metaforce/DataSpec/DNACommon/MAPA.hpp

463 lines
16 KiB
C++

#ifndef __DNACOMMON_MAPA_HPP__
#define __DNACOMMON_MAPA_HPP__
#include "DNACommon.hpp"
#include "GX.hpp"
namespace Retro
{
namespace DNAMAPA
{
struct MAPA : BigDNA
{
Delete _d;
Value<atUint32> magic;
Value<atUint32> version;
struct IMAPAHeader : BigDNA
{
Delete _d;
virtual atUint32 mappableObjectCount() const=0;
virtual atUint32 vertexCount() const=0;
virtual atUint32 surfaceCount() const=0;
};
struct HeaderMP1 : IMAPAHeader
{
DECL_DNA
Value<atUint32> unknown1;
Value<atUint32> unknown2;
Value<atVec3f> boundingBox[2];
Value<atUint32> moCount;
Value<atUint32> vtxCount;
Value<atUint32> surfCount;
virtual atUint32 mappableObjectCount() const { return moCount;}
virtual atUint32 vertexCount() const { return vtxCount; }
virtual atUint32 surfaceCount() const { return surfCount; }
};
struct HeaderMP2 : IMAPAHeader
{
DECL_DNA
Value<atUint32> unknown1;
Value<atUint32> unknown2;
Value<atVec3f> boundingBox[2];
Value<atUint32> unknown3;
Value<atUint32> unknown4;
Value<atUint32> unknown5;
Value<atUint32> moCount;
Value<atUint32> vtxCount;
Value<atUint32> surfCount;
atUint32 mappableObjectCount() const { return moCount;}
atUint32 vertexCount() const { return vtxCount; }
atUint32 surfaceCount() const { return surfCount; }
};
struct HeaderMP3 : IMAPAHeader
{
DECL_DNA
Value<atUint32> unknown1;
Value<atUint32> unknown2;
Value<atVec3f> boundingBox[2];
Value<atUint32> unknown3;
Value<atUint32> unknown4;
Value<atUint32> unknown5;
Value<atUint32> unknown6;
Value<atUint32> moCount;
Value<atUint32> vtxCount;
Value<atUint32> surfCount;
Value<atUint32> internalNameLength;
Value<atUint32> unknown7;
String<DNA_COUNT(internalNameLength)> internalName;
atUint32 mappableObjectCount() const { return moCount;}
atUint32 vertexCount() const { return vtxCount; }
atUint32 surfaceCount() const { return surfCount; }
};
void read(Athena::io::IStreamReader& __dna_reader)
{
/* magic */
magic = __dna_reader.readUint32Big();
if (magic != 0xDEADD00D)
{
LogDNACommon.report(LogVisor::Error, "invalid MAPA magic");
return;
}
/* version */
version = __dna_reader.readUint32Big();
if (version == 2)
header.reset(new HeaderMP1);
else if (version == 3)
header.reset(new HeaderMP2);
else if (version == 5)
header.reset(new HeaderMP3);
else
{
LogDNACommon.report(LogVisor::Error, "invalid MAPA version");
return;
}
header->read(__dna_reader);
for (int i = 0; i < header->mappableObjectCount(); i++)
{
std::unique_ptr<IMappableObject> mo = nullptr;
if (version != 5)
mo.reset(new MappableObjectMP1_2);
else
mo.reset(new MappableObjectMP3);
mo->read(__dna_reader);
mappableObjects.push_back(std::move(mo));
}
/* vertices */
__dna_reader.enumerateBig(vertices, header->vertexCount());
/* surfaceHeaders */
__dna_reader.enumerate(surfaceHeaders, header->surfaceCount());
/* surfaces */
__dna_reader.enumerate(surfaces, header->surfaceCount());
}
void write(Athena::io::IStreamWriter& __dna_writer) const
{
/* magic */
__dna_writer.writeUint32Big(magic);
/* version */
__dna_writer.writeUint32Big(version);
header->write(__dna_writer);
/* mappableObjects */
for (const std::unique_ptr<IMappableObject>& mo : mappableObjects)
mo->write(__dna_writer);
/* vertices */
__dna_writer.enumerateBig(vertices);
/* surfaceHeaders */
__dna_writer.enumerate(surfaceHeaders);
/* surfaces */
__dna_writer.enumerate(surfaces);
}
size_t binarySize(size_t __isz) const
{
__isz = header->binarySize(__isz);
for (const std::unique_ptr<IMappableObject>& mo : mappableObjects)
__isz = mo->binarySize(__isz);
__isz += vertices.size() * 12;
__isz = __EnumerateSize(__isz, surfaceHeaders);
__isz = __EnumerateSize(__isz, surfaces);
return __isz + 8;
}
std::unique_ptr<IMAPAHeader> header;
struct IMappableObject : BigDNA
{
Delete _d;
enum class Type : atUint32
{
BlueDoor = 0,
ShieldDoor = 1,
IceDoor = 2,
WaveDoor = 3,
PlasmaDoor = 4,
BigDoor1 = 5,
BigDoor2 = 6,
IceDoorCeiling = 7,
IceDoorFloor = 8,
WaveDoorCeiling = 9,
WaveDoorFloor = 10,
IceDoorFloor2 = 13,
WaveDoorFloor2 = 14,
DownArrowYellow = 27, /* Maintenance Tunnel */
UpArrowYellow = 28, /* Phazon Processing Center */
DownArrowGreen = 29, /* Elevator A */
UpArrowGreen = 30, /* Elite Control Access */
DownArrowRed = 31, /* Elevator B */
UpArrowRed = 32, /* Fungal Hall Access */
TransportLift = 33,
SaveStation = 34,
MissileStation = 37
};
virtual ~IMappableObject() {}
};
struct MappableObjectMP1_2 : IMappableObject
{
DECL_DNA
Value<Type> type;
Value<atUint32> unknown1;
Value<atUint32> sclyId;
Seek<DNA_COUNT(4), Athena::Current> seek1;
Value<atVec4f> transformMtx[3];
Seek<DNA_COUNT(0x10), Athena::Current> seek2;
virtual ~MappableObjectMP1_2() {}
};
struct MappableObjectMP3 : IMappableObject
{
DECL_DNA
Value<Type> type;
Value<atUint32> unknown1;
Value<atUint32> sclyId;
Buffer<DNA_COUNT(0x10)> unknownHash;
Seek<DNA_COUNT(4), Athena::Current> seek1;
Value<atVec4f> transformMtx[3];
Seek<DNA_COUNT(0x10), Athena::Current> seek2;
virtual ~MappableObjectMP3() {}
};
std::vector<std::unique_ptr<IMappableObject>> mappableObjects;
Vector<atVec3f, DNA_COUNT(header->vertexCount())> vertices;
struct SurfaceHeader : BigDNA
{
DECL_DNA
Value<atVec3f> normal;
Value<atVec3f> centroid;
Value<atUint32> polyOff;
Value<atUint32> edgeOff;
};
Vector<SurfaceHeader, DNA_COUNT(header->surfaceCount())> surfaceHeaders;
struct Surface : BigDNA
{
DECL_DNA
Value<atUint32> primitiveCount;
struct Primitive : BigDNA
{
DECL_DNA
Value<atUint32> type;
Value<atUint32> indexCount;
Vector<atUint8, DNA_COUNT(indexCount)> indices;
Align<4> align;
};
Vector<Primitive, DNA_COUNT(primitiveCount)> primitives;
Value<atUint32> borderCount;
struct Border : BigDNA
{
DECL_DNA
Value<atUint32> indexCount;
Vector<atUint8, DNA_COUNT(indexCount)> indices;
Align<4> align;
};
Vector<Border, DNA_COUNT(borderCount)> borders;
};
Vector<Surface, DNA_COUNT(header->surfaceCount())> surfaces;
};
template <typename PAKRouter>
bool ReadMAPAToBlender(HECL::BlenderConnection& conn,
const MAPA& mapa,
const HECL::ProjectPath& outPath,
PAKRouter& pakRouter,
const typename PAKRouter::EntryType& entry,
bool force)
{
/* Rename MAPA for consistency */
HECL::ProjectPath mapaPath(outPath.getParentPath(), _S("!map.blend"));
if (!force && mapaPath.getPathType() == HECL::ProjectPath::Type::File)
return true;
if (!conn.createBlend(mapaPath, HECL::BlenderConnection::BlendType::MapArea))
return false;
HECL::BlenderConnection::PyOutStream os = conn.beginPythonOut(true);
os << "import bpy, bmesh\n"
"from mathutils import Matrix\n"
"\n"
"bpy.types.Object.retro_mappable_type = bpy.props.IntProperty(name='Retro: MAPA object type', default=-1)\n"
"bpy.types.Object.retro_mappable_unk = bpy.props.IntProperty(name='Retro: MAPA object unk')\n"
"bpy.types.Object.retro_mappable_sclyid = bpy.props.StringProperty(name='Retro: MAPA object SCLY ID')\n"
"\n"
"# Clear Scene\n"
"for ob in bpy.data.objects:\n"
" bpy.context.scene.objects.unlink(ob)\n"
" bpy.data.objects.remove(ob)\n"
"\n"
"def add_triangle(bm, verts):\n"
" verts = [bm.verts[vi] for vi in verts]\n"
" face = bm.faces.get(verts)\n"
" if face:\n"
" face = face.copy()\n"
" bm.verts.ensure_lookup_table()\n"
" face.normal_flip()\n"
" else:\n"
" bm.faces.new(verts)\n"
"\n"
"def add_border(bm, verts):\n"
" verts = [bm.verts[vi] for vi in verts]\n"
" edge = bm.edges.get(verts)\n"
" if not edge:\n"
" edge = bm.edges.new(verts)\n"
" edge.seam = True\n"
"\n";
os.format("bpy.context.scene.name = 'MAPA_%s'\n",
entry.id.toString().c_str());
/* Add empties representing MappableObjects */
int moIdx = 0;
for (const std::unique_ptr<MAPA::IMappableObject>& mo : mapa.mappableObjects)
{
const MAPA::MappableObjectMP1_2* moMP12 = dynamic_cast<const MAPA::MappableObjectMP1_2*>(mo.get());
if (moMP12)
{
os.format("obj = bpy.data.objects.new('MAPOBJ_%02d', None)\n"
"bpy.context.scene.objects.link(obj)\n"
"obj.retro_mappable_type = %d\n"
"obj.retro_mappable_unk = %d\n"
"obj.retro_mappable_sclyid = '%08X'\n"
"mtx = Matrix(((%f,%f,%f,%f),(%f,%f,%f,%f),(%f,%f,%f,%f),(0.0,0.0,0.0,1.0)))\n"
"mtxd = mtx.decompose()\n"
"obj.rotation_mode = 'QUATERNION'\n"
"obj.location = mtxd[0]\n"
"obj.rotation_quaternion = mtxd[1]\n"
"obj.scale = mtxd[2]\n",
moIdx, moMP12->type, moMP12->unknown1, moMP12->sclyId,
moMP12->transformMtx[0].vec[0], moMP12->transformMtx[0].vec[1], moMP12->transformMtx[0].vec[2], moMP12->transformMtx[0].vec[3],
moMP12->transformMtx[1].vec[0], moMP12->transformMtx[1].vec[1], moMP12->transformMtx[1].vec[2], moMP12->transformMtx[1].vec[3],
moMP12->transformMtx[2].vec[0], moMP12->transformMtx[2].vec[1], moMP12->transformMtx[2].vec[2], moMP12->transformMtx[2].vec[3]);
++moIdx;
continue;
}
const MAPA::MappableObjectMP3* moMP3 = dynamic_cast<const MAPA::MappableObjectMP3*>(mo.get());
if (moMP3)
{
os.format("obj = bpy.data.objects.new('MAPOBJ_%02d', None)\n"
"bpy.context.scene.objects.link(obj)\n"
"obj.retro_mappable_type = %d\n"
"obj.retro_mappable_unk = %d\n"
"obj.retro_mappable_sclyid = '%08X'\n"
"mtx = Matrix(((%f,%f,%f,%f),(%f,%f,%f,%f),(%f,%f,%f,%f),(0.0,0.0,0.0,1.0)))\n"
"mtxd = mtx.decompose()\n"
"obj.rotation_mode = 'QUATERNION'\n"
"obj.location = mtxd[0]\n"
"obj.rotation_quaternion = mtxd[1]\n"
"obj.scale = mtxd[2]\n",
moIdx, moMP3->type, moMP3->unknown1, moMP3->sclyId,
moMP3->transformMtx[0].vec[0], moMP3->transformMtx[0].vec[1], moMP3->transformMtx[0].vec[2], moMP3->transformMtx[0].vec[3],
moMP3->transformMtx[1].vec[0], moMP3->transformMtx[1].vec[1], moMP3->transformMtx[1].vec[2], moMP3->transformMtx[1].vec[3],
moMP3->transformMtx[2].vec[0], moMP3->transformMtx[2].vec[1], moMP3->transformMtx[2].vec[2], moMP3->transformMtx[2].vec[3]);
++moIdx;
continue;
}
}
os << "# Begin bmesh\n"
"bm = bmesh.new()\n"
"\n";
/* Read in verts */
for (const atVec3f& vert : mapa.vertices)
os.format("bm.verts.new((%f,%f,%f))\n",
vert.vec[0], vert.vec[1], vert.vec[2]);
os << "bm.verts.ensure_lookup_table()\n";
/* Read in surfaces */
for (const typename MAPA::Surface& surf : mapa.surfaces)
{
for (const typename MAPA::Surface::Primitive& prim : surf.primitives)
{
auto iit = prim.indices.cbegin();
/* 3 Prim Verts to start */
int c = 0;
unsigned int primVerts[3] =
{
*iit++,
*iit++,
*iit++
};
if (GX::Primitive(prim.type) == GX::TRIANGLESTRIP)
{
atUint8 flip = 0;
for (size_t v=0 ; v<prim.indexCount-2 ; ++v)
{
if (flip)
{
os.format("add_triangle(bm, (%u,%u,%u))\n",
primVerts[c%3],
primVerts[(c+2)%3],
primVerts[(c+1)%3]);
}
else
{
os.format("add_triangle(bm, (%u,%u,%u))\n",
primVerts[c%3],
primVerts[(c+1)%3],
primVerts[(c+2)%3]);
}
flip ^= 1;
bool peek = (v >= prim.indexCount - 3);
/* Advance one prim vert */
if (peek)
primVerts[c%3] = *iit;
else
primVerts[c%3] = *iit++;
++c;
}
}
else if (GX::Primitive(prim.type) == GX::TRIANGLES)
{
for (size_t v=0 ; v<prim.indexCount ; v+=3)
{
os.format("add_triangle(bm, (%u,%u,%u))\n",
primVerts[0],
primVerts[1],
primVerts[2]);
/* Break if done */
if (v+3 >= prim.indexCount)
break;
/* Advance 3 Prim Verts */
for (int pv=0 ; pv<3 ; ++pv)
primVerts[pv] = *iit++;
}
}
}
for (const typename MAPA::Surface::Border& border : surf.borders)
{
auto iit = border.indices.cbegin();
for (size_t i=0 ; i<border.indexCount-1 ; ++i)
{
os.format("add_border(bm, (%u,%u))\n",
*iit, *(iit+1));
++iit;
}
}
}
os << "mesh = bpy.data.meshes.new('MAP')\n"
"obj = bpy.data.objects.new(mesh.name, mesh)\n"
"bm.to_mesh(mesh)\n"
"bpy.context.scene.objects.link(obj)\n"
"bm.free()\n";
/* World background */
HECL::ProjectPath worldBlend(outPath.getParentPath().getParentPath(), "!world.blend");
if (worldBlend.getPathType() == HECL::ProjectPath::Type::File)
os.linkBackground("//../!world.blend", "World");
os.centerView();
os.close();
conn.saveBlend();
return true;
}
}
}
#endif // __DNACOMMON_MAPA_HPP__