Initial Wii image generation (needs disc header)

This commit is contained in:
Jack Andersen 2016-01-21 16:30:17 -10:00
parent 3fab04ff1a
commit 7403996ed3
12 changed files with 789 additions and 32 deletions

View File

@ -13,7 +13,7 @@ if (NOT TARGET LogVisor)
endif()
include_directories(include ${LOG_VISOR_INCLUDE_DIR})
file(GLOB NOD_HEADERS include/NOD/*.hpp)
file(GLOB NOD_HEADERS include/NOD/*.h*)
add_subdirectory(lib)
add_subdirectory(driver)

View File

@ -8,7 +8,7 @@ static void printHelp()
fprintf(stderr, "Usage:\n"
" nodtool extract [-f] <image-in> [<dir-out>]\n"
" nodtool makegcn <gameid> <game-title> <fsroot-in> <dol-in> <apploader-in> [<image-out>]\n"
" nodtool makewii <gameid> <game-title> <fsroot-in> <dol-in> <apploader-in> [<image-out>] [-u <updateroot-in>]\n");
" nodtool makewii <gameid> <game-title> <fsroot-in> <dol-in> <apploader-in> <parthead-in> [<image-out>]\n");
}
#if NOD_UCS2
@ -25,7 +25,7 @@ int main(int argc, char* argv[])
{
if (argc < 3 ||
(!strcasecmp(argv[1], _S("makegcn")) && argc < 7) ||
(!strcasecmp(argv[1], _S("makewii")) && argc < 7))
(!strcasecmp(argv[1], _S("makewii")) && argc < 8))
{
printHelp();
return -1;
@ -115,6 +115,57 @@ int main(int argc, char* argv[])
printf("\n");
}
else if (!strcasecmp(argv[1], _S("makewii")))
{
#if NOD_UCS2
if (_wcslen(argv[2]) < 6)
NOD::LogModule.report(LogVisor::FatalError, "game-id is not at least 6 characters");
#else
if (strlen(argv[2]) < 6)
NOD::LogModule.report(LogVisor::FatalError, "game-id is not at least 6 characters");
#endif
/* Pre-validate paths */
NOD::Sstat theStat;
if (NOD::Stat(argv[4], &theStat) || !S_ISDIR(theStat.st_mode))
NOD::LogModule.report(LogVisor::FatalError, "unable to stat %s as directory", argv[4]);
if (NOD::Stat(argv[5], &theStat) || !S_ISREG(theStat.st_mode))
NOD::LogModule.report(LogVisor::FatalError, "unable to stat %s as file", argv[5]);
if (NOD::Stat(argv[6], &theStat) || !S_ISREG(theStat.st_mode))
NOD::LogModule.report(LogVisor::FatalError, "unable to stat %s as file", argv[6]);
if (NOD::Stat(argv[7], &theStat) || !S_ISREG(theStat.st_mode))
NOD::LogModule.report(LogVisor::FatalError, "unable to stat %s as file", argv[7]);
size_t lastIdx = -1;
auto progFunc = [&](size_t idx, const NOD::SystemString& name, size_t bytes)
{
if (idx != lastIdx)
{
lastIdx = idx;
printf("\n");
}
if (bytes != -1)
printf("\r%s %" PRISize " B", name.c_str(), bytes);
else
printf("\r%s", name.c_str());
fflush(stdout);
};
if (argc < 9)
{
NOD::SystemString outPath(argv[4]);
outPath.append(_S(".iso"));
NOD::DiscBuilderWii b(outPath.c_str(), argv[2], argv[3], progFunc);
b.buildFromDirectory(argv[4], argv[5], argv[6], argv[7]);
}
else
{
NOD::DiscBuilderWii b(argv[8], argv[2], argv[3], progFunc);
b.buildFromDirectory(argv[4], argv[5], argv[6], argv[7]);
}
printf("\n");
}
else
{
printHelp();

View File

@ -325,16 +325,14 @@ public:
DiscBuilderBase& m_parent;
Kind m_kind;
uint64_t m_offset;
char m_gameID[6];
std::string m_gameTitle;
uint32_t m_fstMemoryAddr;
uint64_t m_dolOffset = 0;
public:
IPartitionBuilder(DiscBuilderBase& parent, Kind kind, uint64_t offset,
const char gameID[6], const char* gameTitle, uint32_t fstMemoryAddr)
: m_parent(parent), m_kind(kind), m_offset(offset), m_gameTitle(gameTitle), m_fstMemoryAddr(fstMemoryAddr)
IPartitionBuilder(DiscBuilderBase& parent, Kind kind,
const char gameID[6], const char* gameTitle)
: m_parent(parent), m_kind(kind), m_gameTitle(gameTitle)
{
memcpy(m_gameID, gameID, 6);
}
@ -353,9 +351,6 @@ public:
: m_fileIO(std::move(fio)), m_progressCB(progressCB) {}
IFileIO& getFileIO() {return *m_fileIO;}
virtual bool buildFromDirectory(const SystemChar* dirIn, const SystemChar* dolIn,
const SystemChar* apploaderIn)=0;
};
using Partition = DiscBase::IPartition;

View File

@ -10,9 +10,16 @@ class DiscWii : public DiscBase
{
public:
DiscWii(std::unique_ptr<IDiscIO>&& dio);
DiscWii(const SystemChar* dataPath, const SystemChar* updatePath,
const SystemChar* outPath, const char gameID[6], const char* gameTitle,
bool korean=false);
};
class DiscBuilderWii : public DiscBuilderBase
{
const SystemChar* m_outPath;
public:
DiscBuilderWii(const SystemChar* outPath, const char gameID[6], const char* gameTitle,
std::function<void(size_t, const SystemString&, size_t)> progressCB);
bool buildFromDirectory(const SystemChar* dirIn, const SystemChar* dolIn,
const SystemChar* apploaderIn, const SystemChar* partHeadIn);
};
}

View File

@ -22,7 +22,7 @@ public:
virtual uint64_t copyFromDisc(struct IPartReadStream& discio, uint64_t length)=0;
};
virtual std::unique_ptr<IWriteStream> beginWriteStream() const=0;
virtual std::unique_ptr<IWriteStream> beginWriteStream(size_t offset) const=0;
virtual std::unique_ptr<IWriteStream> beginWriteStream(uint64_t offset) const=0;
struct IReadStream
{
@ -31,7 +31,7 @@ public:
virtual uint64_t copyToDisc(struct IPartWriteStream& discio, uint64_t length)=0;
};
virtual std::unique_ptr<IReadStream> beginReadStream() const=0;
virtual std::unique_ptr<IReadStream> beginReadStream(size_t offset) const=0;
virtual std::unique_ptr<IReadStream> beginReadStream(uint64_t offset) const=0;
};
std::unique_ptr<IFileIO> NewFileIO(const SystemString& path);

45
include/NOD/sha1.h Normal file
View File

@ -0,0 +1,45 @@
#ifndef __SHA1_H__
#define __SHA1_H__
#include <stdint.h>
#ifdef __cplusplus
extern "C" {
#endif
#define SHA1_HASH_LENGTH 20
#define SHA1_BLOCK_LENGTH 64
typedef struct sha1nfo {
uint32_t buffer[SHA1_BLOCK_LENGTH/4];
uint32_t state[SHA1_HASH_LENGTH/4];
uint32_t byteCount;
uint8_t bufferOffset;
uint8_t keyBuffer[SHA1_BLOCK_LENGTH];
uint8_t innerHash[SHA1_HASH_LENGTH];
} sha1nfo;
/**
*/
void sha1_init(sha1nfo *s);
/**
*/
void sha1_writebyte(sha1nfo *s, uint8_t data);
/**
*/
void sha1_write(sha1nfo *s, const char *data, size_t len);
/**
*/
uint8_t* sha1_result(sha1nfo *s);
/**
*/
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength);
/**
*/
uint8_t* sha1_resultHmac(sha1nfo *s);
#ifdef __cplusplus
}
#endif
#endif // __SHA1_H__

View File

@ -3,6 +3,7 @@ set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-multichar")
endif()
add_library(NOD
aes.cpp
sha1.c
DiscBase.cpp
DiscGCN.cpp
DiscIOISO.cpp

View File

@ -141,17 +141,17 @@ static uint64_t GetInode(const SystemChar* path)
OFSTRUCT ofs;
HFILE fp = OpenFile(path, &ofs, OF_READ);
if (fp == HFILE_ERROR)
LogModule.report(LogVisor::FatalError, "unable to open %s", path);
LogModule.report(LogVisor::FatalError, _S("unable to open %s"), path);
BY_HANDLE_FILE_INFORMATION info;
if (!GetFileInformationByHandle(fp, &info))
LogModule.report(LogVisor::FatalError, "unable to GetFileInformationByHandle %s", path);
LogModule.report(LogVisor::FatalError, _S("unable to GetFileInformationByHandle %s"), path);
inode = info.nFileIndexHigh << 32;
inode |= info.nFileIndexLow;
CloseHandle(fp);
#else
struct stat st;
if (stat(path, &st))
LogModule.report(LogVisor::FatalError, "unable to stat %s", path);
LogModule.report(LogVisor::FatalError, _S("unable to stat %s"), path);
inode = uint64_t(st.st_ino);
#endif
return inode;
@ -181,7 +181,7 @@ void DiscBuilderBase::IPartitionBuilder::recursiveBuildNodes(const SystemChar* d
std::unique_ptr<IFileIO::IWriteStream> ws = m_parent.getFileIO().beginWriteStream(fileOff);
FILE* fp = Fopen(e.m_path.c_str(), _S("rb"), FileLockType::Read);
if (!fp)
LogModule.report(LogVisor::FatalError, "unable to open '%s' for reading", e.m_path.c_str());
LogModule.report(LogVisor::FatalError, _S("unable to open '%s' for reading"), e.m_path.c_str());
char buf[8192];
size_t xferSz = 0;
++m_parent.m_progressIdx;
@ -224,14 +224,14 @@ bool DiscBuilderBase::IPartitionBuilder::buildFromDirectory(const SystemChar* di
{
Sstat dolStat;
if (Stat(dolIn, &dolStat))
LogModule.report(LogVisor::FatalError, "unable to stat %s", dolIn);
LogModule.report(LogVisor::FatalError, _S("unable to stat %s"), dolIn);
size_t fileSz = ROUND_UP_32(dolStat.st_size);
uint64_t fileOff = userAllocate(fileSz);
m_dolOffset = fileOff;
std::unique_ptr<IFileIO::IWriteStream> ws = m_parent.getFileIO().beginWriteStream(fileOff);
FILE* fp = Fopen(dolIn, _S("rb"), FileLockType::Read);
if (!fp)
LogModule.report(LogVisor::FatalError, "unable to open '%s' for reading", dolIn);
LogModule.report(LogVisor::FatalError, _S("unable to open '%s' for reading"), dolIn);
char buf[8192];
size_t xferSz = 0;
SystemString dolName(dolIn);

View File

@ -112,10 +112,11 @@ DiscGCN::DiscGCN(std::unique_ptr<IDiscIO>&& dio)
class PartitionBuilderGCN : public DiscBuilderBase::IPartitionBuilder
{
uint64_t m_curUser = 0x57058000;
uint32_t m_fstMemoryAddr;
public:
PartitionBuilderGCN(DiscBuilderBase& parent, Kind kind, uint64_t offset,
PartitionBuilderGCN(DiscBuilderBase& parent, Kind kind,
const char gameID[6], const char* gameTitle, uint32_t fstMemoryAddr)
: DiscBuilderBase::IPartitionBuilder(parent, kind, offset, gameID, gameTitle, fstMemoryAddr) {}
: DiscBuilderBase::IPartitionBuilder(parent, kind, gameID, gameTitle), m_fstMemoryAddr(fstMemoryAddr) {}
uint64_t userAllocate(uint64_t reqSz)
{
@ -142,7 +143,7 @@ public:
ws = m_parent.getFileIO().beginWriteStream(0x2440);
FILE* fp = Fopen(apploaderIn, _S("rb"), FileLockType::Read);
if (!fp)
LogModule.report(LogVisor::FatalError, "unable to open %s for reading", apploaderIn);
LogModule.report(LogVisor::FatalError, _S("unable to open %s for reading"), apploaderIn);
char buf[8192];
size_t xferSz = 0;
SystemString apploaderName(apploaderIn);
@ -172,6 +173,10 @@ public:
fstSz += m_buildNameOff;
fstSz = ROUND_UP_32(fstSz);
if (fstOff + fstSz >= m_curUser)
LogModule.report(LogVisor::FatalError,
"FST flows into user area (one or the other is too big)");
ws = m_parent.getFileIO().beginWriteStream(0x420);
uint32_t vals[7];
vals[0] = SBig(uint32_t(m_dolOffset));
@ -198,7 +203,7 @@ DiscBuilderGCN::DiscBuilderGCN(const SystemChar* outPath, const char gameID[6],
uint32_t fstMemoryAddr, std::function<void(size_t, const SystemString&, size_t)> progressCB)
: DiscBuilderBase(std::move(NewFileIO(outPath)), progressCB)
{
PartitionBuilderGCN* partBuilder = new PartitionBuilderGCN(*this, IPartitionBuilder::Kind::Data, 0,
PartitionBuilderGCN* partBuilder = new PartitionBuilderGCN(*this, IPartitionBuilder::Kind::Data,
gameID, gameTitle, fstMemoryAddr);
m_partitions.emplace_back(partBuilder);
}

View File

@ -2,6 +2,7 @@
#include <string.h>
#include "NOD/DiscWii.hpp"
#include "NOD/aes.hpp"
#include "NOD/sha1.h"
namespace NOD
{
@ -390,4 +391,368 @@ DiscWii::DiscWii(std::unique_ptr<IDiscIO>&& dio)
}
}
class PartitionBuilderWii : public DiscBuilderBase::IPartitionBuilder
{
uint64_t m_curUser = 0x40000;
public:
PartitionBuilderWii(DiscBuilderBase& parent, Kind kind,
const char gameID[6], const char* gameTitle)
: DiscBuilderBase::IPartitionBuilder(parent, kind, gameID, gameTitle) {}
uint64_t getCurUserEnd() const {return m_curUser;}
uint64_t userAllocate(uint64_t reqSz)
{
reqSz = ROUND_UP_32(reqSz);
if (m_curUser + reqSz >= 0x1FB450000)
{
LogModule.report(LogVisor::FatalError, "partition exceeds maximum single-partition capacity");
return -1;
}
uint64_t ret = m_curUser;
m_curUser += reqSz;
return ret;
}
bool buildFromDirectory(const SystemChar* dirIn, const SystemChar* dolIn, const SystemChar* apploaderIn)
{
bool result = DiscBuilderBase::IPartitionBuilder::buildFromDirectory(dirIn, dolIn, apploaderIn);
if (!result)
return false;
std::unique_ptr<IFileIO::IWriteStream> ws;
/* Pad out user area to nearest cleartext sector */
uint64_t curUserRem = m_curUser % 0x1F0000;
if (curUserRem)
{
ws = m_parent.getFileIO().beginWriteStream(m_curUser);
curUserRem = 0x1F0000 - curUserRem;
for (size_t i=0 ; i<curUserRem ; ++i)
ws->write("\xff", 1);
m_curUser += curUserRem;
}
ws = m_parent.getFileIO().beginWriteStream(0);
Header header(m_gameID, m_gameTitle.c_str(), true);
header.write(*ws);
ws = m_parent.getFileIO().beginWriteStream(0x2440);
FILE* fp = Fopen(apploaderIn, _S("rb"), FileLockType::Read);
if (!fp)
LogModule.report(LogVisor::FatalError, _S("unable to open %s for reading"), apploaderIn);
char buf[8192];
size_t xferSz = 0;
SystemString apploaderName(apploaderIn);
++m_parent.m_progressIdx;
while (true)
{
size_t rdSz = fread(buf, 1, 8192, fp);
if (!rdSz)
break;
ws->write(buf, rdSz);
xferSz += rdSz;
if (0x2440 + xferSz >= 0x40000)
LogModule.report(LogVisor::FatalError,
"apploader flows into user area (one or the other is too big)");
m_parent.m_progressCB(m_parent.m_progressIdx, apploaderName, xferSz);
}
fclose(fp);
size_t fstOff = ROUND_UP_32(xferSz);
size_t fstSz = sizeof(FSTNode) * m_buildNodes.size();
for (size_t i=0 ; i<fstOff-xferSz ; ++i)
ws->write("\xff", 1);
fstOff += 0x2440;
ws->write(m_buildNodes.data(), fstSz);
for (const std::string& str : m_buildNames)
ws->write(str.data(), str.size()+1);
fstSz += m_buildNameOff;
fstSz = ROUND_UP_32(fstSz);
if (fstOff + fstSz >= 0x40000)
LogModule.report(LogVisor::FatalError,
"FST flows into user area (one or the other is too big)");
ws = m_parent.getFileIO().beginWriteStream(0x420);
uint32_t vals[4];
vals[0] = SBig(uint32_t(m_dolOffset >> 2));
vals[1] = SBig(uint32_t(fstOff >> 2));
vals[2] = SBig(uint32_t(fstSz));
vals[3] = SBig(uint32_t(fstSz));
ws->write(vals, sizeof(vals));
return true;
}
uint64_t cryptAndFakesign(IFileIO& out, uint64_t offset, const SystemChar* partHeadIn) const
{
/* Read head and validate key members */
FILE* fp = Fopen(partHeadIn, _S("rb"), FileLockType::Read);
if (!fp)
LogModule.report(LogVisor::FatalError, _S("unable to open %s for reading"), partHeadIn);
uint8_t tkey[16];
{
fseeko64(fp, 0x1BF, SEEK_SET);
if (fread(tkey, 1, 16, fp) != 16)
LogModule.report(LogVisor::FatalError, _S("unable to read title key from %s"), partHeadIn);
}
uint8_t tkeyiv[16] = {};
{
fseeko64(fp, 0x1DC, SEEK_SET);
if (fread(tkeyiv, 1, 8, fp) != 8)
LogModule.report(LogVisor::FatalError, _S("unable to read title key IV from %s"), partHeadIn);
}
uint8_t ccIdx;
{
fseeko64(fp, 0x1F1, SEEK_SET);
if (fread(&ccIdx, 1, 1, fp) != 1)
LogModule.report(LogVisor::FatalError, _S("unable to read common key index from %s"), partHeadIn);
if (ccIdx > 1)
LogModule.report(LogVisor::FatalError, _S("common key index may only be 0 or 1"));
}
uint32_t tmdSz;
{
fseeko64(fp, 0x2A4, SEEK_SET);
if (fread(&tmdSz, 1, 4, fp) != 4)
LogModule.report(LogVisor::FatalError, _S("unable to read TMD size from %s"), partHeadIn);
tmdSz = SBig(tmdSz);
}
uint64_t h3Off;
{
uint32_t h3Ptr;
fseeko64(fp, 0x2B4, SEEK_SET);
if (fread(&h3Ptr, 1, 4, fp) != 4)
LogModule.report(LogVisor::FatalError, _S("unable to read H3 pointer from %s"), partHeadIn);
h3Off = uint64_t(SBig(h3Ptr)) << 2;
}
uint64_t dataOff;
{
uint32_t dataPtr;
if (fread(&dataPtr, 1, 4, fp) != 4)
LogModule.report(LogVisor::FatalError, _S("unable to read data pointer from %s"), partHeadIn);
dataOff = uint64_t(SBig(dataPtr)) << 2;
}
std::unique_ptr<uint8_t[]> tmdData(new uint8_t[tmdSz]);
fseeko64(fp, 0x2C0, SEEK_SET);
if (fread(tmdData.get(), 1, tmdSz, fp) != tmdSz)
LogModule.report(LogVisor::FatalError, _S("unable to read TMD from %s"), partHeadIn);
/* Copy partition head up to H3 table */
std::unique_ptr<IFileIO::IWriteStream> ws = out.beginWriteStream(offset);
{
uint64_t remCopy = h3Off;
uint8_t copyBuf[8192];
fseeko64(fp, 0, SEEK_SET);
while (remCopy)
{
size_t rdBytes = fread(copyBuf, 1, std::min(8192ul, remCopy), fp);
if (rdBytes)
{
ws->write(copyBuf, rdBytes);
remCopy -= rdBytes;
continue;
}
for (size_t i=0 ; i<remCopy ; ++i)
ws->write("", 1);
break;
}
}
fclose(fp);
/* Prepare crypto pass */
std::unique_ptr<IFileIO::IReadStream> rs = m_parent.getFileIO().beginReadStream(0);
sha1nfo sha;
std::unique_ptr<IAES> aes = NewAES();
aes->setKey(COMMON_KEYS[ccIdx]);
aes->decrypt(tkeyiv, tkey, tkey, 16);
aes->setKey(tkey);
static const uint8_t ZEROIV[16] = {0};
std::unique_ptr<char[]> cleartext(new char[0x1F0000]);
std::unique_ptr<char[]> ciphertext(new char[0x200000]);
uint8_t h3[4916][20] = {};
uint64_t groupCount = m_curUser / 0x1F0000;
ws = out.beginWriteStream(offset + dataOff);
SystemString cryptoName(_S("Hashing and encrypting"));
++m_parent.m_progressIdx;
for (uint64_t g=0 ; g<groupCount ; ++g)
{
char* cleartext2 = cleartext.get();
char* ciphertext2 = ciphertext.get();
if (rs->read(cleartext2, 0x1F0000) != 0x1F0000)
LogModule.report(LogVisor::FatalError, "cleartext file too short");
uint8_t h2[8][20];
for (int s=0 ; s<8 ; ++s)
{
char* cleartext1 = cleartext2 + s*0x3E000;
char* ciphertext1 = ciphertext2 + s*0x40000;
uint8_t h1[8][20];
for (int c=0 ; c<8 ; ++c)
{
char* cleartext0 = cleartext1 + c*0x7c00;
char* ciphertext0 = ciphertext1 + c*0x8000;
uint8_t h0[31][20];
for (int j=0 ; j<31 ; ++j)
{
sha1_init(&sha);
sha1_write(&sha, cleartext0 + j*0x400, 0x400);
memcpy(h0[j], sha1_result(&sha), 20);
}
sha1_init(&sha);
sha1_write(&sha, (char*)h0, 0x26C);
memcpy(h1[c], sha1_result(&sha), 20);
memcpy(ciphertext0, h0, 0x26C);
memset(ciphertext0+0x26C, 0, 0x014);
}
sha1_init(&sha);
sha1_write(&sha, (char*)h1, 0x0A0);
memcpy(h2[s], sha1_result(&sha), 20);
for (int c=0 ; c<8 ; ++c)
{
char* ciphertext0 = ciphertext1 + c*0x8000;
memcpy(ciphertext0+0x280, h1, 0x0A0);
memset(ciphertext0+0x320, 0, 0x020);
}
}
sha1_init(&sha);
sha1_write(&sha, (char*)h2, 0x0A0);
memcpy(h3[g], sha1_result(&sha), 20);
for (int s=0 ; s<8 ; ++s)
{
char* cleartext1 = cleartext2 + s*0x3E000;
char* ciphertext1 = ciphertext2 + s*0x40000;
for (int c=0 ; c<8 ; ++c)
{
char* cleartext0 = cleartext1 + c*0x7c00;
char* ciphertext0 = ciphertext1 + c*0x8000;
memcpy(ciphertext0+0x340, h2, 0x0A0);
memset(ciphertext0+0x3E0, 0, 0x020);
aes->encrypt(ZEROIV, (uint8_t*)ciphertext0, (uint8_t*)ciphertext0, 0x400);
aes->encrypt((uint8_t*)(ciphertext0+0x3D0), (uint8_t*)cleartext0, (uint8_t*)(ciphertext0+0x400), 0x7c00);
}
}
if (ws->write(ciphertext2, 0x200000) != 0x200000)
LogModule.report(LogVisor::FatalError, "unable to write full disc sector");
m_parent.m_progressCB(m_parent.m_progressIdx, cryptoName, (g+1)*0x200000);
}
/* Write new crypto content size */
uint64_t cryptContentSize = (groupCount * 0x200000) >> 2;
uint32_t cryptContentSizeBig = SBig(uint32_t(cryptContentSize));
ws = out.beginWriteStream(offset + 0x2BC);
ws->write(&cryptContentSizeBig, 0x4);
/* Write new H3 */
ws = out.beginWriteStream(offset + h3Off);
ws->write(h3, 0x18000);
/* Compute content hash and replace in TMD */
sha1_init(&sha);
sha1_write(&sha, (char*)h3, 0x18000);
memcpy(tmdData.get() + 0x1F4, sha1_result(&sha), 20);
/* Same for content size */
uint64_t contentSize = groupCount * 0x1F0000;
uint64_t contentSizeBig = SBig(contentSize);
memcpy(tmdData.get() + 0x1EC, &contentSizeBig, 8);
/* Zero-out TMD signature to simplify brute-force */
memset(tmdData.get() + 0x4, 0, 0x100);
/* Brute-force zero-starting hash */
size_t tmdCheckSz = tmdSz - 0x140;
struct BFWindow
{
uint64_t word[7];
}* bfWindow = (BFWindow*)(tmdData.get() + 0x19A);
bool good = false;
uint64_t attempts = 0;
SystemString bfName(_S("Brute force attempts"));
++m_parent.m_progressIdx;
for (int w=0 ; w<7 ; ++w)
{
for (uint64_t i=0 ; i<UINT64_MAX ; ++i)
{
bfWindow->word[w] = i;
sha1_init(&sha);
sha1_write(&sha, (char*)(tmdData.get() + 0x140), tmdCheckSz);
uint8_t* hash = sha1_result(&sha);
if (hash[0] == 0)
{
good = true;
break;
}
++attempts;
if ((attempts % 1024) == 0)
m_parent.m_progressCB(m_parent.m_progressIdx, bfName, attempts);
}
if (good)
break;
}
m_parent.m_progressCB(m_parent.m_progressIdx, bfName, attempts);
ws = out.beginWriteStream(offset + 0x2C0);
ws->write(tmdData.get(), tmdSz);
return offset + dataOff + groupCount * 0x200000;
}
};
bool DiscBuilderWii::buildFromDirectory(const SystemChar* dirIn, const SystemChar* dolIn,
const SystemChar* apploaderIn, const SystemChar* partHeadIn)
{
PartitionBuilderWii& pb = static_cast<PartitionBuilderWii&>(*m_partitions[0]);
uint64_t filledSz = 0x200000;
std::unique_ptr<IFileIO> imgOut = NewFileIO(m_outPath);
m_fileIO = std::move(NewFileIO(SystemString(m_outPath) + _S(".cleardata")));
if (!pb.buildFromDirectory(dirIn, dolIn, apploaderIn))
return false;
filledSz = pb.cryptAndFakesign(*imgOut, filledSz, partHeadIn);
if (filledSz >= 0x1FB4E0000)
{
LogModule.report(LogVisor::FatalError, "data partition exceeds disc capacity");
return false;
}
/* Fill image to end */
std::unique_ptr<IFileIO::IWriteStream> ws = imgOut->beginWriteStream(filledSz);
for (size_t i=0 ; i<0x1FB4E0000-filledSz ; ++i)
ws->write("\xff", 1);
return true;
}
DiscBuilderWii::DiscBuilderWii(const SystemChar* outPath, const char gameID[6], const char* gameTitle,
std::function<void(size_t, const SystemString&, size_t)> progressCB)
: DiscBuilderBase(std::move(std::unique_ptr<IFileIO>()), progressCB), m_outPath(outPath)
{
PartitionBuilderWii* partBuilder = new PartitionBuilderWii(*this, IPartitionBuilder::Kind::Data,
gameID, gameTitle);
m_partitions.emplace_back(partBuilder);
}
}

View File

@ -53,7 +53,7 @@ public:
if (!fp)
LogModule.report(LogVisor::Error, _S("unable to open '%s' for writing"), path.c_str());
}
WriteStream(const SystemString& path, size_t offset)
WriteStream(const SystemString& path, uint64_t offset)
{
#if NOD_UCS2
fp = _wfopen(path.c_str(), L"r+b");
@ -62,7 +62,7 @@ public:
#endif
if (!fp)
LogModule.report(LogVisor::Error, _S("unable to open '%s' for writing"), path.c_str());
fseek(fp, offset, SEEK_SET);
fseeko64(fp, offset, SEEK_SET);
}
~WriteStream()
{
@ -99,7 +99,7 @@ public:
{
return std::unique_ptr<IWriteStream>(new WriteStream(m_path));
}
std::unique_ptr<IWriteStream> beginWriteStream(size_t offset) const
std::unique_ptr<IWriteStream> beginWriteStream(uint64_t offset) const
{
return std::unique_ptr<IWriteStream>(new WriteStream(m_path, offset));
}
@ -118,10 +118,10 @@ public:
if (!fp)
LogModule.report(LogVisor::Error, _S("unable to open '%s' for reading"), path.c_str());
}
ReadStream(const SystemString& path, size_t offset)
ReadStream(const SystemString& path, uint64_t offset)
: ReadStream(path)
{
fseek(fp, offset, SEEK_SET);
fseeko64(fp, offset, SEEK_SET);
}
~ReadStream() {fclose(fp);}
uint64_t read(void* buf, uint64_t length)
@ -152,7 +152,7 @@ public:
{
return std::unique_ptr<IReadStream>(new ReadStream(m_path));
}
std::unique_ptr<IReadStream> beginReadStream(size_t offset) const
std::unique_ptr<IReadStream> beginReadStream(uint64_t offset) const
{
return std::unique_ptr<IReadStream>(new ReadStream(m_path, offset));
}

288
lib/sha1.c Normal file
View File

@ -0,0 +1,288 @@
/* This code is public-domain - it is based on libcrypt
* placed in the public domain by Wei Dai and other contributors.
*/
// gcc -Wall -DSHA1TEST -o sha1test sha1.c && ./sha1test
#include <stdint.h>
#include <string.h>
#include "NOD/sha1.h"
#ifdef __BIG_ENDIAN__
# define SHA_BIG_ENDIAN
#elif defined __LITTLE_ENDIAN__
/* override */
#elif defined __BYTE_ORDER
# if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define SHA_BIG_ENDIAN
# endif
#else // ! defined __LITTLE_ENDIAN__
# include <endian.h> // machine/endian.h
# if __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
# define SHA_BIG_ENDIAN
# endif
#endif
/* code */
#define SHA1_K0 0x5a827999
#define SHA1_K20 0x6ed9eba1
#define SHA1_K40 0x8f1bbcdc
#define SHA1_K60 0xca62c1d6
void sha1_init(sha1nfo *s) {
s->state[0] = 0x67452301;
s->state[1] = 0xefcdab89;
s->state[2] = 0x98badcfe;
s->state[3] = 0x10325476;
s->state[4] = 0xc3d2e1f0;
s->byteCount = 0;
s->bufferOffset = 0;
}
uint32_t sha1_rol32(uint32_t number, uint8_t bits) {
return ((number << bits) | (number >> (32-bits)));
}
void sha1_hashBlock(sha1nfo *s) {
uint8_t i;
uint32_t a,b,c,d,e,t;
a=s->state[0];
b=s->state[1];
c=s->state[2];
d=s->state[3];
e=s->state[4];
for (i=0; i<80; i++) {
if (i>=16) {
t = s->buffer[(i+13)&15] ^ s->buffer[(i+8)&15] ^ s->buffer[(i+2)&15] ^ s->buffer[i&15];
s->buffer[i&15] = sha1_rol32(t,1);
}
if (i<20) {
t = (d ^ (b & (c ^ d))) + SHA1_K0;
} else if (i<40) {
t = (b ^ c ^ d) + SHA1_K20;
} else if (i<60) {
t = ((b & c) | (d & (b | c))) + SHA1_K40;
} else {
t = (b ^ c ^ d) + SHA1_K60;
}
t+=sha1_rol32(a,5) + e + s->buffer[i&15];
e=d;
d=c;
c=sha1_rol32(b,30);
b=a;
a=t;
}
s->state[0] += a;
s->state[1] += b;
s->state[2] += c;
s->state[3] += d;
s->state[4] += e;
}
void sha1_addUncounted(sha1nfo *s, uint8_t data) {
uint8_t * const b = (uint8_t*) s->buffer;
#ifdef SHA_BIG_ENDIAN
b[s->bufferOffset] = data;
#else
b[s->bufferOffset ^ 3] = data;
#endif
s->bufferOffset++;
if (s->bufferOffset == SHA1_BLOCK_LENGTH) {
sha1_hashBlock(s);
s->bufferOffset = 0;
}
}
void sha1_writebyte(sha1nfo *s, uint8_t data) {
++s->byteCount;
sha1_addUncounted(s, data);
}
void sha1_write(sha1nfo *s, const char *data, size_t len) {
for (;len--;) sha1_writebyte(s, (uint8_t) *data++);
}
void sha1_pad(sha1nfo *s) {
// Implement SHA-1 padding (fips180-2 §5.1.1)
// Pad with 0x80 followed by 0x00 until the end of the block
sha1_addUncounted(s, 0x80);
while (s->bufferOffset != 56) sha1_addUncounted(s, 0x00);
// Append length in the last 8 bytes
sha1_addUncounted(s, 0); // We're only using 32 bit lengths
sha1_addUncounted(s, 0); // But SHA-1 supports 64 bit lengths
sha1_addUncounted(s, 0); // So zero pad the top bits
sha1_addUncounted(s, s->byteCount >> 29); // Shifting to multiply by 8
sha1_addUncounted(s, s->byteCount >> 21); // as SHA-1 supports bitstreams as well as
sha1_addUncounted(s, s->byteCount >> 13); // byte.
sha1_addUncounted(s, s->byteCount >> 5);
sha1_addUncounted(s, s->byteCount << 3);
}
uint8_t* sha1_result(sha1nfo *s) {
// Pad to complete the last block
sha1_pad(s);
#ifndef SHA_BIG_ENDIAN
// Swap byte order back
int i;
for (i=0; i<5; i++) {
s->state[i]=
(((s->state[i])<<24)& 0xff000000)
| (((s->state[i])<<8) & 0x00ff0000)
| (((s->state[i])>>8) & 0x0000ff00)
| (((s->state[i])>>24)& 0x000000ff);
}
#endif
// Return pointer to hash (20 characters)
return (uint8_t*) s->state;
}
#define HMAC_IPAD 0x36
#define HMAC_OPAD 0x5c
void sha1_initHmac(sha1nfo *s, const uint8_t* key, int keyLength) {
uint8_t i;
memset(s->keyBuffer, 0, SHA1_BLOCK_LENGTH);
if (keyLength > SHA1_BLOCK_LENGTH) {
// Hash long keys
sha1_init(s);
for (;keyLength--;) sha1_writebyte(s, *key++);
memcpy(s->keyBuffer, sha1_result(s), SHA1_HASH_LENGTH);
} else {
// Block length keys are used as is
memcpy(s->keyBuffer, key, keyLength);
}
// Start inner hash
sha1_init(s);
for (i=0; i<SHA1_BLOCK_LENGTH; i++) {
sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_IPAD);
}
}
uint8_t* sha1_resultHmac(sha1nfo *s) {
uint8_t i;
// Complete inner hash
memcpy(s->innerHash,sha1_result(s),SHA1_HASH_LENGTH);
// Calculate outer hash
sha1_init(s);
for (i=0; i<SHA1_BLOCK_LENGTH; i++) sha1_writebyte(s, s->keyBuffer[i] ^ HMAC_OPAD);
for (i=0; i<SHA1_HASH_LENGTH; i++) sha1_writebyte(s, s->innerHash[i]);
return sha1_result(s);
}
/* self-test */
#if SHA1TEST
#include <stdio.h>
uint8_t hmacKey1[]={
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08,0x09,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,
0x10,0x11,0x12,0x13,0x14,0x15,0x16,0x17,0x18,0x19,0x1a,0x1b,0x1c,0x1d,0x1e,0x1f,
0x20,0x21,0x22,0x23,0x24,0x25,0x26,0x27,0x28,0x29,0x2a,0x2b,0x2c,0x2d,0x2e,0x2f,
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f
};
uint8_t hmacKey2[]={
0x30,0x31,0x32,0x33,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x3b,0x3c,0x3d,0x3e,0x3f,
0x40,0x41,0x42,0x43
};
uint8_t hmacKey3[]={
0x50,0x51,0x52,0x53,0x54,0x55,0x56,0x57,0x58,0x59,0x5a,0x5b,0x5c,0x5d,0x5e,0x5f,
0x60,0x61,0x62,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x6b,0x6c,0x6d,0x6e,0x6f,
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,
0xa0,0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xab,0xac,0xad,0xae,0xaf,
0xb0,0xb1,0xb2,0xb3
};
uint8_t hmacKey4[]={
0x70,0x71,0x72,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x7b,0x7c,0x7d,0x7e,0x7f,
0x80,0x81,0x82,0x83,0x84,0x85,0x86,0x87,0x88,0x89,0x8a,0x8b,0x8c,0x8d,0x8e,0x8f,
0x90,0x91,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0x9b,0x9c,0x9d,0x9e,0x9f,
0xa0
};
void printHash(uint8_t* hash) {
int i;
for (i=0; i<20; i++) {
printf("%02x", hash[i]);
}
printf("\n");
}
int main (int argc, char **argv) {
uint32_t a;
sha1nfo s;
// SHA tests
printf("Test: FIPS 180-2 C.1 and RFC3174 7.3 TEST1\n");
printf("Expect:a9993e364706816aba3e25717850c26c9cd0d89d\n");
printf("Result:");
sha1_init(&s);
sha1_write(&s, "abc", 3);
printHash(sha1_result(&s));
printf("\n\n");
printf("Test: FIPS 180-2 C.2 and RFC3174 7.3 TEST2\n");
printf("Expect:84983e441c3bd26ebaae4aa1f95129e5e54670f1\n");
printf("Result:");
sha1_init(&s);
sha1_write(&s, "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq", 56);
printHash(sha1_result(&s));
printf("\n\n");
printf("Test: RFC3174 7.3 TEST4\n");
printf("Expect:dea356a2cddd90c7a7ecedc5ebb563934f460452\n");
printf("Result:");
sha1_init(&s);
for (a=0; a<80; a++) sha1_write(&s, "01234567", 8);
printHash(sha1_result(&s));
printf("\n\n");
// HMAC tests
printf("Test: FIPS 198a A.1\n");
printf("Expect:4f4ca3d5d68ba7cc0a1208c9c61e9c5da0403c0a\n");
printf("Result:");
sha1_initHmac(&s, hmacKey1, 64);
sha1_write(&s, "Sample #1",9);
printHash(sha1_resultHmac(&s));
printf("\n\n");
printf("Test: FIPS 198a A.2\n");
printf("Expect:0922d3405faa3d194f82a45830737d5cc6c75d24\n");
printf("Result:");
sha1_initHmac(&s, hmacKey2, 20);
sha1_write(&s, "Sample #2", 9);
printHash(sha1_resultHmac(&s));
printf("\n\n");
printf("Test: FIPS 198a A.3\n");
printf("Expect:bcf41eab8bb2d802f3d05caf7cb092ecf8d1a3aa\n");
printf("Result:");
sha1_initHmac(&s, hmacKey3,100);
sha1_write(&s, "Sample #3", 9);
printHash(sha1_resultHmac(&s));
printf("\n\n");
printf("Test: FIPS 198a A.4\n");
printf("Expect:9ea886efe268dbecce420c7524df32e0751a2a26\n");
printf("Result:");
sha1_initHmac(&s, hmacKey4,49);
sha1_write(&s, "Sample #4", 9);
printHash(sha1_resultHmac(&s));
printf("\n\n");
// Long tests
printf("Test: FIPS 180-2 C.3 and RFC3174 7.3 TEST3\n");
printf("Expect:34aa973cd4c4daa4f61eeb2bdbad27316534016f\n");
printf("Result:");
sha1_init(&s);
for (a=0; a<1000000; a++) sha1_writebyte(&s, 'a');
printHash(sha1_result(&s));
return 0;
}
#endif /* self-test */