metaforce/DataSpec/DNACommon/TXTR.cpp

1703 lines
53 KiB
C++

#include "DataSpec/DNACommon/TXTR.hpp"
#include <cstdint>
#include <memory>
#include "DataSpec/DNACommon/PAK.hpp"
#include <athena/FileWriter.hpp>
#include <hecl/hecl.hpp>
#include <logvisor/logvisor.hpp>
#include <png.h>
#include <squish.h>
namespace DataSpec {
static logvisor::Module Log("libpng");
static int CountBits(uint32_t n) {
int ret = 0;
for (int i = 0; i < 32; ++i) {
if (((n >> i) & 1) != 0) {
++ret;
}
}
return ret;
}
/* Box filter algorithm (for mipmapping) */
static void BoxFilter(const uint8_t* input, unsigned chanCount, unsigned inWidth, unsigned inHeight, uint8_t* output,
bool dxt1) {
unsigned mipWidth = 1;
unsigned mipHeight = 1;
if (inWidth > 1) {
mipWidth = inWidth / 2;
}
if (inHeight > 1) {
mipHeight = inHeight / 2;
}
for (unsigned y = 0; y < mipHeight; ++y) {
const unsigned miplineBase = mipWidth * y;
const unsigned in1LineBase = inWidth * (y * 2);
const unsigned in2LineBase = inWidth * (y * 2 + 1);
for (unsigned x = 0; x < mipWidth; ++x) {
uint8_t* out = &output[(miplineBase + x) * chanCount];
for (unsigned c = 0; c < chanCount; ++c) {
uint32_t tmp = 0;
tmp += input[(in1LineBase + (x * 2)) * chanCount + c];
tmp += input[(in1LineBase + (x * 2 + 1)) * chanCount + c];
tmp += input[(in2LineBase + (x * 2)) * chanCount + c];
tmp += input[(in2LineBase + (x * 2 + 1)) * chanCount + c];
out[c] = uint8_t(tmp / 4);
if (c == 3 && dxt1) {
out[c] = uint8_t(out[c] ? 0xff : 0x0);
}
}
}
}
}
static size_t ComputeMippedTexelCount(unsigned inWidth, unsigned inHeight) {
size_t ret = 0;
while (inWidth > 0 && inHeight > 0) {
ret += inWidth * inHeight;
inWidth /= 2;
inHeight /= 2;
}
return ret;
}
/* GX uses this upsampling technique to extract full 8-bit range */
static constexpr uint8_t Convert3To8(uint8_t v) {
/* Swizzle bits: 00000123 -> 12312312 */
return (v << 5) | (v << 2) | (v >> 1);
}
static constexpr uint8_t Convert8To3(uint8_t v) { return v >> 5; }
static constexpr uint8_t Convert4To8(uint8_t v) {
/* Swizzle bits: 00001234 -> 12341234 */
return (v << 4) | v;
}
static constexpr uint8_t Convert8To4(uint8_t v) { return v >> 4; }
static constexpr uint8_t Convert5To8(uint8_t v) {
/* Swizzle bits: 00012345 -> 12345123 */
return (v << 3) | (v >> 2);
}
static constexpr uint8_t Convert8To5(uint8_t v) { return v >> 3; }
static constexpr uint8_t Convert6To8(uint8_t v) {
/* Swizzle bits: 00123456 -> 12345612 */
return (v << 2) | (v >> 4);
}
static constexpr uint8_t Convert8To6(uint8_t v) { return v >> 2; }
static uint8_t Lookup4BPP(const uint8_t* texels, int width, int x, int y) {
const int bwidth = (width + 7) / 8;
const int bx = x / 8;
const int by = y / 8;
const int rx = x % 8;
const int ry = y % 8;
const int bidx = by * bwidth + bx;
const uint8_t* btexels = &texels[32 * bidx];
return btexels[ry * 4 + rx / 2] >> ((rx & 1) ? 0 : 4) & 0xf;
}
static void Set4BPP(uint8_t* texels, int width, int x, int y, uint8_t val) {
const int bwidth = (width + 7) / 8;
const int bx = x / 8;
const int by = y / 8;
const int rx = x % 8;
const int ry = y % 8;
const int bidx = by * bwidth + bx;
uint8_t* btexels = &texels[32 * bidx];
btexels[ry * 4 + rx / 2] |= (val & 0xf) << ((rx & 1) ? 0 : 4);
}
static uint8_t Lookup8BPP(const uint8_t* texels, int width, int x, int y) {
int bwidth = (width + 7) / 8;
int bx = x / 8;
int by = y / 4;
int rx = x % 8;
int ry = y % 4;
int bidx = by * bwidth + bx;
const uint8_t* btexels = &texels[32 * bidx];
return btexels[ry * 8 + rx];
}
static void Set8BPP(uint8_t* texels, int width, int x, int y, uint8_t val) {
const int bwidth = (width + 7) / 8;
const int bx = x / 8;
const int by = y / 4;
const int rx = x % 8;
const int ry = y % 4;
const int bidx = by * bwidth + bx;
uint8_t* btexels = &texels[32 * bidx];
btexels[ry * 8 + rx] = val;
}
static uint16_t Lookup16BPP(const uint8_t* texels, int width, int x, int y) {
const int bwidth = (width + 3) / 4;
const int bx = x / 4;
const int by = y / 4;
const int rx = x % 4;
const int ry = y % 4;
int bidx = by * bwidth + bx;
const uint16_t* btexels = reinterpret_cast<const uint16_t*>(&texels[32 * bidx]);
return btexels[ry * 4 + rx];
}
static void Set16BPP(uint8_t* texels, int width, int x, int y, uint16_t val) {
const int bwidth = (width + 3) / 4;
const int bx = x / 4;
const int by = y / 4;
const int rx = x % 4;
const int ry = y % 4;
const int bidx = by * bwidth + bx;
auto* btexels = reinterpret_cast<uint16_t*>(&texels[32 * bidx]);
btexels[ry * 4 + rx] = val;
}
static void LookupRGBA8(const uint8_t* texels, int width, int x, int y, uint8_t* r, uint8_t* g, uint8_t* b,
uint8_t* a) {
const int bwidth = (width + 3) / 4;
const int bx = x / 4;
const int by = y / 4;
const int rx = x % 4;
const int ry = y % 4;
const int bidx = (by * bwidth + bx) * 2;
const auto* artexels = reinterpret_cast<const uint16_t*>(&texels[32 * bidx]);
const auto* gbtexels = reinterpret_cast<const uint16_t*>(&texels[32 * (bidx + 1)]);
const uint16_t ar = hecl::SBig(artexels[ry * 4 + rx]);
*a = ar >> 8 & 0xff;
*r = ar & 0xff;
const uint16_t gb = hecl::SBig(gbtexels[ry * 4 + rx]);
*g = gb >> 8 & 0xff;
*b = gb & 0xff;
}
static void SetRGBA8(uint8_t* texels, int width, int x, int y, uint8_t r, uint8_t g, uint8_t b, uint8_t a) {
const int bwidth = (width + 3) / 4;
const int bx = x / 4;
const int by = y / 4;
const int rx = x % 4;
const int ry = y % 4;
const int bidx = (by * bwidth + bx) * 2;
uint16_t* artexels = reinterpret_cast<uint16_t*>(&texels[32 * bidx]);
uint16_t* gbtexels = reinterpret_cast<uint16_t*>(&texels[32 * (bidx + 1)]);
const uint16_t ar = (a << 8) | r;
artexels[ry * 4 + rx] = hecl::SBig(ar);
const uint16_t gb = (g << 8) | b;
gbtexels[ry * 4 + rx] = hecl::SBig(gb);
}
static void DecodeI4(png_structp png, png_infop info, const uint8_t* texels, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_write_info(png, info);
std::unique_ptr<uint8_t[]> buf(new uint8_t[width]);
// memset(buf.get(), 0, width);
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
buf[x] = Convert4To8(Lookup4BPP(texels, width, x, y));
}
png_write_row(png, buf.get());
}
}
#if 0
static void EncodeI4(const uint8_t* rgbaIn, uint8_t* texels, int width, int height)
{
for (int y=height-1 ; y>=0 ; --y)
{
for (int x=0 ; x<width ; ++x)
Set4BPP(texels, width, x, y, Convert8To4(rgbaIn[x]));
rgbaIn += width;
}
}
#endif
static void DecodeI8(png_structp png, png_infop info, const uint8_t* texels, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_GRAY, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_write_info(png, info);
std::unique_ptr<uint8_t[]> buf(new uint8_t[width]);
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
buf[x] = Lookup8BPP(texels, width, x, y);
}
png_write_row(png, buf.get());
}
}
static void EncodeI8(const uint8_t* rgbaIn, uint8_t* texels, int width, int height) {
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
Set8BPP(texels, width, x, y, rgbaIn[x]);
}
rgbaIn += width;
}
}
static void DecodeIA4(png_structp png, png_infop info, const uint8_t* texels, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_GRAY_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_write_info(png, info);
std::unique_ptr<uint8_t[]> buf(new uint8_t[width * 2]);
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
const uint8_t texel = Lookup8BPP(texels, width, x, y);
buf[x * 2] = Convert4To8(texel & 0xf);
buf[x * 2 + 1] = Convert4To8(texel >> 4 & 0xf);
}
png_write_row(png, buf.get());
}
}
#if 0
static void EncodeIA4(const uint8_t* rgbaIn, uint8_t* texels, int width, int height)
{
for (int y=height-1 ; y>=0 ; --y)
{
for (int x=0 ; x<width ; ++x)
{
uint8_t texel = Convert8To4(rgbaIn[x*2+1]) << 4;
texel |= Convert8To4(rgbaIn[x*2]);
Set8BPP(texels, width, x, y, texel);
rgbaIn += width * 2;
}
}
}
#endif
static void DecodeIA8(png_structp png, png_infop info, const uint8_t* texels, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_GRAY_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_write_info(png, info);
std::unique_ptr<uint16_t[]> buf(new uint16_t[width]);
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
buf[x] = hecl::SBig(Lookup16BPP(texels, width, x, y));
}
png_write_row(png, reinterpret_cast<png_bytep>(buf.get()));
}
}
static void EncodeIA8(const uint8_t* rgbaIn, uint8_t* texels, int width, int height) {
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
Set16BPP(texels, width, x, y, hecl::SBig(reinterpret_cast<const uint16_t*>(rgbaIn)[x]));
}
rgbaIn += width * 2;
}
}
static const uint8_t* DecodePalette(png_structp png, png_infop info, int numEntries, const uint8_t* data) {
const auto format = hecl::SBig(*reinterpret_cast<const uint32_t*>(data));
data += 8;
png_color cEntries[256];
png_byte aEntries[256];
switch (format) {
case 0: {
/* IA8 */
for (int e = 0; e < numEntries; ++e) {
cEntries[e].red = data[e * 2];
cEntries[e].green = data[e * 2];
cEntries[e].blue = data[e * 2];
aEntries[e] = data[e * 2 + 1];
}
break;
}
case 1: {
/* RGB565 */
const auto* data16 = reinterpret_cast<const uint16_t*>(data);
for (int e = 0; e < numEntries; ++e) {
const uint16_t texel = hecl::SBig(data16[e]);
cEntries[e].red = Convert5To8(texel >> 11 & 0x1f);
cEntries[e].green = Convert6To8(texel >> 5 & 0x3f);
cEntries[e].blue = Convert5To8(texel & 0x1f);
}
break;
}
case 2: {
/* RGB5A3 */
const auto* data16 = reinterpret_cast<const uint16_t*>(data);
for (int e = 0; e < numEntries; ++e) {
const uint16_t texel = hecl::SBig(data16[e]);
if (texel & 0x8000) {
cEntries[e].red = Convert5To8(texel >> 10 & 0x1f);
cEntries[e].green = Convert5To8(texel >> 5 & 0x1f);
cEntries[e].blue = Convert5To8(texel & 0x1f);
aEntries[e] = 0xff;
} else {
cEntries[e].red = Convert4To8(texel >> 8 & 0xf);
cEntries[e].green = Convert4To8(texel >> 4 & 0xf);
cEntries[e].blue = Convert4To8(texel & 0xf);
aEntries[e] = Convert3To8(texel >> 12 & 0x7);
}
}
break;
}
}
png_set_PLTE(png, info, cEntries, numEntries);
if (format == 0 || format == 2) {
png_set_tRNS(png, info, aEntries, numEntries, nullptr);
}
data += numEntries * 2;
return data;
}
static uint8_t* EncodePalette(png_structp png, png_infop info, int numEntries, uint8_t* data) {
png_colorp cEntries;
int pngNumEntries;
if (png_get_PLTE(png, info, &cEntries, &pngNumEntries) != PNG_INFO_PLTE) {
cEntries = nullptr;
pngNumEntries = 0;
}
png_bytep aEntries;
int pngNumAEntries;
png_color_16p trans_color = nullptr;
if (png_get_tRNS(png, info, &aEntries, &pngNumAEntries, &trans_color) != PNG_INFO_tRNS) {
aEntries = nullptr;
pngNumAEntries = 0;
}
uint32_t format = 0; /* Default IA8 */
for (int e = 0; e < pngNumEntries; ++e) {
const png_const_colorp ent = &cEntries[e];
if (ent->red != ent->green || ent->red != ent->blue) {
if (pngNumAEntries) {
format = 2; /* RGB565 if not greyscale and has alpha */
} else {
format = 1; /* RGB565 if not greyscale */
}
break;
}
}
reinterpret_cast<uint32_t*>(data)[0] = hecl::SBig(format);
data += 4;
reinterpret_cast<uint16_t*>(data)[0] = hecl::SBig(uint16_t(numEntries));
reinterpret_cast<uint16_t*>(data)[1] = hecl::SBig(uint16_t(1));
data += 4;
switch (format) {
case 0: {
/* IA8 */
for (int e = 0; e < numEntries; ++e) {
if (e < pngNumEntries)
data[e * 2] = cEntries[e].green;
else
data[e * 2] = 0;
if (e < pngNumAEntries)
data[e * 2 + 1] = aEntries[e];
else
data[e * 2 + 1] = 0;
}
break;
}
case 1: {
/* RGB565 */
uint16_t* data16 = reinterpret_cast<uint16_t*>(data);
for (int e = 0; e < numEntries; ++e) {
if (e < pngNumEntries) {
uint16_t texel = Convert8To5(cEntries[e].red) << 11;
texel |= Convert8To6(cEntries[e].green) << 5;
texel |= Convert8To5(cEntries[e].blue);
data16[e] = hecl::SBig(texel);
} else {
data16[e] = 0;
}
}
break;
}
case 2: {
/* RGB5A3 */
auto* data16 = reinterpret_cast<uint16_t*>(data);
for (int e = 0; e < numEntries; ++e) {
uint8_t alpha = 0;
if (e < pngNumAEntries) {
alpha = aEntries[e];
}
uint16_t texel = 0;
if (alpha == 0xff) {
texel |= 0x8000;
if (e < pngNumEntries) {
texel |= Convert8To5(cEntries[e].red) << 10;
texel |= Convert8To5(cEntries[e].green) << 5;
texel |= Convert8To5(cEntries[e].blue);
}
} else {
if (e < pngNumEntries) {
texel |= Convert8To4(cEntries[e].red) << 8;
texel |= Convert8To4(cEntries[e].green) << 4;
texel |= Convert8To4(cEntries[e].blue);
texel |= Convert8To3(alpha << 12);
}
}
data16[e] = hecl::SBig(texel);
}
break;
}
}
data += numEntries * 2;
return data;
}
static const uint8_t* DecodePaletteSPLT(png_structp png, png_infop info, int numEntries, const uint8_t* data) {
const auto format = hecl::SBig(*reinterpret_cast<const uint32_t*>(data));
data += 8;
png_sPLT_entry entries[256] = {};
png_sPLT_t GXEntry = {(char*)"GXPalette", 8, entries, numEntries};
switch (format) {
case 0: {
/* IA8 */
GXEntry.name = (char*)"GX_IA8";
for (int e = 0; e < numEntries; ++e) {
entries[e].red = data[e * 2];
entries[e].green = data[e * 2];
entries[e].blue = data[e * 2];
entries[e].alpha = data[e * 2 + 1];
}
break;
}
case 1: {
/* RGB565 */
GXEntry.name = (char*)"GX_RGB565";
const auto* data16 = reinterpret_cast<const uint16_t*>(data);
for (int e = 0; e < numEntries; ++e) {
const uint16_t texel = hecl::SBig(data16[e]);
entries[e].red = Convert5To8(texel >> 11 & 0x1f);
entries[e].green = Convert6To8(texel >> 5 & 0x3f);
entries[e].blue = Convert5To8(texel & 0x1f);
entries[e].alpha = 0xff;
}
break;
}
case 2: {
/* RGB5A3 */
GXEntry.name = (char*)"GX_RGB5A3";
const auto* data16 = reinterpret_cast<const uint16_t*>(data);
for (int e = 0; e < numEntries; ++e) {
const uint16_t texel = hecl::SBig(data16[e]);
if (texel & 0x8000) {
entries[e].red = Convert5To8(texel >> 10 & 0x1f);
entries[e].green = Convert5To8(texel >> 5 & 0x1f);
entries[e].blue = Convert5To8(texel & 0x1f);
entries[e].alpha = 0xff;
} else {
entries[e].red = Convert4To8(texel >> 8 & 0xf);
entries[e].green = Convert4To8(texel >> 4 & 0xf);
entries[e].blue = Convert4To8(texel & 0xf);
entries[e].alpha = Convert3To8(texel >> 12 & 0x7);
}
}
break;
}
}
png_set_sPLT(png, info, &GXEntry, 1);
data += numEntries * 2;
return data;
}
static uint8_t* EncodePaletteSPLT(png_structp png, png_infop info, int numEntries, uint8_t* data) {
png_sPLT_tp palettes;
const int pngNumPalettes = png_get_sPLT(png, info, &palettes);
int pngNumEntries = 0;
png_sPLT_entryp cEntries = nullptr;
for (int i = 0; i < pngNumPalettes; ++i) {
const png_const_sPLT_tp palette = &palettes[i];
if (strncmp(palette->name, "GX_", 3) == 0) {
pngNumEntries = palette->nentries;
cEntries = palette->entries;
break;
}
}
uint32_t format = 2; /* Default RGB5A3 */
for (int e = 0; e < pngNumEntries; ++e) {
const png_const_sPLT_entryp ent = &cEntries[e];
if (ent->red != ent->green || ent->red != ent->blue) {
if (ent->alpha) {
format = 2;
break;
} else {
format = 1;
}
}
}
reinterpret_cast<uint32_t*>(data)[0] = hecl::SBig(format);
data += 4;
reinterpret_cast<uint16_t*>(data)[0] = hecl::SBig(uint16_t(1));
reinterpret_cast<uint16_t*>(data)[1] = hecl::SBig(uint16_t(numEntries));
data += 4;
switch (format) {
case 0: {
/* IA8 */
for (int e = 0; e < numEntries; ++e) {
if (e < pngNumEntries) {
data[e * 2] = cEntries[e].green;
data[e * 2 + 1] = cEntries[e].alpha;
} else {
data[e * 2] = 0;
data[e * 2 + 1] = 0;
}
}
break;
}
case 1: {
/* RGB565 */
auto* data16 = reinterpret_cast<uint16_t*>(data);
for (int e = 0; e < numEntries; ++e) {
if (e < pngNumEntries) {
uint16_t texel = Convert8To5(cEntries[e].red) << 11;
texel |= Convert8To6(cEntries[e].green) << 5;
texel |= Convert8To5(cEntries[e].blue);
data16[e] = hecl::SBig(texel);
} else {
data16[e] = 0;
}
}
break;
}
case 2: {
/* RGB5A3 */
auto* data16 = reinterpret_cast<uint16_t*>(data);
for (int e = 0; e < numEntries; ++e) {
uint16_t texel = 0;
if (cEntries && cEntries[e].alpha == 0xff) {
texel |= 0x8000;
if (e < pngNumEntries) {
texel |= Convert8To5(cEntries[e].red) << 10;
texel |= Convert8To5(cEntries[e].green) << 5;
texel |= Convert8To5(cEntries[e].blue);
}
} else {
if (e < pngNumEntries) {
texel |= Convert8To4(cEntries[e].red) << 8;
texel |= Convert8To4(cEntries[e].green) << 4;
texel |= Convert8To4(cEntries[e].blue);
texel |= Convert8To3(cEntries[e].alpha << 12);
}
}
data16[e] = hecl::SBig(texel);
}
break;
}
}
data += numEntries * 2;
return data;
}
static const png_color C4Colors[] = {
{0, 0, 0}, {155, 0, 0}, {0, 155, 0}, {0, 0, 155}, {155, 155, 0}, {155, 0, 155}, {0, 155, 155}, {155, 155, 155},
{55, 55, 55}, {255, 0, 0}, {0, 255, 0}, {0, 0, 255}, {255, 255, 0}, {255, 0, 255}, {0, 255, 255}, {255, 255, 255}};
static void C4Palette(png_structp png, png_infop info) { png_set_PLTE(png, info, C4Colors, 16); }
static void DecodeC4(png_structp png, png_infop info, const uint8_t* data, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_PALETTE, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
C4Palette(png, info);
const uint8_t* texels = DecodePaletteSPLT(png, info, 16, data);
png_write_info(png, info);
std::unique_ptr<uint8_t[]> buf(new uint8_t[width]);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
buf[x] = Lookup4BPP(texels, width, x, y);
}
png_write_row(png, buf.get());
}
}
static void EncodeC4(png_structp png, png_infop info, const uint8_t* rgbaIn, uint8_t* data, int width, int height) {
uint8_t* texels = EncodePaletteSPLT(png, info, 16, data);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
Set4BPP(texels, width, x, y, rgbaIn[x]);
}
rgbaIn += width;
}
}
static void DecodeC8(png_structp png, png_infop info, const uint8_t* data, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_PALETTE, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
const uint8_t* texels = DecodePalette(png, info, 256, data);
png_write_info(png, info);
std::unique_ptr<uint8_t[]> buf(new uint8_t[width]);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
buf[x] = Lookup8BPP(texels, width, x, y);
}
png_write_row(png, buf.get());
}
}
static void EncodeC8(png_structp png, png_infop info, const uint8_t* rgbaIn, uint8_t* data, int width, int height) {
uint8_t* texels = EncodePalette(png, info, 256, data);
for (int y = 0; y < height; ++y) {
for (int x = 0; x < width; ++x) {
Set8BPP(texels, width, x, y, rgbaIn[x]);
}
rgbaIn += width;
}
}
static void DecodeRGB565(png_structp png, png_infop info, const uint8_t* texels, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_RGB, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_write_info(png, info);
std::unique_ptr<uint8_t[]> buf(new uint8_t[width * 3]);
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
const uint16_t texel = hecl::SBig(Lookup16BPP(texels, width, x, y));
buf[x * 3] = Convert5To8(texel >> 11 & 0x1f);
buf[x * 3 + 1] = Convert6To8(texel >> 5 & 0x3f);
buf[x * 3 + 2] = Convert5To8(texel & 0x1f);
}
png_write_row(png, buf.get());
}
}
#if 0
static void EncodeRGB565(const uint8_t* rgbaIn, uint8_t* texels, int width, int height)
{
for (int y=height-1 ; y>=0 ; --y)
{
for (int x=0 ; x<width ; ++x)
{
uint16_t texel = Convert8To5(rgbaIn[x*3]) << 11;
texel |= Convert8To6(rgbaIn[x*3+1]) << 5;
texel |= Convert8To5(rgbaIn[x*3+2]);
Set16BPP(texels, width, x, y, hecl::SBig(texel));
}
rgbaIn += width * 3;
}
}
#endif
static void DecodeRGB5A3(png_structp png, png_infop info, const uint8_t* texels, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_RGB_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_write_info(png, info);
std::unique_ptr<uint8_t[]> buf(new uint8_t[width * 4]);
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
const uint16_t texel = hecl::SBig(Lookup16BPP(texels, width, x, y));
if (texel & 0x8000) {
buf[x * 4] = Convert5To8(texel >> 10 & 0x1f);
buf[x * 4 + 1] = Convert5To8(texel >> 5 & 0x1f);
buf[x * 4 + 2] = Convert5To8(texel & 0x1f);
buf[x * 4 + 3] = 0xff;
} else {
buf[x * 4] = Convert4To8(texel >> 8 & 0xf);
buf[x * 4 + 1] = Convert4To8(texel >> 4 & 0xf);
buf[x * 4 + 2] = Convert4To8(texel & 0xf);
buf[x * 4 + 3] = Convert3To8(texel >> 12 & 0x7);
}
}
png_write_row(png, buf.get());
}
}
#if 0
static void EncodeRGB5A3(const uint8_t* rgbaIn, uint8_t* texels, int width, int height)
{
for (int y=height-1 ; y>=0 ; --y)
{
for (int x=0 ; x<width ; ++x)
{
uint16_t texel = 0;
if (rgbaIn[x*4+3] == 0xff)
{
texel |= Convert8To5(rgbaIn[x*4]) << 10;
texel |= Convert8To5(rgbaIn[x*4+1]) << 5;
texel |= Convert8To5(rgbaIn[x*4+2]);
texel |= 0x8000;
}
else
{
texel |= Convert8To4(rgbaIn[x*4]) << 8;
texel |= Convert8To4(rgbaIn[x*4+1]) << 4;
texel |= Convert8To4(rgbaIn[x*4+2]);
texel |= Convert8To3(rgbaIn[x*4+3]) << 12;
}
Set16BPP(texels, width, x, y, hecl::SBig(texel));
}
rgbaIn += width * 4;
}
}
#endif
static void DecodeRGBA8(png_structp png, png_infop info, const uint8_t* texels, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_RGB_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_write_info(png, info);
std::unique_ptr<uint8_t[]> buf(new uint8_t[width * 4]);
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
LookupRGBA8(texels, width, x, y, &buf[x * 4], &buf[x * 4 + 1], &buf[x * 4 + 2], &buf[x * 4 + 3]);
}
png_write_row(png, buf.get());
}
}
static void EncodeRGBA8(const uint8_t* rgbaIn, uint8_t* texels, int width, int height) {
for (int y = height - 1; y >= 0; --y) {
for (int x = 0; x < width; ++x) {
SetRGBA8(texels, width, x, y, rgbaIn[x * 4], rgbaIn[x * 4 + 1], rgbaIn[x * 4 + 2], rgbaIn[x * 4 + 3]);
}
rgbaIn += width * 4;
}
}
struct DXTBlock {
uint16_t color1;
uint16_t color2;
uint8_t lines[4];
};
static void DecodeCMPR(png_structp png, png_infop info, const uint8_t* texels, int width, int height) {
png_set_IHDR(png, info, width, height, 8, PNG_COLOR_TYPE_RGB_ALPHA, PNG_INTERLACE_NONE, PNG_COMPRESSION_TYPE_DEFAULT,
PNG_FILTER_TYPE_DEFAULT);
png_write_info(png, info);
/* Decode 8 rows at a time */
const int bwidth = (width + 7) / 8;
const int bpwidth = bwidth * 8;
std::unique_ptr<uint32_t[]> buf(new uint32_t[bpwidth * 8]);
uint32_t* bTargets[4] = {buf.get(), buf.get() + 4, buf.get() + 4 * width, buf.get() + 4 * width + 4};
for (int y = height / 8 - 1; y >= 0; --y) {
const auto* blks = reinterpret_cast<const DXTBlock*>(texels + 32 * bwidth * y);
for (int x = 0; x < width; x += 8) {
uint32_t blkOut[4][4][4];
squish::Decompress(reinterpret_cast<uint8_t*>(blkOut[0][0]), blks++, squish::kDxt1GCN);
squish::Decompress(reinterpret_cast<uint8_t*>(blkOut[1][0]), blks++, squish::kDxt1GCN);
squish::Decompress(reinterpret_cast<uint8_t*>(blkOut[2][0]), blks++, squish::kDxt1GCN);
squish::Decompress(reinterpret_cast<uint8_t*>(blkOut[3][0]), blks++, squish::kDxt1GCN);
for (int bt = 0; bt < 4; ++bt) {
for (int by = 0; by < 4; ++by) {
std::memcpy(bTargets[bt] + x + width * by, blkOut[bt][by], 16);
}
}
}
for (int r = 7; r >= 0; --r) {
png_write_row(png, reinterpret_cast<png_bytep>(bTargets[0] + width * r));
}
}
}
static void EncodeCMPR(const uint8_t* rgbaIn, uint8_t* texels, int width, int height) {
/* Encode 8 rows at a time */
const int bwidth = (width + 7) / 8;
const int bpwidth = bwidth * 8;
std::unique_ptr<uint32_t[]> buf(new uint32_t[bpwidth * 8]);
uint32_t* bTargets[4] = {buf.get(), buf.get() + 4, buf.get() + 4 * width, buf.get() + 4 * width + 4};
for (int y = height / 8 - 1; y >= 0; --y) {
for (int r = 7; r >= 0; --r) {
std::memcpy(bTargets[0] + width * r, rgbaIn, width * 4);
rgbaIn += width * 4;
}
auto* blks = reinterpret_cast<DXTBlock*>(texels + 32 * bwidth * y);
for (int x = 0; x < width; x += 8) {
uint32_t blkIn[4][4][4];
for (int bt = 0; bt < 4; ++bt) {
for (int by = 0; by < 4; ++by) {
std::memcpy(blkIn[bt][by], bTargets[bt] + x + width * by, 16);
}
}
squish::Compress(reinterpret_cast<uint8_t*>(blkIn[0][0]), blks++, squish::kDxt1GCN);
squish::Compress(reinterpret_cast<uint8_t*>(blkIn[1][0]), blks++, squish::kDxt1GCN);
squish::Compress(reinterpret_cast<uint8_t*>(blkIn[2][0]), blks++, squish::kDxt1GCN);
squish::Compress(reinterpret_cast<uint8_t*>(blkIn[3][0]), blks++, squish::kDxt1GCN);
}
}
}
static void PNGErr(png_structp png, png_const_charp msg) { Log.report(logvisor::Error, FMT_STRING("{}"), msg); }
static void PNGWarn(png_structp png, png_const_charp msg) { Log.report(logvisor::Warning, FMT_STRING("{}"), msg); }
bool TXTR::Extract(PAKEntryReadStream& rs, const hecl::ProjectPath& outPath) {
const uint32_t format = rs.readUint32Big();
const uint16_t width = rs.readUint16Big();
const uint16_t height = rs.readUint16Big();
const uint32_t numMips = rs.readUint32Big();
auto fp = hecl::FopenUnique(outPath.getAbsolutePath().data(), _SYS_STR("wb"));
if (fp == nullptr) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("Unable to open '{}' for writing")), outPath.getAbsolutePath());
return false;
}
png_structp png = png_create_write_struct(PNG_LIBPNG_VER_STRING, nullptr, PNGErr, PNGWarn);
png_init_io(png, fp.get());
png_infop info = png_create_info_struct(png);
png_text textStruct = {};
textStruct.key = png_charp("metaforce_nomip");
if (numMips == 1)
png_set_text(png, info, &textStruct, 1);
switch (format) {
case 0:
DecodeI4(png, info, rs.data() + 12, width, height);
break;
case 1:
DecodeI8(png, info, rs.data() + 12, width, height);
break;
case 2:
DecodeIA4(png, info, rs.data() + 12, width, height);
break;
case 3:
DecodeIA8(png, info, rs.data() + 12, width, height);
break;
case 4:
DecodeC4(png, info, rs.data() + 12, width, height);
break;
case 5:
DecodeC8(png, info, rs.data() + 12, width, height);
break;
case 7:
DecodeRGB565(png, info, rs.data() + 12, width, height);
break;
case 8:
DecodeRGB5A3(png, info, rs.data() + 12, width, height);
break;
case 9:
DecodeRGBA8(png, info, rs.data() + 12, width, height);
break;
case 10:
DecodeCMPR(png, info, rs.data() + 12, width, height);
break;
}
png_write_end(png, info);
png_write_flush(png);
png_destroy_write_struct(&png, &info);
return true;
}
static std::unique_ptr<uint8_t[]> ReadPalette(png_structp png, png_infop info, size_t& szOut) {
std::unique_ptr<uint8_t[]> ret;
png_sPLT_tp palettes;
const int paletteCount = png_get_sPLT(png, info, &palettes);
if (paletteCount != 0) {
for (int i = 0; i < paletteCount; ++i) {
const png_const_sPLT_tp palette = &palettes[i];
if (strncmp(palette->name, "GX_", 3) == 0) {
if (palette->nentries > 16) {
/* This is a C8 palette */
ret.reset(new uint8_t[4 * 257]);
szOut = 4 * 257;
*reinterpret_cast<uint32_t*>(ret.get()) = hecl::SBig(256);
uint8_t* cur = ret.get() + 4;
for (int j = 0; j < 256; ++j) {
if (j < palette->nentries) {
const png_const_sPLT_entryp entry = &palette->entries[j];
if (palette->depth == 16) {
*cur++ = entry->red >> 8;
*cur++ = entry->green >> 8;
*cur++ = entry->blue >> 8;
*cur++ = entry->alpha >> 8;
} else {
*cur++ = entry->red;
*cur++ = entry->green;
*cur++ = entry->blue;
*cur++ = entry->alpha;
}
} else {
*cur++ = 0;
*cur++ = 0;
*cur++ = 0;
*cur++ = 0;
}
}
} else {
/* This is a C4 palette */
ret.reset(new uint8_t[4 * 17]);
szOut = 4 * 17;
*reinterpret_cast<uint32_t*>(ret.get()) = hecl::SBig(16);
uint8_t* cur = ret.get() + 4;
for (int j = 0; j < 16; ++j) {
if (j < palette->nentries) {
const png_const_sPLT_entryp entry = &palette->entries[j];
if (palette->depth == 16) {
*cur++ = entry->red >> 8;
*cur++ = entry->green >> 8;
*cur++ = entry->blue >> 8;
*cur++ = entry->alpha >> 8;
} else {
*cur++ = entry->red;
*cur++ = entry->green;
*cur++ = entry->blue;
*cur++ = entry->alpha;
}
} else {
*cur++ = 0;
*cur++ = 0;
*cur++ = 0;
*cur++ = 0;
}
}
}
break;
}
}
} else {
png_colorp palettes2;
int colorCount;
if (png_get_PLTE(png, info, &palettes2, &colorCount) == PNG_INFO_PLTE) {
if (colorCount > 16) {
/* This is a C8 palette */
ret.reset(new uint8_t[4 * 257]);
szOut = 4 * 257;
*reinterpret_cast<uint32_t*>(ret.get()) = hecl::SBig(256);
uint8_t* cur = ret.get() + 4;
for (int j = 0; j < 256; ++j) {
if (j < colorCount) {
const png_const_colorp entry = &palettes2[j];
*cur++ = entry->red;
*cur++ = entry->green;
*cur++ = entry->blue;
*cur++ = 0xff;
} else {
*cur++ = 0;
*cur++ = 0;
*cur++ = 0;
*cur++ = 0;
}
}
} else {
/* This is a C4 palette */
ret.reset(new uint8_t[4 * 17]);
szOut = 4 * 17;
*reinterpret_cast<uint32_t*>(ret.get()) = hecl::SBig(16);
uint8_t* cur = ret.get() + 4;
for (int j = 0; j < 16; ++j) {
if (j < colorCount) {
const png_const_colorp entry = &palettes2[j];
*cur++ = entry->red;
*cur++ = entry->green;
*cur++ = entry->blue;
*cur++ = 0xff;
} else {
*cur++ = 0;
*cur++ = 0;
*cur++ = 0;
*cur++ = 0;
}
}
}
}
}
return ret;
}
static int GetNumPaletteEntriesForGCN(png_structp png, png_infop info) {
png_sPLT_tp palettes;
const int paletteCount = png_get_sPLT(png, info, &palettes);
if (paletteCount != 0) {
for (int i = 0; i < paletteCount; ++i) {
const png_const_sPLT_tp palette = &palettes[i];
if (strncmp(palette->name, "GX_", 3) == 0) {
if (palette->nentries > 16) {
/* This is a C8 palette */
return 256;
} else {
/* This is a C4 palette */
return 16;
}
}
}
} else {
png_colorp palletes2;
int colorCount;
if (png_get_PLTE(png, info, &palletes2, &colorCount) == PNG_INFO_PLTE) {
if (colorCount > 16) {
/* This is a C8 palette */
return 256;
} else {
/* This is a C4 palette */
return 16;
}
}
}
return 0;
}
bool TXTR::Cook(const hecl::ProjectPath& inPath, const hecl::ProjectPath& outPath) {
auto inf = hecl::FopenUnique(inPath.getAbsolutePath().data(), _SYS_STR("rb"));
if (inf == nullptr) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("Unable to open '{}' for reading")), inPath.getAbsolutePath());
return false;
}
/* Validate PNG */
char header[8];
std::fread(header, 1, sizeof(header), inf.get());
if (png_sig_cmp((png_const_bytep)header, 0, 8)) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("invalid PNG signature in '{}'")), inPath.getAbsolutePath());
return false;
}
/* Setup PNG reader */
png_structp pngRead = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (!pngRead) {
Log.report(logvisor::Error, FMT_STRING("unable to initialize libpng"));
return false;
}
png_infop info = png_create_info_struct(pngRead);
if (!info) {
Log.report(logvisor::Error, FMT_STRING("unable to initialize libpng info"));
png_destroy_read_struct(&pngRead, nullptr, nullptr);
return false;
}
if (setjmp(png_jmpbuf(pngRead))) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("unable to initialize libpng I/O for '{}'")),
inPath.getAbsolutePath());
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
png_init_io(pngRead, inf.get());
png_set_sig_bytes(pngRead, 8);
png_read_info(pngRead, info);
const png_uint_32 width = png_get_image_width(pngRead, info);
const png_uint_32 height = png_get_image_height(pngRead, info);
const png_byte colorType = png_get_color_type(pngRead, info);
const png_byte bitDepth = png_get_bit_depth(pngRead, info);
if (width < 4 || height < 4) {
Log.report(logvisor::Error, FMT_STRING("image must be 4x4 or larger"));
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
/* Disable mipmapping if metaforce_nomip embedded */
bool mipmap = true;
png_text* textStruct;
int numText;
png_get_text(pngRead, info, &textStruct, &numText);
for (int i = 0; i < numText; ++i) {
if (std::strcmp(textStruct[i].key, "metaforce_nomip") == 0) {
mipmap = false;
}
}
if (colorType == PNG_COLOR_TYPE_PALETTE) {
mipmap = false;
}
/* Compute mipmap levels */
size_t numMips = 1;
if (mipmap && CountBits(width) == 1 && CountBits(height) == 1) {
size_t index = std::min(width, height);
while (index >>= 1) {
++numMips;
}
}
if (bitDepth != 8) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("'{}' is not 8 bits-per-channel")), inPath.getAbsolutePath());
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
size_t rowSize = 0;
size_t nComps = 4;
int nPaletteEntries = 0;
switch (colorType) {
case PNG_COLOR_TYPE_GRAY:
rowSize = width;
nComps = 1;
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
rowSize = width * 2;
nComps = 2;
break;
case PNG_COLOR_TYPE_RGB:
rowSize = width * 3;
nComps = 4;
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
rowSize = width * 4;
nComps = 4;
break;
case PNG_COLOR_TYPE_PALETTE:
nPaletteEntries = GetNumPaletteEntriesForGCN(pngRead, info);
rowSize = width;
nComps = 1;
break;
default:
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("unsupported color type in '{}'")), inPath.getAbsolutePath());
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
/* Intermediate row-read buf (file components) */
std::unique_ptr<uint8_t[]> rowBuf;
if (colorType == PNG_COLOR_TYPE_RGB)
rowBuf.reset(new uint8_t[rowSize]);
/* Final mipmapped buf (RGBA components) */
std::unique_ptr<uint8_t[]> bufOut;
size_t bufLen = 0;
if (numMips > 1)
bufLen = ComputeMippedTexelCount(width, height) * nComps;
else
bufLen = width * height * nComps;
bufOut.reset(new uint8_t[bufLen]);
if (setjmp(png_jmpbuf(pngRead))) {
Log.report(logvisor::Fatal, FMT_STRING(_SYS_STR("unable to read image in '{}'")), inPath.getAbsolutePath());
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
/* Track alpha values for DXT1 eligibility */
bool doDXT1 = (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_RGB_ALPHA) && width >= 4 && height >= 4;
/* Read into mip0 image buffer */
for (png_uint_32 r = 0; r < height; ++r) {
if (colorType == PNG_COLOR_TYPE_RGB) {
png_read_row(pngRead, rowBuf.get(), nullptr);
for (unsigned i = 0; i < width; ++i) {
const size_t inbase = i * 3;
const size_t outbase = (r * width + i) * 4;
bufOut[outbase] = rowBuf[inbase];
bufOut[outbase + 1] = rowBuf[inbase + 1];
bufOut[outbase + 2] = rowBuf[inbase + 2];
bufOut[outbase + 3] = 0xff;
}
} else {
png_read_row(pngRead, &bufOut[(r * width) * nComps], nullptr);
if (colorType == PNG_COLOR_TYPE_RGB_ALPHA) {
for (unsigned i = 0; i < width; ++i) {
const size_t outbase = (r * width + i) * nComps;
if (bufOut[outbase + 3] != 0 && bufOut[outbase + 3] != 255) {
doDXT1 = false;
}
}
}
}
}
png_destroy_read_struct(&pngRead, &info, nullptr);
inf.reset();
/* Reduce mipmaps to minimum allowed dimensions */
unsigned minDimX, minDimY;
if (doDXT1) {
minDimX = minDimY = 4;
} else {
switch (colorType) {
case PNG_COLOR_TYPE_GRAY:
minDimX = 8;
minDimY = 4;
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
case PNG_COLOR_TYPE_RGB:
case PNG_COLOR_TYPE_RGB_ALPHA:
default:
minDimX = 4;
minDimY = 4;
break;
case PNG_COLOR_TYPE_PALETTE: {
if (nPaletteEntries == 256) {
minDimX = 8;
minDimY = 4;
} else {
minDimX = minDimY = 8;
}
break;
}
}
}
{
unsigned totalPixels = 0;
unsigned filterWidth = width;
unsigned filterHeight = height;
for (size_t i = 0; i < numMips; ++i) {
totalPixels += filterWidth * filterHeight;
if (filterWidth == minDimX || filterHeight == minDimY) {
numMips = i + 1;
break;
}
filterWidth /= 2;
filterHeight /= 2;
}
bufLen = totalPixels * nComps;
}
/* Perform box-filter mipmap */
std::unique_ptr<uint8_t[]> compOut;
size_t compLen = 0;
if (numMips > 1) {
const uint8_t* filterIn = bufOut.get();
uint8_t* filterOut = bufOut.get() + width * height * nComps;
unsigned filterWidth = width;
unsigned filterHeight = height;
for (size_t i = 1; i < numMips; ++i) {
BoxFilter(filterIn, nComps, filterWidth, filterHeight, filterOut, doDXT1);
filterIn += filterWidth * filterHeight * nComps;
filterWidth /= 2;
filterHeight /= 2;
filterOut += filterWidth * filterHeight * nComps;
}
}
/* Do DXT1 compression */
int format;
if (doDXT1) {
int filterWidth = width;
int filterHeight = height;
for (size_t i = 0; i < numMips; ++i) {
compLen += squish::GetStorageRequirements(filterWidth, filterHeight, squish::kDxt1);
if (filterWidth == 8 || filterHeight == 8) {
numMips = i + 1;
break;
}
filterWidth /= 2;
filterHeight /= 2;
}
compOut.reset(new uint8_t[compLen]);
filterWidth = width;
filterHeight = height;
const uint8_t* rgbaIn = bufOut.get();
uint8_t* blocksOut = compOut.get();
std::memset(blocksOut, 0, compLen);
for (size_t i = 0; i < numMips; ++i) {
const int thisLen = squish::GetStorageRequirements(filterWidth, filterHeight, squish::kDxt1);
EncodeCMPR(rgbaIn, blocksOut, filterWidth, filterHeight);
rgbaIn += filterWidth * filterHeight * nComps;
blocksOut += thisLen;
filterWidth /= 2;
filterHeight /= 2;
}
format = 10;
} else {
int filterWidth = width;
int filterHeight = height;
compLen = bufLen;
if (colorType == PNG_COLOR_TYPE_PALETTE) {
if (nPaletteEntries == 16) {
compLen /= 2;
}
compLen += 8 + nPaletteEntries * 2;
}
compOut.reset(new uint8_t[compLen]);
const uint8_t* rgbaIn = bufOut.get();
uint8_t* dataOut = compOut.get();
std::memset(dataOut, 0, compLen);
for (size_t i = 0; i < numMips; ++i) {
switch (colorType) {
case PNG_COLOR_TYPE_GRAY:
EncodeI8(rgbaIn, dataOut, filterWidth, filterHeight);
format = 1;
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
EncodeIA8(rgbaIn, dataOut, filterWidth, filterHeight);
format = 3;
break;
case PNG_COLOR_TYPE_RGB:
case PNG_COLOR_TYPE_RGB_ALPHA:
EncodeRGBA8(rgbaIn, dataOut, filterWidth, filterHeight);
format = 9;
break;
case PNG_COLOR_TYPE_PALETTE: {
if (nPaletteEntries == 256) {
EncodeC8(pngRead, info, rgbaIn, dataOut, filterWidth, filterHeight);
format = 5;
} else {
EncodeC4(pngRead, info, rgbaIn, dataOut, filterWidth, filterHeight);
format = 4;
}
break;
}
default:
break;
}
rgbaIn += filterWidth * filterHeight * nComps;
dataOut += filterWidth * filterHeight * nComps;
filterWidth /= 2;
filterHeight /= 2;
}
}
/* Do write out */
athena::io::FileWriter outf(outPath.getAbsolutePath(), true, false);
if (outf.hasError()) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("Unable to open '{}' for writing")), outPath.getAbsolutePath());
return false;
}
outf.writeInt32Big(format);
outf.writeInt16Big(width);
outf.writeInt16Big(height);
outf.writeInt32Big(numMips);
outf.writeUBytes(compOut.get(), compLen);
return true;
}
bool TXTR::CookPC(const hecl::ProjectPath& inPath, const hecl::ProjectPath& outPath) {
auto inf = hecl::FopenUnique(inPath.getAbsolutePath().data(), _SYS_STR("rb"));
if (inf == nullptr) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("Unable to open '{}' for reading")), inPath.getAbsolutePath());
return false;
}
/* Validate PNG */
char header[8];
std::fread(header, 1, sizeof(header), inf.get());
if (png_sig_cmp((png_const_bytep)header, 0, 8)) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("invalid PNG signature in '{}'")), inPath.getAbsolutePath());
return false;
}
/* Setup PNG reader */
png_structp pngRead = png_create_read_struct(PNG_LIBPNG_VER_STRING, nullptr, nullptr, nullptr);
if (!pngRead) {
Log.report(logvisor::Error, FMT_STRING("unable to initialize libpng"));
return false;
}
png_infop info = png_create_info_struct(pngRead);
if (!info) {
Log.report(logvisor::Error, FMT_STRING("unable to initialize libpng info"));
png_destroy_read_struct(&pngRead, nullptr, nullptr);
return false;
}
if (setjmp(png_jmpbuf(pngRead))) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("unable to initialize libpng I/O for '{}'")),
inPath.getAbsolutePath());
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
png_init_io(pngRead, inf.get());
png_set_sig_bytes(pngRead, 8);
png_read_info(pngRead, info);
const png_uint_32 width = png_get_image_width(pngRead, info);
const png_uint_32 height = png_get_image_height(pngRead, info);
const png_byte colorType = png_get_color_type(pngRead, info);
const png_byte bitDepth = png_get_bit_depth(pngRead, info);
/* Disable mipmapping if metaforce_nomip embedded */
bool mipmap = true;
png_text* textStruct;
int numText;
png_get_text(pngRead, info, &textStruct, &numText);
for (int i = 0; i < numText; ++i) {
if (std::strcmp(textStruct[i].key, "metaforce_nomip") == 0) {
mipmap = false;
}
}
if (colorType == PNG_COLOR_TYPE_PALETTE) {
mipmap = false;
}
/* Compute mipmap levels */
size_t numMips = 1;
if (mipmap && CountBits(width) == 1 && CountBits(height) == 1) {
size_t index = std::min(width, height);
while (index >>= 1) {
++numMips;
}
}
if (bitDepth != 8) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("'{}' is not 8 bits-per-channel")), inPath.getAbsolutePath());
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
std::unique_ptr<uint8_t[]> paletteBuf;
size_t paletteSize = 0;
size_t rowSize = 0;
size_t nComps = 4;
switch (colorType) {
case PNG_COLOR_TYPE_GRAY:
rowSize = width;
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
rowSize = width * 2;
break;
case PNG_COLOR_TYPE_RGB:
rowSize = width * 3;
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
rowSize = width * 4;
break;
case PNG_COLOR_TYPE_PALETTE:
rowSize = width;
nComps = 1;
paletteBuf = ReadPalette(pngRead, info, paletteSize);
break;
default:
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("unsupported color type in '{}'")), inPath.getAbsolutePath());
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
/* Intermediate row-read buf (file components) */
std::unique_ptr<uint8_t[]> rowBuf(new uint8_t[rowSize]);
/* Final mipmapped buf (RGBA components) */
std::unique_ptr<uint8_t[]> bufOut;
size_t bufLen = 0;
if (numMips > 1)
bufLen = ComputeMippedTexelCount(width, height) * nComps;
else
bufLen = width * height * nComps;
bufOut.reset(new uint8_t[bufLen]);
if (setjmp(png_jmpbuf(pngRead))) {
Log.report(logvisor::Fatal, FMT_STRING(_SYS_STR("unable to read image in '{}'")), inPath.getAbsolutePath());
png_destroy_read_struct(&pngRead, &info, nullptr);
return false;
}
/* Track alpha values for DXT1 eligibility */
bool doDXT = (colorType == PNG_COLOR_TYPE_RGB || colorType == PNG_COLOR_TYPE_RGB_ALPHA) && width >= 4 && height >= 4;
bool doDXT3 = false;
/* Read and make RGBA */
for (int r = height - 1; r >= 0; --r) {
png_read_row(pngRead, rowBuf.get(), nullptr);
switch (colorType) {
case PNG_COLOR_TYPE_GRAY:
for (unsigned i = 0; i < width; ++i) {
const size_t outbase = (r * width + i) * 4;
bufOut[outbase] = rowBuf[i];
bufOut[outbase + 1] = rowBuf[i];
bufOut[outbase + 2] = rowBuf[i];
bufOut[outbase + 3] = rowBuf[i];
}
break;
case PNG_COLOR_TYPE_GRAY_ALPHA:
for (unsigned i = 0; i < width; ++i) {
const size_t inbase = i * 2;
const size_t outbase = (r * width + i) * 4;
bufOut[outbase] = rowBuf[inbase];
bufOut[outbase + 1] = rowBuf[inbase];
bufOut[outbase + 2] = rowBuf[inbase];
bufOut[outbase + 3] = rowBuf[inbase + 1];
}
break;
case PNG_COLOR_TYPE_RGB:
for (unsigned i = 0; i < width; ++i) {
const size_t inbase = i * 3;
const size_t outbase = (r * width + i) * 4;
bufOut[outbase] = rowBuf[inbase];
bufOut[outbase + 1] = rowBuf[inbase + 1];
bufOut[outbase + 2] = rowBuf[inbase + 2];
bufOut[outbase + 3] = 0xff;
}
break;
case PNG_COLOR_TYPE_RGB_ALPHA:
for (unsigned i = 0; i < width; ++i) {
const size_t inbase = i * 4;
const size_t outbase = (r * width + i) * 4;
bufOut[outbase] = rowBuf[inbase];
bufOut[outbase + 1] = rowBuf[inbase + 1];
bufOut[outbase + 2] = rowBuf[inbase + 2];
bufOut[outbase + 3] = rowBuf[inbase + 3];
if (rowBuf[inbase + 3] != 0 && rowBuf[inbase + 3] != 255)
doDXT = false;
else if (rowBuf[inbase + 3] == 0)
doDXT3 = true;
}
break;
case PNG_COLOR_TYPE_PALETTE:
for (unsigned i = 0; i < width; ++i)
bufOut[r * width + i] = rowBuf[i];
break;
default:
break;
}
}
png_destroy_read_struct(&pngRead, &info, nullptr);
inf.reset();
/* Perform box-filter mipmap */
if (numMips > 1) {
const uint8_t* filterIn = bufOut.get();
uint8_t* filterOut = bufOut.get() + width * height * nComps;
unsigned filterWidth = width;
unsigned filterHeight = height;
for (size_t i = 1; i < numMips; ++i) {
BoxFilter(filterIn, nComps, filterWidth, filterHeight, filterOut, doDXT);
filterIn += filterWidth * filterHeight * nComps;
filterWidth /= 2;
filterHeight /= 2;
filterOut += filterWidth * filterHeight * nComps;
}
}
/* Do DXT compression */
std::unique_ptr<uint8_t[]> compOut;
size_t compLen = 0;
if (doDXT) {
int compFlags = doDXT3 ? squish::kDxt3 : squish::kDxt1;
int filterWidth = width;
int filterHeight = height;
size_t i;
for (i = 0; i < numMips; ++i) {
compLen += squish::GetStorageRequirements(filterWidth, filterHeight, compFlags);
if (filterWidth == 4 || filterHeight == 4) {
++i;
break;
}
filterWidth /= 2;
filterHeight /= 2;
}
numMips = i;
compOut.reset(new uint8_t[compLen]);
filterWidth = width;
filterHeight = height;
const uint8_t* rgbaIn = bufOut.get();
uint8_t* blocksOut = compOut.get();
for (i = 0; i < numMips; ++i) {
const int thisLen = squish::GetStorageRequirements(filterWidth, filterHeight, compFlags);
squish::CompressImage(rgbaIn, filterWidth, filterHeight, blocksOut, compFlags);
rgbaIn += filterWidth * filterHeight * nComps;
blocksOut += thisLen;
filterWidth /= 2;
filterHeight /= 2;
}
}
/* Do write out */
athena::io::FileWriter outf(outPath.getAbsolutePath(), true, false);
if (outf.hasError()) {
Log.report(logvisor::Error, FMT_STRING(_SYS_STR("Unable to open '{}' for writing")), outPath.getAbsolutePath());
return false;
}
int format;
if (paletteBuf && paletteSize)
format = 17;
else if (compOut)
format = doDXT3 ? 19 : 18;
else
format = 16;
outf.writeInt32Big(format);
outf.writeInt16Big(width);
outf.writeInt16Big(height);
outf.writeInt32Big(numMips);
if (paletteBuf && paletteSize)
outf.writeUBytes(paletteBuf.get(), paletteSize);
if (compOut)
outf.writeUBytes(compOut.get(), compLen);
else
outf.writeUBytes(bufOut.get(), bufLen);
return true;
}
template <class Op>
void DataSpec::TXTR::PaletteMeta::Enumerate(typename Op::StreamT& s) {
Do<Op>(athena::io::PropId{"format"}, format, s);
Do<Op>(athena::io::PropId{"elementCount"}, elementCount, s);
Do<Op>(athena::io::PropId{"dolphinHash"}, dolphinHash, s);
}
AT_SPECIALIZE_DNA_YAML(DataSpec::TXTR::PaletteMeta)
std::string_view DataSpec::TXTR::PaletteMeta::DNAType() { return "DataSpec::TXTR::PaletteMeta"sv; }
template <class Op>
void DataSpec::TXTR::Meta::Enumerate(typename Op::StreamT& s) {
Do<Op>(athena::io::PropId{"format"}, format, s);
Do<Op>(athena::io::PropId{"mips"}, mips, s);
Do<Op>(athena::io::PropId{"width"}, width, s);
Do<Op>(athena::io::PropId{"height"}, height, s);
Do<Op>(athena::io::PropId{"dolphinHash"}, dolphinHash, s);
Do<Op>(athena::io::PropId{"hasPalette"}, hasPalette, s);
if (hasPalette)
Do<Op>(athena::io::PropId{"palette"}, palette, s);
}
AT_SPECIALIZE_DNA_YAML(DataSpec::TXTR::Meta)
std::string_view DataSpec::TXTR::Meta::DNAType() { return "DataSpec::TXTR::Meta"sv; }
static const atInt32 RetroToDol[11]{0, 1, 2, 3, 8, 9, -1, 4, 5, 6, 14};
TXTR::Meta TXTR::GetMetaData(DataSpec::PAKEntryReadStream& rs) {
const atUint32 retroFormat = rs.readUint32Big();
const atUint32 format = RetroToDol[retroFormat];
if (format == UINT32_MAX)
return {};
Meta meta;
meta.format = retroFormat;
meta.width = rs.readUint16Big();
meta.height = rs.readUint16Big();
meta.mips = rs.readUint32Big();
atUint32 textureSize = meta.width * meta.height;
if (format == 8 || format == 9) {
meta.hasPalette = true;
PaletteMeta& palMeta = meta.palette;
palMeta.format = rs.readUint32Big();
const atUint16 palWidth = rs.readUint16Big();
const atUint16 palHeight = rs.readUint16Big();
palMeta.elementCount = palWidth * palHeight;
const atUint32 palSize = atUint32(palWidth * palHeight * 2);
if (format == 8)
textureSize /= 2;
std::unique_ptr<u8[]> palData(new u8[palSize]);
rs.readUBytesToBuf(palData.get(), palSize);
palMeta.dolphinHash = XXH64(palData.get(), palSize, 0);
} else {
switch (format) {
case 0: // I4
case 14: // DXT1
textureSize /= 2;
break;
case 3:
case 4:
case 5:
textureSize *= 2;
break;
case 6:
textureSize *= 4;
break;
default:
break;
}
}
std::unique_ptr<u8[]> textureData(new u8[textureSize]);
rs.readUBytesToBuf(textureData.get(), textureSize);
meta.dolphinHash = XXH64(textureData.get(), textureSize, 0);
return meta;
}
} // namespace DataSpec