mirror of https://github.com/AxioDL/nod.git
Fixed WBFS reads with 64-bit addresses
This commit is contained in:
parent
83f29da294
commit
993b30e4a5
|
@ -1,4 +1,5 @@
|
|||
#include "NOD/DiscGCN.hpp"
|
||||
#define BUFFER_SZ 0x8000
|
||||
|
||||
namespace NOD
|
||||
{
|
||||
|
@ -33,15 +34,66 @@ public:
|
|||
const PartitionGCN& m_parent;
|
||||
std::unique_ptr<IDiscIO::IReadStream> m_dio;
|
||||
|
||||
uint64_t m_offset;
|
||||
size_t m_curBlock = SIZE_MAX;
|
||||
uint8_t m_buf[BUFFER_SZ];
|
||||
|
||||
public:
|
||||
PartReadStream(const PartitionGCN& parent, uint64_t offset)
|
||||
: m_parent(parent)
|
||||
{m_dio = m_parent.m_parent.getDiscIO().beginReadStream(offset);}
|
||||
: m_parent(parent), m_offset(offset)
|
||||
{
|
||||
size_t block = m_offset / BUFFER_SZ;
|
||||
m_dio = m_parent.m_parent.getDiscIO().beginReadStream(block * BUFFER_SZ);
|
||||
m_dio->read(m_buf, BUFFER_SZ);
|
||||
m_curBlock = block;
|
||||
}
|
||||
void seek(int64_t offset, int whence)
|
||||
{m_dio->seek(offset, whence);}
|
||||
uint64_t position() const {return m_dio->position();}
|
||||
{
|
||||
if (whence == SEEK_SET)
|
||||
m_offset = offset;
|
||||
else if (whence == SEEK_CUR)
|
||||
m_offset += offset;
|
||||
else
|
||||
return;
|
||||
size_t block = m_offset / BUFFER_SZ;
|
||||
if (block != m_curBlock)
|
||||
{
|
||||
m_dio->seek(block * BUFFER_SZ);
|
||||
m_dio->read(m_buf, BUFFER_SZ);
|
||||
m_curBlock = block;
|
||||
}
|
||||
}
|
||||
uint64_t position() const {return m_offset;}
|
||||
uint64_t read(void* buf, uint64_t length)
|
||||
{return m_dio->read(buf, length);}
|
||||
{
|
||||
size_t block = m_offset / BUFFER_SZ;
|
||||
size_t cacheOffset = m_offset % BUFFER_SZ;
|
||||
uint64_t cacheSize;
|
||||
uint64_t rem = length;
|
||||
uint8_t* dst = (uint8_t*)buf;
|
||||
|
||||
while (rem)
|
||||
{
|
||||
if (block != m_curBlock)
|
||||
{
|
||||
m_dio->read(m_buf, BUFFER_SZ);
|
||||
m_curBlock = block;
|
||||
}
|
||||
|
||||
cacheSize = rem;
|
||||
if (cacheSize + cacheOffset > BUFFER_SZ)
|
||||
cacheSize = BUFFER_SZ - cacheOffset;
|
||||
|
||||
memcpy(dst, m_buf + cacheOffset, cacheSize);
|
||||
dst += cacheSize;
|
||||
rem -= cacheSize;
|
||||
cacheOffset = 0;
|
||||
++block;
|
||||
}
|
||||
|
||||
m_offset += length;
|
||||
return dst - (uint8_t*)buf;
|
||||
}
|
||||
};
|
||||
|
||||
std::unique_ptr<IPartReadStream> beginReadStream(uint64_t offset) const
|
||||
|
|
|
@ -251,15 +251,15 @@ public:
|
|||
if (rem_offset)
|
||||
{
|
||||
uint64_t rem_rem = 4 - rem_offset;
|
||||
if (wbfsDiscRead((unsigned int)m_offset / 4, extra, 4))
|
||||
if (wbfsDiscRead((uint32_t)(m_offset / 4), extra, 4))
|
||||
return 0;
|
||||
memcpy(buf, extra + rem_offset, rem_rem);
|
||||
if (wbfsDiscRead((unsigned int)m_offset / 4 + 1, (uint8_t*)buf + rem_rem, length - rem_rem))
|
||||
if (wbfsDiscRead((uint32_t)(m_offset / 4 + 1), (uint8_t*)buf + rem_rem, length - rem_rem))
|
||||
return 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
if (wbfsDiscRead((unsigned int)m_offset / 4, (uint8_t*)buf, length))
|
||||
if (wbfsDiscRead((uint32_t)(m_offset / 4), (uint8_t*)buf, length))
|
||||
return 0;
|
||||
}
|
||||
m_offset += length;
|
||||
|
|
292
lib/aes.cpp
292
lib/aes.cpp
|
@ -16,8 +16,6 @@ namespace NOD
|
|||
#define ROTL16(x) (((x)<<16)|((x)>>16))
|
||||
#define ROTL24(x) (((x)<<24)|((x)>>8))
|
||||
|
||||
/* Fixed Data */
|
||||
|
||||
static const uint8_t InCo[4] = {0xB, 0xD, 0x9, 0xE}; /* Inverse Coefficients */
|
||||
|
||||
static inline uint32_t pack(const uint8_t* b)
|
||||
|
@ -47,9 +45,8 @@ static inline uint8_t xtime(uint8_t a)
|
|||
return a;
|
||||
}
|
||||
|
||||
class SoftwareAES : public IAES
|
||||
static const struct SoftwareAESTables
|
||||
{
|
||||
protected:
|
||||
uint8_t fbsub[256];
|
||||
uint8_t rbsub[256];
|
||||
uint8_t ptab[256], ltab[256];
|
||||
|
@ -57,20 +54,134 @@ protected:
|
|||
uint32_t rtable[256];
|
||||
uint32_t rco[30];
|
||||
|
||||
/* Parameter-dependent data */
|
||||
uint8_t bmul(uint8_t x, uint8_t y) const
|
||||
{
|
||||
/* x.y= AntiLog(Log(x) + Log(y)) */
|
||||
if (x && y) return ptab[(ltab[x] + ltab[y]) % 255];
|
||||
else return 0;
|
||||
}
|
||||
|
||||
uint32_t SubByte(uint32_t a) const
|
||||
{
|
||||
uint8_t b[4];
|
||||
unpack(a, b);
|
||||
b[0] = fbsub[b[0]];
|
||||
b[1] = fbsub[b[1]];
|
||||
b[2] = fbsub[b[2]];
|
||||
b[3] = fbsub[b[3]];
|
||||
return pack(b);
|
||||
}
|
||||
|
||||
uint8_t product(uint32_t x, uint32_t y) const
|
||||
{
|
||||
/* dot product of two 4-byte arrays */
|
||||
uint8_t xb[4], yb[4];
|
||||
unpack(x, xb);
|
||||
unpack(y, yb);
|
||||
return bmul(xb[0], yb[0])^bmul(xb[1], yb[1])^bmul(xb[2], yb[2])^bmul(xb[3], yb[3]);
|
||||
}
|
||||
|
||||
uint32_t InvMixCol(uint32_t x) const
|
||||
{
|
||||
/* matrix Multiplication */
|
||||
uint32_t y, m;
|
||||
uint8_t b[4];
|
||||
|
||||
m = pack(InCo);
|
||||
b[3] = product(m, x);
|
||||
m = ROTL24(m);
|
||||
b[2] = product(m, x);
|
||||
m = ROTL24(m);
|
||||
b[1] = product(m, x);
|
||||
m = ROTL24(m);
|
||||
b[0] = product(m, x);
|
||||
y = pack(b);
|
||||
return y;
|
||||
}
|
||||
|
||||
uint8_t ByteSub(uint8_t x) const
|
||||
{
|
||||
uint8_t y = ptab[255 - ltab[x]]; /* multiplicative inverse */
|
||||
x = y;
|
||||
x = ROTL(x);
|
||||
y ^= x;
|
||||
x = ROTL(x);
|
||||
y ^= x;
|
||||
x = ROTL(x);
|
||||
y ^= x;
|
||||
x = ROTL(x);
|
||||
y ^= x;
|
||||
y ^= 0x63;
|
||||
return y;
|
||||
}
|
||||
|
||||
SoftwareAESTables()
|
||||
{
|
||||
/* generate tables */
|
||||
int i;
|
||||
uint8_t y, b[4];
|
||||
|
||||
/* use 3 as primitive root to generate power and log tables */
|
||||
|
||||
ltab[0] = 0;
|
||||
ptab[0] = 1;
|
||||
ltab[1] = 0;
|
||||
ptab[1] = 3;
|
||||
ltab[3] = 1;
|
||||
|
||||
for (i = 2; i < 256; i++)
|
||||
{
|
||||
ptab[i] = ptab[i - 1] ^ xtime(ptab[i - 1]);
|
||||
ltab[ptab[i]] = i;
|
||||
}
|
||||
|
||||
/* affine transformation:- each bit is xored with itself shifted one bit */
|
||||
|
||||
fbsub[0] = 0x63;
|
||||
rbsub[0x63] = 0;
|
||||
|
||||
for (i = 1; i < 256; i++)
|
||||
{
|
||||
y = ByteSub((uint8_t)i);
|
||||
fbsub[i] = y;
|
||||
rbsub[y] = i;
|
||||
}
|
||||
|
||||
for (i = 0, y = 1; i < 30; i++)
|
||||
{
|
||||
rco[i] = y;
|
||||
y = xtime(y);
|
||||
}
|
||||
|
||||
/* calculate forward and reverse tables */
|
||||
for (i = 0; i < 256; i++)
|
||||
{
|
||||
y = fbsub[i];
|
||||
b[3] = y ^ xtime(y);
|
||||
b[2] = y;
|
||||
b[1] = y;
|
||||
b[0] = xtime(y);
|
||||
ftable[i] = pack(b);
|
||||
|
||||
y = rbsub[i];
|
||||
b[3] = bmul(InCo[0], y);
|
||||
b[2] = bmul(InCo[1], y);
|
||||
b[1] = bmul(InCo[2], y);
|
||||
b[0] = bmul(InCo[3], y);
|
||||
rtable[i] = pack(b);
|
||||
}
|
||||
}
|
||||
} AEStb;
|
||||
|
||||
class SoftwareAES : public IAES
|
||||
{
|
||||
protected:
|
||||
/* Parameter-dependent data */
|
||||
int Nk, Nb, Nr;
|
||||
uint8_t fi[24], ri[24];
|
||||
uint32_t fkey[120];
|
||||
uint32_t rkey[120];
|
||||
|
||||
|
||||
uint8_t bmul(uint8_t x, uint8_t y);
|
||||
uint32_t SubByte(uint32_t a);
|
||||
uint8_t product(uint32_t x, uint32_t y);
|
||||
uint32_t InvMixCol(uint32_t x);
|
||||
uint8_t ByteSub(uint8_t x);
|
||||
void gentables(void);
|
||||
void gkey(int nb, int nk, const uint8_t* key);
|
||||
void _encrypt(uint8_t* buff);
|
||||
void _decrypt(uint8_t* buff);
|
||||
|
@ -81,124 +192,6 @@ public:
|
|||
void setKey(const uint8_t* key);
|
||||
};
|
||||
|
||||
uint8_t SoftwareAES::bmul(uint8_t x, uint8_t y)
|
||||
{
|
||||
/* x.y= AntiLog(Log(x) + Log(y)) */
|
||||
if (x && y) return ptab[(ltab[x] + ltab[y]) % 255];
|
||||
else return 0;
|
||||
}
|
||||
|
||||
uint32_t SoftwareAES::SubByte(uint32_t a)
|
||||
{
|
||||
uint8_t b[4];
|
||||
unpack(a, b);
|
||||
b[0] = fbsub[b[0]];
|
||||
b[1] = fbsub[b[1]];
|
||||
b[2] = fbsub[b[2]];
|
||||
b[3] = fbsub[b[3]];
|
||||
return pack(b);
|
||||
}
|
||||
|
||||
uint8_t SoftwareAES::product(uint32_t x, uint32_t y)
|
||||
{
|
||||
/* dot product of two 4-byte arrays */
|
||||
uint8_t xb[4], yb[4];
|
||||
unpack(x, xb);
|
||||
unpack(y, yb);
|
||||
return bmul(xb[0], yb[0])^bmul(xb[1], yb[1])^bmul(xb[2], yb[2])^bmul(xb[3], yb[3]);
|
||||
}
|
||||
|
||||
uint32_t SoftwareAES::InvMixCol(uint32_t x)
|
||||
{
|
||||
/* matrix Multiplication */
|
||||
uint32_t y, m;
|
||||
uint8_t b[4];
|
||||
|
||||
m = pack(InCo);
|
||||
b[3] = product(m, x);
|
||||
m = ROTL24(m);
|
||||
b[2] = product(m, x);
|
||||
m = ROTL24(m);
|
||||
b[1] = product(m, x);
|
||||
m = ROTL24(m);
|
||||
b[0] = product(m, x);
|
||||
y = pack(b);
|
||||
return y;
|
||||
}
|
||||
|
||||
uint8_t SoftwareAES::ByteSub(uint8_t x)
|
||||
{
|
||||
uint8_t y = ptab[255 - ltab[x]]; /* multiplicative inverse */
|
||||
x = y;
|
||||
x = ROTL(x);
|
||||
y ^= x;
|
||||
x = ROTL(x);
|
||||
y ^= x;
|
||||
x = ROTL(x);
|
||||
y ^= x;
|
||||
x = ROTL(x);
|
||||
y ^= x;
|
||||
y ^= 0x63;
|
||||
return y;
|
||||
}
|
||||
|
||||
void SoftwareAES::gentables(void)
|
||||
{
|
||||
/* generate tables */
|
||||
int i;
|
||||
uint8_t y, b[4];
|
||||
|
||||
/* use 3 as primitive root to generate power and log tables */
|
||||
|
||||
ltab[0] = 0;
|
||||
ptab[0] = 1;
|
||||
ltab[1] = 0;
|
||||
ptab[1] = 3;
|
||||
ltab[3] = 1;
|
||||
|
||||
for (i = 2; i < 256; i++)
|
||||
{
|
||||
ptab[i] = ptab[i - 1] ^ xtime(ptab[i - 1]);
|
||||
ltab[ptab[i]] = i;
|
||||
}
|
||||
|
||||
/* affine transformation:- each bit is xored with itself shifted one bit */
|
||||
|
||||
fbsub[0] = 0x63;
|
||||
rbsub[0x63] = 0;
|
||||
|
||||
for (i = 1; i < 256; i++)
|
||||
{
|
||||
y = ByteSub((uint8_t)i);
|
||||
fbsub[i] = y;
|
||||
rbsub[y] = i;
|
||||
}
|
||||
|
||||
for (i = 0, y = 1; i < 30; i++)
|
||||
{
|
||||
rco[i] = y;
|
||||
y = xtime(y);
|
||||
}
|
||||
|
||||
/* calculate forward and reverse tables */
|
||||
for (i = 0; i < 256; i++)
|
||||
{
|
||||
y = fbsub[i];
|
||||
b[3] = y ^ xtime(y);
|
||||
b[2] = y;
|
||||
b[1] = y;
|
||||
b[0] = xtime(y);
|
||||
ftable[i] = pack(b);
|
||||
|
||||
y = rbsub[i];
|
||||
b[3] = bmul(InCo[0], y);
|
||||
b[2] = bmul(InCo[1], y);
|
||||
b[1] = bmul(InCo[2], y);
|
||||
b[0] = bmul(InCo[3], y);
|
||||
rtable[i] = pack(b);
|
||||
}
|
||||
}
|
||||
|
||||
void SoftwareAES::gkey(int nb, int nk, const uint8_t* key)
|
||||
{
|
||||
/* blocksize=32*nb bits. Key=32*nk bits */
|
||||
|
@ -243,7 +236,7 @@ void SoftwareAES::gkey(int nb, int nk, const uint8_t* key)
|
|||
|
||||
for (j = Nk, k = 0; j < N; j += Nk, k++)
|
||||
{
|
||||
fkey[j] = fkey[j - Nk] ^ SubByte(ROTL24(fkey[j - 1]))^rco[k];
|
||||
fkey[j] = fkey[j - Nk] ^ AEStb.SubByte(ROTL24(fkey[j - 1]))^AEStb.rco[k];
|
||||
|
||||
if (Nk <= 6)
|
||||
{
|
||||
|
@ -255,7 +248,7 @@ void SoftwareAES::gkey(int nb, int nk, const uint8_t* key)
|
|||
for (i = 1; i < 4 && (i + j) < N; i++)
|
||||
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
|
||||
|
||||
if ((j + 4) < N) fkey[j + 4] = fkey[j + 4 - Nk] ^ SubByte(fkey[j + 3]);
|
||||
if ((j + 4) < N) fkey[j + 4] = fkey[j + 4 - Nk] ^ AEStb.SubByte(fkey[j + 3]);
|
||||
|
||||
for (i = 5; i < Nk && (i + j) < N; i++)
|
||||
fkey[i + j] = fkey[i + j - Nk] ^ fkey[i + j - 1];
|
||||
|
@ -271,7 +264,7 @@ void SoftwareAES::gkey(int nb, int nk, const uint8_t* key)
|
|||
{
|
||||
k = N - Nb - i;
|
||||
|
||||
for (j = 0; j < Nb; j++) rkey[k + j] = InvMixCol(fkey[i + j]);
|
||||
for (j = 0; j < Nb; j++) rkey[k + j] = AEStb.InvMixCol(fkey[i + j]);
|
||||
}
|
||||
|
||||
for (j = N - Nb; j < N; j++) rkey[j - N + Nb] = fkey[j];
|
||||
|
@ -309,10 +302,10 @@ void SoftwareAES::_encrypt(uint8_t* buff)
|
|||
{
|
||||
/* deal with each 32-bit element of the State */
|
||||
/* This is the time-critical bit */
|
||||
y[j] = fkey[k++] ^ ftable[(uint8_t)x[j]] ^
|
||||
ROTL8(ftable[(uint8_t)(x[fi[m]] >> 8)])^
|
||||
ROTL16(ftable[(uint8_t)(x[fi[m + 1]] >> 16)])^
|
||||
ROTL24(ftable[(uint8_t)(x[fi[m + 2]] >> 24)]);
|
||||
y[j] = fkey[k++] ^ AEStb.ftable[(uint8_t)x[j]] ^
|
||||
ROTL8(AEStb.ftable[(uint8_t)(x[fi[m]] >> 8)])^
|
||||
ROTL16(AEStb.ftable[(uint8_t)(x[fi[m + 1]] >> 16)])^
|
||||
ROTL24(AEStb.ftable[(uint8_t)(x[fi[m + 2]] >> 24)]);
|
||||
}
|
||||
|
||||
t = x;
|
||||
|
@ -323,10 +316,10 @@ void SoftwareAES::_encrypt(uint8_t* buff)
|
|||
/* Last Round - unroll if possible */
|
||||
for (m = j = 0; j < Nb; j++, m += 3)
|
||||
{
|
||||
y[j] = fkey[k++] ^ (uint32_t)fbsub[(uint8_t)x[j]] ^
|
||||
ROTL8((uint32_t)fbsub[(uint8_t)(x[fi[m]] >> 8)])^
|
||||
ROTL16((uint32_t)fbsub[(uint8_t)(x[fi[m + 1]] >> 16)])^
|
||||
ROTL24((uint32_t)fbsub[(uint8_t)(x[fi[m + 2]] >> 24)]);
|
||||
y[j] = fkey[k++] ^ (uint32_t)AEStb.fbsub[(uint8_t)x[j]] ^
|
||||
ROTL8((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m]] >> 8)])^
|
||||
ROTL16((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m + 1]] >> 16)])^
|
||||
ROTL24((uint32_t)AEStb.fbsub[(uint8_t)(x[fi[m + 2]] >> 24)]);
|
||||
}
|
||||
|
||||
for (i = j = 0; i < Nb; i++, j += 4)
|
||||
|
@ -364,10 +357,10 @@ void SoftwareAES::_decrypt(uint8_t* buff)
|
|||
for (m = j = 0; j < Nb; j++, m += 3)
|
||||
{
|
||||
/* This is the time-critical bit */
|
||||
y[j] = rkey[k++] ^ rtable[(uint8_t)x[j]] ^
|
||||
ROTL8(rtable[(uint8_t)(x[ri[m]] >> 8)])^
|
||||
ROTL16(rtable[(uint8_t)(x[ri[m + 1]] >> 16)])^
|
||||
ROTL24(rtable[(uint8_t)(x[ri[m + 2]] >> 24)]);
|
||||
y[j] = rkey[k++] ^ AEStb.rtable[(uint8_t)x[j]] ^
|
||||
ROTL8(AEStb.rtable[(uint8_t)(x[ri[m]] >> 8)])^
|
||||
ROTL16(AEStb.rtable[(uint8_t)(x[ri[m + 1]] >> 16)])^
|
||||
ROTL24(AEStb.rtable[(uint8_t)(x[ri[m + 2]] >> 24)]);
|
||||
}
|
||||
|
||||
t = x;
|
||||
|
@ -378,10 +371,10 @@ void SoftwareAES::_decrypt(uint8_t* buff)
|
|||
/* Last Round - unroll if possible */
|
||||
for (m = j = 0; j < Nb; j++, m += 3)
|
||||
{
|
||||
y[j] = rkey[k++] ^ (uint32_t)rbsub[(uint8_t)x[j]] ^
|
||||
ROTL8((uint32_t)rbsub[(uint8_t)(x[ri[m]] >> 8)])^
|
||||
ROTL16((uint32_t)rbsub[(uint8_t)(x[ri[m + 1]] >> 16)])^
|
||||
ROTL24((uint32_t)rbsub[(uint8_t)(x[ri[m + 2]] >> 24)]);
|
||||
y[j] = rkey[k++] ^ (uint32_t)AEStb.rbsub[(uint8_t)x[j]] ^
|
||||
ROTL8((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m]] >> 8)])^
|
||||
ROTL16((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m + 1]] >> 16)])^
|
||||
ROTL24((uint32_t)AEStb.rbsub[(uint8_t)(x[ri[m + 2]] >> 24)]);
|
||||
}
|
||||
|
||||
for (i = j = 0; i < Nb; i++, j += 4)
|
||||
|
@ -395,7 +388,6 @@ void SoftwareAES::_decrypt(uint8_t* buff)
|
|||
|
||||
void SoftwareAES::setKey(const uint8_t* key)
|
||||
{
|
||||
gentables();
|
||||
gkey(4, 4, key);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue