mirror of https://github.com/AxioDL/metaforce.git
438 lines
14 KiB
C++
438 lines
14 KiB
C++
#include "ANIM.hpp"
|
|
|
|
namespace Retro
|
|
{
|
|
namespace DNAANIM
|
|
{
|
|
|
|
size_t ComputeBitstreamSize(size_t keyFrameCount, const std::vector<Channel>& channels)
|
|
{
|
|
size_t bitsPerKeyFrame = 0;
|
|
for (const Channel& chan : channels)
|
|
{
|
|
switch (chan.type)
|
|
{
|
|
case Channel::ROTATION:
|
|
bitsPerKeyFrame += 1;
|
|
case Channel::TRANSLATION:
|
|
case Channel::SCALE:
|
|
{
|
|
bitsPerKeyFrame += chan.q[0];
|
|
bitsPerKeyFrame += chan.q[1];
|
|
bitsPerKeyFrame += chan.q[2];
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
}
|
|
return (bitsPerKeyFrame * keyFrameCount + 31) / 32 * 4;
|
|
}
|
|
|
|
static inline QuantizedRot QuantizeRotation(const Value& quat, atUint32 div)
|
|
{
|
|
float q = M_PI / 2.0 / div;
|
|
return
|
|
{
|
|
{
|
|
atInt16(asinf(quat.v4.vec[1]) / q),
|
|
atInt16(asinf(quat.v4.vec[2]) / q),
|
|
atInt16(asinf(quat.v4.vec[3]) / q),
|
|
},
|
|
(quat.v4.vec[0] < 0) ? true : false
|
|
};
|
|
}
|
|
static inline Value DequantizeRotation(const QuantizedRot& v, atUint32 div)
|
|
{
|
|
float q = M_PI / 2.0 / div;
|
|
Value retval =
|
|
{
|
|
0.0,
|
|
sinf(v.v[0] * q),
|
|
sinf(v.v[1] * q),
|
|
sinf(v.v[2] * q),
|
|
};
|
|
retval.v4.vec[0] = sqrtf(MAX((1.0 -
|
|
(retval.v4.vec[1] * retval.v4.vec[1] +
|
|
retval.v4.vec[2] * retval.v4.vec[2] +
|
|
retval.v4.vec[3] * retval.v4.vec[3])), 0.0));
|
|
retval.v4.vec[0] = v.w ? -retval.v4.vec[0] : retval.v4.vec[0];
|
|
return retval;
|
|
}
|
|
|
|
bool BitstreamReader::dequantizeBit(const atUint8* data)
|
|
{
|
|
atUint32 byteCur = (m_bitCur / 32) * 4;
|
|
atUint32 bitRem = m_bitCur % 32;
|
|
|
|
/* Fill 32 bit buffer with region containing bits */
|
|
/* Make them least significant */
|
|
atUint32 tempBuf = HECL::SBig(*(atUint32*)(data + byteCur)) >> bitRem;
|
|
|
|
/* That's it */
|
|
m_bitCur += 1;
|
|
return tempBuf & 0x1;
|
|
}
|
|
|
|
atInt16 BitstreamReader::dequantize(const atUint8* data, atUint8 q)
|
|
{
|
|
atUint32 byteCur = (m_bitCur / 32) * 4;
|
|
atUint32 bitRem = m_bitCur % 32;
|
|
|
|
/* Fill 32 bit buffer with region containing bits */
|
|
/* Make them least significant */
|
|
atUint32 tempBuf = HECL::SBig(*(atUint32*)(data + byteCur)) >> bitRem;
|
|
|
|
/* If this shift underflows the value, buffer the next 32 bits */
|
|
/* And tack onto shifted buffer */
|
|
if ((bitRem + q) > 32)
|
|
{
|
|
atUint32 tempBuf2 = HECL::SBig(*(atUint32*)(data + byteCur + 4));
|
|
tempBuf |= (tempBuf2 << (32 - bitRem));
|
|
}
|
|
|
|
/* Pick out sign */
|
|
atUint32 sign = (tempBuf >> (q - 1)) & 0x1;
|
|
if (sign)
|
|
tempBuf = ~tempBuf;
|
|
|
|
/* mask it (excluding sign bit) */
|
|
atUint32 mask = (1 << (q - 1)) - 1;
|
|
tempBuf &= mask;
|
|
|
|
/* Return delta value */
|
|
m_bitCur += q;
|
|
return atInt32(sign ? (tempBuf + 1) * -1 : tempBuf);
|
|
}
|
|
|
|
std::vector<std::vector<Value>>
|
|
BitstreamReader::read(const atUint8* data,
|
|
size_t keyFrameCount,
|
|
const std::vector<Channel>& channels,
|
|
atUint32 rotDiv,
|
|
float transMult)
|
|
{
|
|
m_bitCur = 0;
|
|
std::vector<std::vector<Value>> chanKeys;
|
|
std::vector<QuantizedValue> chanAccum;
|
|
chanKeys.reserve(channels.size());
|
|
chanAccum.reserve(channels.size());
|
|
for (const Channel& chan : channels)
|
|
{
|
|
chanAccum.push_back({chan.i[0], chan.i[1], chan.i[2]});
|
|
QuantizedValue& accum = chanAccum.back();
|
|
|
|
chanKeys.emplace_back();
|
|
std::vector<Value>& keys = chanKeys.back();
|
|
keys.reserve(keyFrameCount);
|
|
switch (chan.type)
|
|
{
|
|
case Channel::ROTATION:
|
|
{
|
|
QuantizedRot qr = {{chan.i[0], chan.i[1], chan.i[2]}, false};
|
|
keys.emplace_back(DequantizeRotation(qr, rotDiv));
|
|
break;
|
|
}
|
|
case Channel::TRANSLATION:
|
|
{
|
|
keys.push_back({chan.i[0] * transMult, chan.i[1] * transMult, chan.i[2] * transMult});
|
|
break;
|
|
}
|
|
case Channel::SCALE:
|
|
{
|
|
keys.push_back({chan.i[0] / (float)rotDiv, chan.i[1] / (float)rotDiv, chan.i[2] / (float)rotDiv});
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
}
|
|
for (size_t f=0 ; f<keyFrameCount ; ++f)
|
|
{
|
|
auto kit = chanKeys.begin();
|
|
auto ait = chanAccum.begin();
|
|
for (const Channel& chan : channels)
|
|
{
|
|
QuantizedValue& p = *ait;
|
|
switch (chan.type)
|
|
{
|
|
case Channel::ROTATION:
|
|
{
|
|
bool wBit = dequantizeBit(data);
|
|
p[0] += dequantize(data, chan.q[0]);
|
|
p[1] += dequantize(data, chan.q[1]);
|
|
p[2] += dequantize(data, chan.q[2]);
|
|
QuantizedRot qr = {{p[0], p[1], p[2]}, wBit};
|
|
kit->emplace_back(DequantizeRotation(qr, rotDiv));
|
|
break;
|
|
}
|
|
case Channel::TRANSLATION:
|
|
{
|
|
p[0] += dequantize(data, chan.q[0]);
|
|
p[1] += dequantize(data, chan.q[1]);
|
|
p[2] += dequantize(data, chan.q[2]);
|
|
kit->push_back({p[0] * transMult, p[1] * transMult, p[2] * transMult});
|
|
break;
|
|
}
|
|
case Channel::SCALE:
|
|
{
|
|
p[0] += dequantize(data, chan.q[0]);
|
|
p[1] += dequantize(data, chan.q[1]);
|
|
p[2] += dequantize(data, chan.q[2]);
|
|
kit->push_back({p[0] / (float)rotDiv, p[1] / (float)rotDiv, p[2] / (float)rotDiv});
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
++kit;
|
|
++ait;
|
|
}
|
|
}
|
|
return chanKeys;
|
|
}
|
|
|
|
void BitstreamWriter::quantizeBit(atUint8* data, bool val)
|
|
{
|
|
atUint32 byteCur = (m_bitCur / 32) * 4;
|
|
atUint32 bitRem = m_bitCur % 32;
|
|
|
|
/* Fill 32 bit buffer with region containing bits */
|
|
/* Make them least significant */
|
|
*(atUint32*)(data + byteCur) =
|
|
HECL::SBig(HECL::SBig(*(atUint32*)(data + byteCur)) | (val << bitRem));
|
|
|
|
m_bitCur += 1;
|
|
}
|
|
|
|
void BitstreamWriter::quantize(atUint8* data, atUint8 q, atInt16 val)
|
|
{
|
|
atUint32 byteCur = (m_bitCur / 32) * 4;
|
|
atUint32 bitRem = m_bitCur % 32;
|
|
|
|
atUint32 masked = val & ((1 << q) - 1);
|
|
|
|
/* Fill 32 bit buffer with region containing bits */
|
|
/* Make them least significant */
|
|
*(atUint32*)(data + byteCur) =
|
|
HECL::SBig(HECL::SBig(*(atUint32*)(data + byteCur)) | (masked << bitRem));
|
|
|
|
/* If this shift underflows the value, buffer the next 32 bits */
|
|
/* And tack onto shifted buffer */
|
|
if ((bitRem + q) > 32)
|
|
{
|
|
*(atUint32*)(data + byteCur + 4) =
|
|
HECL::SBig(HECL::SBig(*(atUint32*)(data + byteCur + 4)) | (masked >> (32 - bitRem)));
|
|
}
|
|
|
|
m_bitCur += q;
|
|
}
|
|
|
|
std::unique_ptr<atUint8[]>
|
|
BitstreamWriter::write(const std::vector<std::vector<Value>>& chanKeys,
|
|
size_t keyFrameCount, std::vector<Channel>& channels,
|
|
atUint32& rotDivOut,
|
|
float& transMultOut,
|
|
size_t& sizeOut)
|
|
{
|
|
m_bitCur = 0;
|
|
rotDivOut = 32767; /* Normalized range of values */
|
|
|
|
/* Pre-pass to calculate translation multiplier */
|
|
float maxTransDiff = 0.0;
|
|
auto kit = chanKeys.begin();
|
|
for (Channel& chan : channels)
|
|
{
|
|
switch (chan.type)
|
|
{
|
|
case Channel::TRANSLATION:
|
|
{
|
|
const Value* last = &(*kit)[0];
|
|
for (auto it=kit->begin() + 1;
|
|
it != kit->end();
|
|
++it)
|
|
{
|
|
const Value* current = &*it;
|
|
maxTransDiff = MAX(maxTransDiff, current->v3.vec[0] - last->v3.vec[0]);
|
|
maxTransDiff = MAX(maxTransDiff, current->v3.vec[1] - last->v3.vec[1]);
|
|
maxTransDiff = MAX(maxTransDiff, current->v3.vec[2] - last->v3.vec[2]);
|
|
last = current;
|
|
}
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
++kit;
|
|
}
|
|
transMultOut = maxTransDiff / 32767;
|
|
|
|
/* Output channel inits */
|
|
kit = chanKeys.begin();
|
|
for (Channel& chan : channels)
|
|
{
|
|
chan.q[0] = 1;
|
|
chan.q[1] = 1;
|
|
chan.q[2] = 1;
|
|
switch (chan.type)
|
|
{
|
|
case Channel::ROTATION:
|
|
{
|
|
QuantizedRot qr = QuantizeRotation((*kit)[0], rotDivOut);
|
|
chan.i = qr.v;
|
|
break;
|
|
}
|
|
case Channel::TRANSLATION:
|
|
{
|
|
chan.i = {atInt16((*kit)[0].v3.vec[0] / transMultOut),
|
|
atInt16((*kit)[0].v3.vec[1] / transMultOut),
|
|
atInt16((*kit)[0].v3.vec[2] / transMultOut)};
|
|
break;
|
|
}
|
|
case Channel::SCALE:
|
|
{
|
|
chan.i = {atInt16((*kit)[0].v3.vec[0] * rotDivOut),
|
|
atInt16((*kit)[0].v3.vec[1] * rotDivOut),
|
|
atInt16((*kit)[0].v3.vec[2] * rotDivOut)};
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
++kit;
|
|
}
|
|
|
|
/* Pre-pass to analyze quantization factors for channels */
|
|
kit = chanKeys.begin();
|
|
for (Channel& chan : channels)
|
|
{
|
|
switch (chan.type)
|
|
{
|
|
case Channel::ROTATION:
|
|
{
|
|
QuantizedRot qrLast = QuantizeRotation((*kit)[0], rotDivOut);
|
|
for (auto it=kit->begin() + 1;
|
|
it != kit->end();
|
|
++it)
|
|
{
|
|
QuantizedRot qrCur = QuantizeRotation(*it, rotDivOut);
|
|
chan.q[0] = MAX(chan.q[0], ceilf(log2f(qrCur.v[0] - qrLast.v[0])));
|
|
chan.q[1] = MAX(chan.q[1], ceilf(log2f(qrCur.v[1] - qrLast.v[1])));
|
|
chan.q[2] = MAX(chan.q[2], ceilf(log2f(qrCur.v[2] - qrLast.v[2])));
|
|
qrLast = qrCur;
|
|
}
|
|
break;
|
|
}
|
|
case Channel::TRANSLATION:
|
|
{
|
|
QuantizedValue last = {atInt16((*kit)[0].v3.vec[0] / transMultOut),
|
|
atInt16((*kit)[0].v3.vec[1] / transMultOut),
|
|
atInt16((*kit)[0].v3.vec[2] / transMultOut)};
|
|
for (auto it=kit->begin() + 1;
|
|
it != kit->end();
|
|
++it)
|
|
{
|
|
QuantizedValue cur = {atInt16(it->v3.vec[0] / transMultOut),
|
|
atInt16(it->v3.vec[1] / transMultOut),
|
|
atInt16(it->v3.vec[2] / transMultOut)};
|
|
chan.q[0] = MAX(chan.q[0], ceilf(log2f(cur[0] - last[0])));
|
|
chan.q[1] = MAX(chan.q[1], ceilf(log2f(cur[1] - last[1])));
|
|
chan.q[2] = MAX(chan.q[2], ceilf(log2f(cur[2] - last[2])));
|
|
last = cur;
|
|
}
|
|
break;
|
|
}
|
|
case Channel::SCALE:
|
|
{
|
|
QuantizedValue last = {atInt16((*kit)[0].v3.vec[0] * rotDivOut),
|
|
atInt16((*kit)[0].v3.vec[1] * rotDivOut),
|
|
atInt16((*kit)[0].v3.vec[2] * rotDivOut)};
|
|
for (auto it=kit->begin() + 1;
|
|
it != kit->end();
|
|
++it)
|
|
{
|
|
QuantizedValue cur = {atInt16(it->v3.vec[0] * rotDivOut),
|
|
atInt16(it->v3.vec[1] * rotDivOut),
|
|
atInt16(it->v3.vec[2] * rotDivOut)};
|
|
chan.q[0] = MAX(chan.q[0], ceilf(log2f(cur[0] - last[0])));
|
|
chan.q[1] = MAX(chan.q[1], ceilf(log2f(cur[1] - last[1])));
|
|
chan.q[2] = MAX(chan.q[2], ceilf(log2f(cur[2] - last[2])));
|
|
last = cur;
|
|
}
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
++kit;
|
|
}
|
|
|
|
/* Generate Bitstream */
|
|
sizeOut = ComputeBitstreamSize(keyFrameCount, channels);
|
|
atUint8* newData = new atUint8[sizeOut];
|
|
for (size_t f=0 ; f<keyFrameCount ; ++f)
|
|
{
|
|
kit = chanKeys.begin();
|
|
for (const Channel& chan : channels)
|
|
{
|
|
switch (chan.type)
|
|
{
|
|
case Channel::ROTATION:
|
|
{
|
|
QuantizedRot qrLast = QuantizeRotation((*kit)[0], rotDivOut);
|
|
for (auto it=kit->begin() + 1;
|
|
it != kit->end();
|
|
++it)
|
|
{
|
|
QuantizedRot qrCur = QuantizeRotation(*it, rotDivOut);
|
|
quantizeBit(newData, qrCur.w);
|
|
quantize(newData, chan.q[0], qrCur.v[0] - qrLast.v[0]);
|
|
quantize(newData, chan.q[1], qrCur.v[1] - qrLast.v[0]);
|
|
quantize(newData, chan.q[2], qrCur.v[2] - qrLast.v[0]);
|
|
qrLast = qrCur;
|
|
}
|
|
break;
|
|
}
|
|
case Channel::TRANSLATION:
|
|
{
|
|
QuantizedValue last = {atInt16((*kit)[0].v3.vec[0] / transMultOut),
|
|
atInt16((*kit)[0].v3.vec[1] / transMultOut),
|
|
atInt16((*kit)[0].v3.vec[2] / transMultOut)};
|
|
for (auto it=kit->begin() + 1;
|
|
it != kit->end();
|
|
++it)
|
|
{
|
|
QuantizedValue cur = {atInt16(it->v3.vec[0] / transMultOut),
|
|
atInt16(it->v3.vec[1] / transMultOut),
|
|
atInt16(it->v3.vec[2] / transMultOut)};
|
|
quantize(newData, chan.q[0], cur[0] - last[0]);
|
|
quantize(newData, chan.q[1], cur[1] - last[0]);
|
|
quantize(newData, chan.q[2], cur[2] - last[0]);
|
|
last = cur;
|
|
}
|
|
break;
|
|
}
|
|
case Channel::SCALE:
|
|
{
|
|
QuantizedValue last = {atInt16((*kit)[0].v3.vec[0] * rotDivOut),
|
|
atInt16((*kit)[0].v3.vec[1] * rotDivOut),
|
|
atInt16((*kit)[0].v3.vec[2] * rotDivOut)};
|
|
for (auto it=kit->begin() + 1;
|
|
it != kit->end();
|
|
++it)
|
|
{
|
|
QuantizedValue cur = {atInt16(it->v3.vec[0] * rotDivOut),
|
|
atInt16(it->v3.vec[1] * rotDivOut),
|
|
atInt16(it->v3.vec[2] * rotDivOut)};
|
|
quantize(newData, chan.q[0], cur[0] - last[0]);
|
|
quantize(newData, chan.q[1], cur[1] - last[0]);
|
|
quantize(newData, chan.q[2], cur[2] - last[0]);
|
|
last = cur;
|
|
}
|
|
break;
|
|
}
|
|
default: break;
|
|
}
|
|
++kit;
|
|
}
|
|
}
|
|
return std::unique_ptr<atUint8[]>(newData);
|
|
}
|
|
|
|
}
|
|
}
|