metaforce/visigen/VISIBuilder.cpp

372 lines
13 KiB
C++

#include "VISIBuilder.hpp"
#include <logvisor/logvisor.hpp>
#define VISI_MAX_LEVEL 10
#define VISI_MIN_LENGTH 8.0
static logvisor::Module Log("VISIBuilder");
VISIBuilder::PVSRenderCache::PVSRenderCache(VISIRenderer& renderer)
: m_renderer(renderer)
{
m_cache.reserve(1000);
}
static std::unique_ptr<VISIRenderer::RGBA8[]> RGBABuf(new VISIRenderer::RGBA8[256 * 256 * 6]);
const VISIBuilder::Leaf& VISIBuilder::PVSRenderCache::GetLeaf(const zeus::CVector3f& vec)
{
auto search = m_cache.find(vec);
if (search != m_cache.cend())
{
//Log.report(logvisor::Info, "Cache hit");
return *search->second;
}
//Log.report(logvisor::Info, "Rendering");
bool needsTransparent = false;
m_renderer.RenderPVSOpaque(RGBABuf.get(), vec, needsTransparent);
std::unique_ptr<Leaf> leafOut = std::make_unique<Leaf>();
for (unsigned i=0 ; i<768*512 ; ++i)
{
const VISIRenderer::RGBA8& pixel = RGBABuf[i];
uint32_t id = (pixel.b << 16) | (pixel.g << 8) | pixel.r;
if (id != 0xffffff)
leafOut->setBit(id);
}
auto setBitLambda = [&](int idx) { leafOut->setBit(idx); };
auto setLightLambda = [&](int idx, EPVSVisSetState state)
{
if (state != EPVSVisSetState::EndOfTree)
leafOut->setLightEnum(m_lightMetaBit + idx * 2, state);
};
if (needsTransparent)
m_renderer.RenderPVSTransparent(setBitLambda, vec);
m_renderer.RenderPVSEntitiesAndLights(setBitLambda, setLightLambda, vec);
return *m_cache.emplace(std::make_pair(vec, std::move(leafOut))).first->second;
}
void VISIBuilder::Progress::report(int divisions)
{
m_prog += 1.f / divisions;
printf(" %g%% \r", m_prog * 100.f);
fflush(stdout);
if (m_updatePercent)
m_updatePercent(m_prog);
}
void VISIBuilder::Node::buildChildren(int level, int divisions, const zeus::CAABox& curAabb,
PVSRenderCache& rc, Progress& prog, const bool& terminate)
{
if (terminate)
return;
// Recurse in while building node structure
if (level < VISI_MAX_LEVEL)
{
// Heuristic split
int splits[3];
splits[0] = (curAabb.max.x - curAabb.min.x >= VISI_MIN_LENGTH) ? 2 : 1;
splits[1] = (curAabb.max.y - curAabb.min.y >= VISI_MIN_LENGTH) ? 2 : 1;
splits[2] = (curAabb.max.z - curAabb.min.z >= VISI_MIN_LENGTH) ? 2 : 1;
if (splits[0] == 2)
flags |= 0x1;
if (splits[1] == 2)
flags |= 0x2;
if (splits[2] == 2)
flags |= 0x4;
int thisdiv = splits[0] * splits[1] * splits[2] * divisions;
if (flags)
{
childNodes.resize(8);
// Inward subdivide
zeus::CAABox Z[2];
if (flags & 0x4)
curAabb.splitZ(Z[0], Z[1]);
else
Z[0] = curAabb;
for (int i=0 ; i<splits[2] ; ++i)
{
zeus::CAABox Y[2];
if (flags & 0x2)
Z[i].splitY(Y[0], Y[1]);
else
Y[0] = Z[i];
for (int j=0 ; j<splits[1] ; ++j)
{
zeus::CAABox X[2];
if (flags & 0x1)
Y[j].splitX(X[0], X[1]);
else
X[0] = Y[j];
for (int k=0 ; k<splits[0] ; ++k)
{
childNodes[i*4 + j*2 + k].buildChildren(level + 1, thisdiv, X[k], rc, prog, terminate);
}
}
}
// Outward unsubdivide for like-leaves
for (int i=0 ; i<3 ; ++i)
{
if (flags & 0x4 &&
childNodes[0] == childNodes[4] &&
(!(flags & 0x1) || childNodes[1] == childNodes[5]) &&
(!(flags & 0x2) || childNodes[2] == childNodes[6]) &&
(!(flags & 0x3) || childNodes[3] == childNodes[7]))
{
flags &= ~0x4;
//Log.report(logvisor::Info, "Unsub Z");
continue;
}
if (flags & 0x2 &&
childNodes[0] == childNodes[2] &&
(!(flags & 0x1) || childNodes[1] == childNodes[3]) &&
(!(flags & 0x4) || childNodes[4] == childNodes[6]) &&
(!(flags & 0x5) || childNodes[5] == childNodes[7]))
{
flags &= ~0x2;
//Log.report(logvisor::Info, "Unsub Y");
continue;
}
if (flags & 0x1 &&
childNodes[0] == childNodes[1] &&
(!(flags & 0x2) || childNodes[2] == childNodes[3]) &&
(!(flags & 0x4) || childNodes[4] == childNodes[5]) &&
(!(flags & 0x6) || childNodes[6] == childNodes[7]))
{
flags &= ~0x1;
//Log.report(logvisor::Info, "Unsub X");
continue;
}
break;
}
if (!flags)
{
// This is now a leaf node
for (int i=0 ; i<8 ; ++i)
leaf |= childNodes[i].leaf;
//Log.report(logvisor::Info, "Leaf Promote");
return;
}
}
}
if (!flags)
{
// This is a child node
zeus::CVector3f center = curAabb.center();
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, curAabb.min.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, curAabb.min.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, curAabb.min.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, center.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, center.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, center.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, curAabb.max.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, curAabb.max.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, curAabb.max.y, curAabb.min.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, curAabb.min.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, curAabb.min.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, curAabb.min.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, center.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, center.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, center.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, curAabb.max.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, curAabb.max.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, curAabb.max.y, center.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, curAabb.min.y, curAabb.max.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, curAabb.min.y, curAabb.max.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, curAabb.min.y, curAabb.max.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, center.y, curAabb.max.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, center.y, curAabb.max.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, center.y, curAabb.max.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.min.x, curAabb.max.y, curAabb.max.z));
leaf |= rc.GetLeaf(zeus::CVector3f(center.x, curAabb.max.y, curAabb.max.z));
leaf |= rc.GetLeaf(zeus::CVector3f(curAabb.max.x, curAabb.max.y, curAabb.max.z));
prog.report(divisions);
}
}
static const int NumChildTable[] =
{
0, 2, 2, 4, 2, 4, 4, 8
};
void VISIBuilder::Node::calculateSizesAndOffs(size_t& cur, size_t leafSz)
{
cur += 1;
flags |= 0x18;
if (flags & 0x7)
{
int splits[3];
splits[0] = (flags & 0x1) ? 2 : 1;
splits[1] = (flags & 0x2) ? 2 : 1;
splits[2] = (flags & 0x4) ? 2 : 1;
// Inward accumulate
const size_t startCur = cur;
size_t maxDelta = 0;
for (int i=0 ; i<splits[2] ; ++i)
for (int j=0 ; j<splits[1] ; ++j)
for (int k=0 ; k<splits[0] ; ++k)
{
const size_t nodeSel = i*4 + j*2 + k;
const size_t delta = cur - startCur;
if (delta > maxDelta)
maxDelta = delta;
childRelOffs[nodeSel] = delta;
childNodes[nodeSel].calculateSizesAndOffs(cur, leafSz);
}
const int numChildren = NumChildTable[flags & 0x7];
if (maxDelta > 0xffff)
{
cur += (numChildren - 1) * 3;
flags |= 0x40;
}
else if (maxDelta > 0xff)
{
cur += (numChildren - 1) * 2;
}
else
{
cur += numChildren - 1;
flags |= 0x20;
}
}
else
{
if (!leaf)
flags &= ~0x8;
else
cur += leafSz;
}
}
void VISIBuilder::Node::writeNodes(athena::io::MemoryWriter& w, size_t leafBytes) const
{
w.writeUByte(flags);
if (flags & 0x7)
{
int splits[3];
splits[0] = (flags & 0x1) ? 2 : 1;
splits[1] = (flags & 0x2) ? 2 : 1;
splits[2] = (flags & 0x4) ? 2 : 1;
// Write offsets
for (int i=0 ; i<splits[2] ; ++i)
for (int j=0 ; j<splits[1] ; ++j)
for (int k=0 ; k<splits[0] ; ++k)
{
const size_t nodeSel = i*4 + j*2 + k;
if (nodeSel == 0)
continue;
const size_t offset = childRelOffs[nodeSel];
if (flags & 0x40)
{
w.writeUByte((offset >> 16) & 0xff);
w.writeUByte((offset >> 8) & 0xff);
w.writeUByte(offset & 0xff);
}
else if (flags & 0x20)
{
w.writeUByte(offset & 0xff);
}
else
{
w.writeUint16Big(offset);
}
}
// Inward iterate
for (int i=0 ; i<splits[2] ; ++i)
for (int j=0 ; j<splits[1] ; ++j)
for (int k=0 ; k<splits[0] ; ++k)
{
const size_t nodeSel = i*4 + j*2 + k;
childNodes[nodeSel].writeNodes(w, leafBytes);
}
}
else if (leaf)
{
leaf.write(w, leafBytes);
}
}
std::vector<uint8_t> VISIBuilder::build(const zeus::CAABox& fullAabb,
size_t modelCount,
const std::vector<VISIRenderer::Entity>& entities,
const std::vector<VISIRenderer::Light>& lights,
size_t layer2LightCount,
FPercent updatePercent)
{
Log.report(logvisor::Info, "Started!");
size_t featureCount = modelCount + entities.size();
renderCache.m_lightMetaBit = featureCount;
Progress prog(updatePercent);
bool& terminate = renderCache.m_renderer.m_terminate;
rootNode.buildChildren(0, 1, fullAabb, renderCache, prog, terminate);
if (terminate)
return {};
// Lights cache their CPVSVisSet result enum as 2 bits
size_t leafBitsCount = featureCount + lights.size() * 2;
size_t leafBytesCount = ROUND_UP_8(leafBitsCount) / 8;
// Calculate octree size and store relative offsets
size_t octreeSz = 0;
rootNode.calculateSizesAndOffs(octreeSz, leafBytesCount);
size_t visiSz = 34 + entities.size() * 4 + lights.size() * leafBytesCount + 36 + octreeSz;
size_t roundedVisiSz = ROUND_UP_32(visiSz);
std::vector<uint8_t> dataOut(roundedVisiSz, 0);
athena::io::MemoryWriter w(dataOut.data(), roundedVisiSz);
w.writeUint32Big('VISI');
w.writeUint32Big(2);
w.writeBool(true);
w.writeBool(true);
w.writeUint32Big(featureCount);
w.writeUint32Big(lights.size());
w.writeUint32Big(layer2LightCount);
w.writeUint32Big(entities.size());
w.writeUint32Big(leafBytesCount);
w.writeUint32Big(lights.size());
for (const VISIRenderer::Entity& e : entities)
{
w.writeUint32Big(e.entityId);
}
for (const VISIRenderer::Light& l : lights)
{
const VISIBuilder::Leaf& leaf = renderCache.GetLeaf(l.point);
leaf.write(w, leafBytesCount);
}
w.writeVec3fBig(fullAabb.min);
w.writeVec3fBig(fullAabb.max);
w.writeUint32Big(featureCount + lights.size());
w.writeUint32Big(lights.size());
w.writeUint32Big(octreeSz);
rootNode.writeNodes(w, leafBytesCount);
w.seekAlign32();
printf("\n");
Log.report(logvisor::Info, "Finished!");
return dataOut;
}