf : mesh.surfaces) {
size_t vertSz = matSets.at(0).materials.at(surf.materialIdx).getVAFlags().vertDLSize();
if (surf.verts.size() > 65536)
LogDNACommon.report(logvisor::Fatal, FMT_STRING("GX DisplayList overflow"));
size_t secSz = 64;
for (auto it = surf.verts.cbegin(); it != surf.verts.cend();) {
atUint16 vertCount = 0;
auto itEnd = surf.verts.cend();
for (auto it2 = it; it2 != surf.verts.cend(); ++it2, ++vertCount)
if (it2->iPos == 0xffffffff) {
if (vertCount == 3) {
/* All primitives here on out are triangles */
vertCount = atUint16((surf.verts.cend() - it + 1) * 3 / 4);
break;
}
itEnd = it2;
break;
}
secSz += 3 + vertCount * vertSz;
if (itEnd == surf.verts.cend())
break;
it = itEnd + 1;
}
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
endOff += secSz32;
surfEndOffs.push_back(endOff);
}
/* Write sections */
athena::io::FileWriter writer(outPath.getAbsolutePath());
head.write(writer);
auto padIt = paddingSizes.cbegin();
/* Material Sets */
for (const MaterialSet& mset : matSets) {
mset.write(writer);
writer.fill(atUint8(0), *padIt);
++padIt;
}
/* Vertex Positions */
for (const atVec3f& pos : mesh.pos)
writer.writeVec3fBig(pos);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Vertex Normals */
for (const atVec3f& norm : mesh.norm) {
if (skinned) {
writer.writeVec3fBig(norm);
} else {
for (int i = 0; i < 3; ++i) {
int tmpV = int(norm.simd[i] * 16384.f);
tmpV = zeus::clamp(-32768, tmpV, 32767);
writer.writeInt16Big(atInt16(tmpV));
}
}
}
writer.fill(atUint8(0), *padIt);
++padIt;
/* Vertex Colors */
for (const atVec3f& col : mesh.color) {
GX::Color qCol(col);
qCol.write(writer);
}
writer.fill(atUint8(0), *padIt);
++padIt;
/* UV coords */
for (const atVec2f& uv : mesh.uv)
writer.writeVec2fBig(uv);
writer.fill(atUint8(0), *padIt);
++padIt;
/* LUV coords */
writer.fill(atUint8(0), *padIt);
++padIt;
/* Surface index */
writer.writeUint32Big(surfEndOffs.size());
for (size_t off : surfEndOffs)
writer.writeUint32Big(off);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Surfaces */
GX::Primitive prim = GX::TRIANGLES;
if (mesh.topology == hecl::HMDLTopology::Triangles)
prim = GX::TRIANGLES;
else if (mesh.topology == hecl::HMDLTopology::TriStrips)
prim = GX::TRIANGLESTRIP;
else
LogDNACommon.report(logvisor::Fatal, FMT_STRING("unrecognized mesh output mode"));
auto surfSizeIt = head.secSizes.begin() + firstSurfSec;
for (const Mesh::Surface& surf : mesh.surfaces) {
const typename MaterialSet::Material::VAFlags& vaFlags = matSets.at(0).materials.at(surf.materialIdx).getVAFlags();
SurfaceHeader header;
header.centroid = surf.centroid;
header.matIdx = surf.materialIdx;
header.dlSize = (*surfSizeIt++ - 64) | 0x80000000;
header.reflectionNormal = surf.reflectionNormal;
header.write(writer);
GX::Primitive usePrim = prim;
for (auto it = surf.verts.cbegin(); it != surf.verts.cend();) {
atUint16 vertCount = 0;
auto itEnd = surf.verts.cend();
for (auto it2 = it; it2 != surf.verts.cend(); ++it2, ++vertCount)
if (it2->iPos == 0xffffffff) {
if (vertCount == 3) {
/* All primitives here on out are triangles */
usePrim = GX::TRIANGLES;
vertCount = atUint16((surf.verts.cend() - it + 1) * 3 / 4);
break;
}
itEnd = it2;
break;
}
/* VAT0 = float normals, float UVs
* VAT1 = short normals, float UVs */
writer.writeUByte(usePrim | (skinned ? 0x0 : 0x1));
writer.writeUint16Big(vertCount);
for (auto it2 = it; it2 != itEnd; ++it2) {
const Mesh::Surface::Vert& vert = *it2;
if (vert.iPos == 0xffffffff)
continue;
atUint32 skinIdx = vert.iBankSkin * 3;
WriteDLVal(writer, vaFlags.pnMatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex0MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex1MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex2MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex3MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex4MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex5MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.tex6MatIdx(), skinIdx);
WriteDLVal(writer, vaFlags.position(), vert.iPos);
WriteDLVal(writer, vaFlags.normal(), vert.iNorm);
WriteDLVal(writer, vaFlags.color0(), vert.iColor[0]);
WriteDLVal(writer, vaFlags.color1(), vert.iColor[1]);
WriteDLVal(writer, vaFlags.tex0(), vert.iUv[0]);
WriteDLVal(writer, vaFlags.tex1(), vert.iUv[1]);
WriteDLVal(writer, vaFlags.tex2(), vert.iUv[2]);
WriteDLVal(writer, vaFlags.tex3(), vert.iUv[3]);
WriteDLVal(writer, vaFlags.tex4(), vert.iUv[4]);
WriteDLVal(writer, vaFlags.tex5(), vert.iUv[5]);
WriteDLVal(writer, vaFlags.tex6(), vert.iUv[6]);
}
if (itEnd == surf.verts.cend())
break;
it = itEnd + 1;
}
writer.fill(atUint8(0), *padIt);
++padIt;
}
writer.close();
return true;
}
template bool WriteCMDL<DNAMP1::MaterialSet, DNACMDL::SurfaceHeader_1, 2>(const hecl::ProjectPath& outPath,
const hecl::ProjectPath& inPath,
const Mesh& mesh);
template <class MaterialSet, class SurfaceHeader, atUint32 Version>
bool WriteHMDLCMDL(const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const Mesh& mesh,
hecl::blender::PoolSkinIndex& poolSkinIndex) {
Header head;
head.magic = 0xDEADBABE;
head.version = 0x10000 | Version;
head.aabbMin = mesh.aabbMin.val;
head.aabbMax = mesh.aabbMax.val;
head.matSetCount = mesh.materialSets.size();
head.secCount = head.matSetCount + 4 + mesh.surfaces.size();
head.secSizes.reserve(head.secCount);
/* Lengths of padding to insert while writing */
std::vector<size_t> paddingSizes;
paddingSizes.reserve(head.secCount);
/* Build material sets */
std::vector<MaterialSet> matSets;
matSets.reserve(mesh.materialSets.size());
for (const auto& mset : mesh.materialSets) {
matSets.emplace_back();
MaterialSet& targetMSet = matSets.back();
size_t endOff = 0;
for (const Material& mat : mset) {
++targetMSet.materialCount;
targetMSet.materials.emplace_back(mat);
targetMSet.materials.back().binarySize(endOff);
targetMSet.materialEndOffs.push_back(endOff);
}
size_t secSz = 0;
targetMSet.binarySize(secSz);
size_t secSz32 = ROUND_UP_32(secSz);
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
}
hecl::blender::HMDLBuffers bufs = mesh.getHMDLBuffers(false, poolSkinIndex);
/* Metadata */
size_t secSz = 0;
bufs.m_meta.binarySize(secSz);
size_t secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* VBO */
secSz = bufs.m_vboSz;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* IBO */
secSz = bufs.m_iboSz;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Surface index */
std::vector<size_t> surfEndOffs;
surfEndOffs.reserve(bufs.m_surfaces.size());
secSz = bufs.m_surfaces.size() * 4 + 4;
secSz32 = ROUND_UP_32(secSz);
if (secSz32 == 0)
secSz32 = 32;
head.secSizes.push_back(secSz32);
paddingSizes.push_back(secSz32 - secSz);
/* Surfaces */
size_t endOff = 0;
for (const auto& surf : bufs.m_surfaces) {
(void)surf;
head.secSizes.push_back(64);
paddingSizes.push_back(0);
endOff += 64;
surfEndOffs.push_back(endOff);
}
/* Write sections */
athena::io::FileWriter writer(outPath.getAbsolutePath());
head.write(writer);
auto padIt = paddingSizes.cbegin();
/* Material Sets */
for (const MaterialSet& mset : matSets) {
mset.write(writer);
writer.fill(atUint8(0), *padIt);
++padIt;
}
/* Metadata */
bufs.m_meta.write(writer);
writer.fill(atUint8(0), *padIt);
++padIt;
/* VBO */
writer.writeUBytes(bufs.m_vboData.get(), bufs.m_vboSz);
writer.fill(atUint8(0), *padIt);
++padIt;
/* IBO */
writer.writeUBytes(bufs.m_iboData.get(), bufs.m_iboSz);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Surface index */
writer.writeUint32Big(surfEndOffs.size());
for (size_t off : surfEndOffs)
writer.writeUint32Big(off);
writer.fill(atUint8(0), *padIt);
++padIt;
/* Surfaces */
for (const hecl::blender::HMDLBuffers::Surface& surf : bufs.m_surfaces) {
const Mesh::Surface& osurf = surf.m_origSurf;
SurfaceHeader header;
header.centroid = osurf.centroid;
header.matIdx = osurf.materialIdx;
header.reflectionNormal = osurf.reflectionNormal;
header.idxStart = surf.m_start;
header.idxCount = surf.m_count;
header.skinMtxBankIdx = osurf.skinBankIdx;
header.write(writer);
writer.fill(atUint8(0), *padIt);
++padIt;
}
/* Ensure final surface's alignment writes zeros */
writer.seek(-1, athena::SeekOrigin::Current);
writer.writeUByte(0);
writer.close();
return true;
}
template bool WriteHMDLCMDL<DNAMP1::HMDLMaterialSet, DNACMDL::SurfaceHeader_2, 2>(
const hecl::ProjectPath& outPath, const hecl::ProjectPath& inPath, const Mesh& mesh,
hecl::blender::PoolSkinIndex& poolSkinIndex);
struct MaterialPool {
std::vector<const Material*> materials;
size_t addMaterial(const Material& mat, bool& newMat) {
size_t ret = 0;
newMat = false;
for (const Material* testMat : materials) {
if (mat == *testMat)
return ret;
++ret;
}
materials.push_back(&mat);
newMat = true;
return ret;
}
};
template <class MaterialSet, class SurfaceHeader, class MeshHeader>
bool WriteMREASecs(std::vector<std::vector<uint8_t>>& secsOut, const hecl::ProjectPath& inPath,
const std::vector<Mesh>& meshes, zeus::CAABox& fullAABB, std::vector<zeus::CAABox>& meshAABBs) {
/* Build material set */
std::vector<size_t> surfToGlobalMats;
MaterialSet matSet;
{
MaterialPool matPool;
size_t surfCount = 0;
for (const Mesh& mesh : meshes)
surfCount += mesh.surfaces.size();
surfToGlobalMats.reserve(surfCount);
size_t endOff = 0;
std::vector<hecl::ProjectPath> texPaths;
for (const Mesh& mesh : meshes) {
if (mesh.materialSets.size()) {
std::vector<size_t> meshToGlobalMats;
meshToGlobalMats.reserve(mesh.materialSets[0].size());
for (const Material& mat : mesh.materialSets[0]) {
bool newMat;
size_t idx = matPool.addMaterial(mat, newMat);
meshToGlobalMats.push_back(idx);
if (!newMat)
continue;
for (const auto& chunk : mat.chunks) {
if (auto pass = chunk.get_if<Material::PASS>()) {
bool found = false;
for (const hecl::ProjectPath& ePath : texPaths) {
if (pass->tex == ePath) {
found = true;
break;
}
}
if (!found)
texPaths.push_back(pass->tex);
}
}
auto lightmapped = mat.iprops.find("retro_lightmapped");
bool lm = lightmapped != mat.iprops.cend() && lightmapped->second != 0;
matSet.materials.emplace_back(mat, texPaths, mesh.colorLayerCount, lm, false);
matSet.materials.back().binarySize(endOff);
matSet.head.addMaterialEndOff(endOff);
}
for (const Mesh::Surface& surf : mesh.surfaces)
surfToGlobalMats.push_back(meshToGlobalMats[surf.materialIdx]);
}
}
for (const hecl::ProjectPath& path : texPaths)
matSet.head.addTexture(path);
size_t secSz = 0;
matSet.binarySize(secSz);
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
matSet.write(w);
}
/* Iterate meshes */
auto matIt = surfToGlobalMats.cbegin();
for (const Mesh& mesh : meshes) {
zeus::CTransform meshXf(mesh.sceneXf.val.data());
meshXf.basis.transpose();
/* Header */
{
MeshHeader meshHeader = {};
meshHeader.visorFlags.setFromBlenderProps(mesh.customProps);
memmove(meshHeader.xfMtx, mesh.sceneXf.val.data(), 48);
zeus::CAABox aabb(zeus::CVector3f(mesh.aabbMin), zeus::CVector3f(mesh.aabbMax));
aabb = aabb.getTransformedAABox(meshXf);
meshAABBs.push_back(aabb);
fullAABB.accumulateBounds(aabb);
meshHeader.aabb[0] = aabb.min;
meshHeader.aabb[1] = aabb.max;
size_t secSz = 0;
meshHeader.binarySize(secSz);
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
meshHeader.write(w);
}
std::vector<size_t> surfEndOffs;
surfEndOffs.reserve(mesh.surfaces.size());
size_t endOff = 0;
auto smatIt = matIt;
for (const Mesh::Surface& surf : mesh.surfaces) {
const typename MaterialSet::Material::VAFlags& vaFlags = matSet.materials.at(*smatIt++).getVAFlags();
size_t vertSz = vaFlags.vertDLSize();
endOff += 96;
for (auto it = surf.verts.cbegin(); it != surf.verts.cend();) {
atUint16 vertCount = 0;
auto itEnd = surf.verts.cend();
for (auto it2 = it; it2 != surf.verts.cend(); ++it2, ++vertCount)
if (it2->iPos == 0xffffffff) {
if (vertCount == 3) {
/* All primitives here on out are triangles */
vertCount = atUint16((surf.verts.cend() - it + 1) * 3 / 4);
break;
}
itEnd = it2;
break;
}
endOff += 3 + vertSz * vertCount;
if (itEnd == surf.verts.cend())
break;
it = itEnd + 1;
}
endOff = ROUND_UP_32(endOff);
surfEndOffs.push_back(endOff);
}
/* Positions */
{
size_t secSz = ROUND_UP_32(mesh.pos.size() * 12);
if (secSz == 0)
secSz = 32;
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
for (const hecl::blender::Vector3f& v : mesh.pos) {
zeus::CVector3f preXfPos = meshXf * zeus::CVector3f(v);
w.writeVec3fBig(preXfPos);
}
}
/* Normals */
{
size_t secSz = ROUND_UP_32(mesh.norm.size() * 6);
if (secSz == 0)
secSz = 32;
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
for (const hecl::blender::Vector3f& v : mesh.norm) {
zeus::CVector3f preXfNorm = (meshXf.basis * zeus::CVector3f(v)).normalized();
for (int i = 0; i < 3; ++i) {
int tmpV = int(preXfNorm[i] * 16384.f);
tmpV = zeus::clamp(-32768, tmpV, 32767);
w.writeInt16Big(atInt16(tmpV));
}
}
}
/* Colors */
{
size_t secSz = ROUND_UP_32(mesh.color.size() * 4);
if (secSz == 0)
secSz = 32;
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
for (const hecl::blender::Vector3f& v : mesh.color) {
zeus::CColor col((zeus::CVector4f(zeus::CVector3f(v))));
col.writeRGBA8(w);
}
}
/* UVs */
{
size_t secSz = ROUND_UP_32(mesh.uv.size() * 8);
if (secSz == 0)
secSz = 32;
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
for (const hecl::blender::Vector2f& v : mesh.uv)
w.writeVec2fBig(v.val);
}
/* LUVs */
{
size_t secSz = ROUND_UP_32(mesh.luv.size() * 4);
if (secSz == 0)
secSz = 32;
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
for (const hecl::blender::Vector2f& v : mesh.luv) {
for (int i = 0; i < 2; ++i) {
int tmpV = int(v.val.simd[i] * 32768.f);
tmpV = zeus::clamp(-32768, tmpV, 32767);
w.writeInt16Big(atInt16(tmpV));
}
}
}
/* Surface index */
{
secsOut.emplace_back((surfEndOffs.size() + 1) * 4, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
w.writeUint32Big(surfEndOffs.size());
for (size_t off : surfEndOffs)
w.writeUint32Big(off);
}
/* Surfaces */
GX::Primitive prim = GX::TRIANGLES;
if (mesh.topology == hecl::HMDLTopology::Triangles)
prim = GX::TRIANGLES;
else if (mesh.topology == hecl::HMDLTopology::TriStrips)
prim = GX::TRIANGLESTRIP;
else
LogDNACommon.report(logvisor::Fatal, FMT_STRING("unrecognized mesh output mode"));
auto surfEndOffIt = surfEndOffs.begin();
size_t lastEndOff = 0;
for (const Mesh::Surface& surf : mesh.surfaces) {
size_t matIdx = *matIt++;
const typename MaterialSet::Material& mat = matSet.materials.at(matIdx);
const typename MaterialSet::Material::VAFlags& vaFlags = mat.getVAFlags();
SurfaceHeader header;
header.centroid = meshXf * zeus::CVector3f(surf.centroid);
header.matIdx = matIdx;
uint32_t dlSize = uint32_t(*surfEndOffIt - lastEndOff - 96);
header.dlSize = dlSize | 0x80000000;
lastEndOff = *surfEndOffIt++;
header.reflectionNormal = (meshXf.basis * zeus::CVector3f(surf.reflectionNormal)).normalized();
header.aabbSz = 24;
zeus::CAABox aabb(zeus::CVector3f(surf.aabbMin), zeus::CVector3f(surf.aabbMax));
aabb = aabb.getTransformedAABox(meshXf);
header.aabb[0] = aabb.min;
header.aabb[1] = aabb.max;
size_t secSz = 0;
header.binarySize(secSz);
secSz += dlSize;
secSz = ROUND_UP_32(secSz);
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
header.write(w);
GX::Primitive usePrim = prim;
for (auto it = surf.verts.cbegin(); it != surf.verts.cend();) {
atUint16 vertCount = 0;
auto itEnd = surf.verts.cend();
for (auto it2 = it; it2 != surf.verts.cend(); ++it2, ++vertCount)
if (it2->iPos == 0xffffffff) {
if (vertCount == 3) {
/* All primitives here on out are triangles */
usePrim = GX::TRIANGLES;
vertCount = atUint16((surf.verts.cend() - it + 1) * 3 / 4);
break;
}
itEnd = it2;
break;
}
/* VAT1 = short normals, float UVs
* VAT2 = short normals, short UVs */
w.writeUByte(usePrim | (mat.flags.lightmapUVArray() ? 0x2 : 0x1));
w.writeUint16Big(vertCount);
for (auto it2 = it; it2 != itEnd; ++it2) {
const Mesh::Surface::Vert& vert = *it2;
if (vert.iPos == 0xffffffff)
continue;
atUint32 skinIdx = vert.iBankSkin * 3;
WriteDLVal(w, vaFlags.pnMatIdx(), skinIdx);
WriteDLVal(w, vaFlags.tex0MatIdx(), skinIdx);
WriteDLVal(w, vaFlags.tex1MatIdx(), skinIdx);
WriteDLVal(w, vaFlags.tex2MatIdx(), skinIdx);
WriteDLVal(w, vaFlags.tex3MatIdx(), skinIdx);
WriteDLVal(w, vaFlags.tex4MatIdx(), skinIdx);
WriteDLVal(w, vaFlags.tex5MatIdx(), skinIdx);
WriteDLVal(w, vaFlags.tex6MatIdx(), skinIdx);
WriteDLVal(w, vaFlags.position(), vert.iPos);
WriteDLVal(w, vaFlags.normal(), vert.iNorm);
WriteDLVal(w, vaFlags.color0(), vert.iColor[0]);
WriteDLVal(w, vaFlags.color1(), vert.iColor[1]);
WriteDLVal(w, vaFlags.tex0(), vert.iUv[0]);
WriteDLVal(w, vaFlags.tex1(), vert.iUv[1]);
WriteDLVal(w, vaFlags.tex2(), vert.iUv[2]);
WriteDLVal(w, vaFlags.tex3(), vert.iUv[3]);
WriteDLVal(w, vaFlags.tex4(), vert.iUv[4]);
WriteDLVal(w, vaFlags.tex5(), vert.iUv[5]);
WriteDLVal(w, vaFlags.tex6(), vert.iUv[6]);
}
if (itEnd == surf.verts.cend())
break;
it = itEnd + 1;
}
}
}
return true;
}
template bool WriteMREASecs<DNAMP1::MaterialSet, DNACMDL::SurfaceHeader_1, DNAMP1::MREA::MeshHeader>(
std::vector<std::vector<uint8_t>>& secsOut, const hecl::ProjectPath& inPath, const std::vector<Mesh>& meshes,
zeus::CAABox& fullAABB, std::vector<zeus::CAABox>& meshAABBs);
template <class MaterialSet, class SurfaceHeader, class MeshHeader>
bool WriteHMDLMREASecs(std::vector<std::vector<uint8_t>>& secsOut, const hecl::ProjectPath& inPath,
const std::vector<Mesh>& meshes, zeus::CAABox& fullAABB, std::vector<zeus::CAABox>& meshAABBs) {
/* Build material set */
std::vector<size_t> surfToGlobalMats;
{
MaterialPool matPool;
size_t surfCount = 0;
for (const Mesh& mesh : meshes)
surfCount += mesh.surfaces.size();
surfToGlobalMats.reserve(surfCount);
MaterialSet matSet = {};
size_t endOff = 0;
for (const Mesh& mesh : meshes) {
if (mesh.materialSets.size()) {
std::vector<size_t> meshToGlobalMats;
meshToGlobalMats.reserve(mesh.materialSets[0].size());
for (const Material& mat : mesh.materialSets[0]) {
bool newMat;
size_t idx = matPool.addMaterial(mat, newMat);
meshToGlobalMats.push_back(idx);
if (!newMat)
continue;
++matSet.materialCount;
matSet.materials.emplace_back(mat);
matSet.materials.back().binarySize(endOff);
matSet.materialEndOffs.push_back(endOff);
}
for (const Mesh::Surface& surf : mesh.surfaces)
surfToGlobalMats.push_back(meshToGlobalMats[surf.materialIdx]);
}
}
size_t secSz = 0;
matSet.binarySize(secSz);
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
matSet.write(w);
}
/* Iterate meshes */
auto matIt = surfToGlobalMats.cbegin();
for (const Mesh& mesh : meshes) {
zeus::CTransform meshXf(mesh.sceneXf.val.data());
meshXf.basis.transpose();
/* Header */
{
MeshHeader meshHeader = {};
meshHeader.visorFlags.setFromBlenderProps(mesh.customProps);
memmove(meshHeader.xfMtx, mesh.sceneXf.val.data(), 48);
zeus::CAABox aabb(zeus::CVector3f(mesh.aabbMin), zeus::CVector3f(mesh.aabbMax));
aabb = aabb.getTransformedAABox(meshXf);
meshAABBs.push_back(aabb);
fullAABB.accumulateBounds(aabb);
meshHeader.aabb[0] = aabb.min;
meshHeader.aabb[1] = aabb.max;
size_t secSz = 0;
meshHeader.binarySize(secSz);
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
meshHeader.write(w);
}
hecl::blender::PoolSkinIndex poolSkinIndex;
hecl::blender::HMDLBuffers bufs = mesh.getHMDLBuffers(true, poolSkinIndex);
std::vector<size_t> surfEndOffs;
surfEndOffs.reserve(bufs.m_surfaces.size());
size_t endOff = 0;
for (const hecl::blender::HMDLBuffers::Surface& surf : bufs.m_surfaces) {
(void)surf;
endOff += 96;
surfEndOffs.push_back(endOff);
}
/* Metadata */
{
size_t secSz = 0;
bufs.m_meta.binarySize(secSz);
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
bufs.m_meta.write(w);
}
/* VBO */
{
secsOut.emplace_back(bufs.m_vboSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
w.writeUBytes(bufs.m_vboData.get(), bufs.m_vboSz);
}
/* IBO */
{
secsOut.emplace_back(bufs.m_iboSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
w.writeUBytes(bufs.m_iboData.get(), bufs.m_iboSz);
}
/* Surface index */
{
secsOut.emplace_back((surfEndOffs.size() + 1) * 4, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
w.writeUint32Big(surfEndOffs.size());
for (size_t off : surfEndOffs)
w.writeUint32Big(off);
}
/* Surfaces */
for (const hecl::blender::HMDLBuffers::Surface& surf : bufs.m_surfaces) {
const Mesh::Surface& osurf = surf.m_origSurf;
SurfaceHeader header;
header.centroid = meshXf * zeus::CVector3f(osurf.centroid);
header.matIdx = *matIt++;
header.reflectionNormal = (meshXf.basis * zeus::CVector3f(osurf.reflectionNormal)).normalized();
header.idxStart = surf.m_start;
header.idxCount = surf.m_count;
header.skinMtxBankIdx = osurf.skinBankIdx;
header.aabbSz = 24;
zeus::CAABox aabb(zeus::CVector3f(surf.m_origSurf.aabbMin), zeus::CVector3f(surf.m_origSurf.aabbMax));
aabb = aabb.getTransformedAABox(meshXf);
header.aabb[0] = aabb.min;
header.aabb[1] = aabb.max;
size_t secSz = 0;
header.binarySize(secSz);
secsOut.emplace_back(secSz, 0);
athena::io::MemoryWriter w(secsOut.back().data(), secsOut.back().size());
header.write(w);
}
}
return true;
}
template bool WriteHMDLMREASecs<DNAMP1::HMDLMaterialSet, DNACMDL::SurfaceHeader_2, DNAMP1::MREA::MeshHeader>(
std::vector<std::vector<uint8_t>>& secsOut, const hecl::ProjectPath& inPath, const std::vector<Mesh>& meshes,
zeus::CAABox& fullAABB, std::vector<zeus::CAABox>& meshAABBs);
template <>
void SurfaceHeader_1::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) {
/* centroid */
centroid = reader.readVec3fBig();
/* matIdx */
matIdx = reader.readUint32Big();
/* dlSize */
dlSize = reader.readUint32Big();
/* idxStart */
idxStart = reader.readUint32Big();
/* idxCount */
idxCount = reader.readUint32Big();
/* aabbSz */
aabbSz = reader.readUint32Big();
/* reflectionNormal */
reflectionNormal = reader.readVec3fBig();
/* aabb */
size_t remAABB = aabbSz;
if (remAABB >= 24) {
aabb[0] = reader.readVec3fBig();
aabb[1] = reader.readVec3fBig();
remAABB -= 24;
}
reader.seek(remAABB, athena::SeekOrigin::Current);
/* align */
reader.seekAlign32();
}
template <>
void SurfaceHeader_1::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) {
/* centroid */
writer.writeVec3fBig(centroid);
/* matIdx */
writer.writeUint32Big(matIdx);
/* dlSize */
writer.writeUint32Big(dlSize);
/* idxStart */
writer.writeUint32Big(idxStart);
/* idxCount */
writer.writeUint32Big(idxCount);
/* aabbSz */
writer.writeUint32Big(aabbSz ? 24 : 0);
/* reflectionNormal */
writer.writeVec3fBig(reflectionNormal);
/* aabb */
if (aabbSz) {
writer.writeVec3fBig(aabb[0]);
writer.writeVec3fBig(aabb[1]);
}
/* align */
writer.seekAlign32();
}
template <>
void SurfaceHeader_1::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) {
s += (aabbSz ? 24 : 0);
s += 44;
s = (s + 31) & ~31;
}
template <>
void SurfaceHeader_2::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) {
/* centroid */
centroid = reader.readVec3fBig();
/* matIdx */
matIdx = reader.readUint32Big();
/* dlSize */
dlSize = reader.readUint32Big();
/* idxStart */
idxStart = reader.readUint32Big();
/* idxCount */
idxCount = reader.readUint32Big();
/* aabbSz */
aabbSz = reader.readUint32Big();
/* reflectionNormal */
reflectionNormal = reader.readVec3fBig();
/* skinMtxBankIdx */
skinMtxBankIdx = reader.readInt16Big();
/* surfaceGroup */
surfaceGroup = reader.readUint16Big();
/* aabb */
size_t remAABB = aabbSz;
if (remAABB >= 24) {
aabb[0] = reader.readVec3fBig();
aabb[1] = reader.readVec3fBig();
remAABB -= 24;
}
reader.seek(remAABB, athena::SeekOrigin::Current);
/* align */
reader.seekAlign32();
}
template <>
void SurfaceHeader_2::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) {
/* centroid */
writer.writeVec3fBig(centroid);
/* matIdx */
writer.writeUint32Big(matIdx);
/* dlSize */
writer.writeUint32Big(dlSize);
/* idxStart */
writer.writeUint32Big(idxStart);
/* idxCount */
writer.writeUint32Big(idxCount);
/* aabbSz */
writer.writeUint32Big(aabbSz ? 24 : 0);
/* reflectionNormal */
writer.writeVec3fBig(reflectionNormal);
/* skinMtxBankIdx */
writer.writeInt16Big(skinMtxBankIdx);
/* surfaceGroup */
writer.writeUint16Big(surfaceGroup);
/* aabb */
if (aabbSz) {
writer.writeVec3fBig(aabb[0]);
writer.writeVec3fBig(aabb[1]);
}
/* align */
writer.seekAlign32();
}
template <>
void SurfaceHeader_2::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) {
s += (aabbSz ? 24 : 0);
s += 48;
s = (s + 31) & ~31;
}
template <>
void SurfaceHeader_3::Enumerate<BigDNA::Read>(typename Read::StreamT& reader) {
/* centroid */
centroid = reader.readVec3fBig();
/* matIdx */
matIdx = reader.readUint32Big();
/* dlSize */
dlSize = reader.readUint32Big();
/* idxStart */
idxStart = reader.readUint32Big();
/* idxCount */
idxCount = reader.readUint32Big();
/* aabbSz */
aabbSz = reader.readUint32Big();
/* reflectionNormal */
reflectionNormal = reader.readVec3fBig();
/* skinMtxBankIdx */
skinMtxBankIdx = reader.readInt16Big();
/* surfaceGroup */
surfaceGroup = reader.readUint16Big();
/* aabb */
size_t remAABB = aabbSz;
if (remAABB >= 24) {
aabb[0] = reader.readVec3fBig();
aabb[1] = reader.readVec3fBig();
remAABB -= 24;
}
reader.seek(remAABB, athena::SeekOrigin::Current);
/* unk3 */
unk3 = reader.readUByte();
/* align */
reader.seekAlign32();
}
template <>
void SurfaceHeader_3::Enumerate<BigDNA::Write>(typename Write::StreamT& writer) {
/* centroid */
writer.writeVec3fBig(centroid);
/* matIdx */
writer.writeUint32Big(matIdx);
/* dlSize */
writer.writeUint32Big(dlSize);
/* idxStart */
writer.writeUint32Big(idxStart);
/* idxCount */
writer.writeUint32Big(idxCount);
/* aabbSz */
writer.writeUint32Big(aabbSz ? 24 : 0);
/* reflectionNormal */
writer.writeVec3fBig(reflectionNormal);
/* skinMtxBankIdx */
writer.writeInt16Big(skinMtxBankIdx);
/* surfaceGroup */
writer.writeUint16Big(surfaceGroup);
/* aabb */
if (aabbSz) {
writer.writeVec3fBig(aabb[0]);
writer.writeVec3fBig(aabb[1]);
}
/* unk3 */
writer.writeUByte(unk3);
/* align */
writer.seekAlign32();
}
template <>
void SurfaceHeader_3::Enumerate<BigDNA::BinarySize>(typename BinarySize::StreamT& s) {
s += (aabbSz ? 24 : 0);
s += 49;
s = (s + 31) & ~31;
}
} // namespace DataSpec::DNACMDL